Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.60
      1 /*	$NetBSD: agp.c,v 1.60 2008/08/19 09:59:54 matthias Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.60 2008/08/19 09:59:54 matthias Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <uvm/uvm_extern.h>
     83 
     84 #include <dev/pci/pcireg.h>
     85 #include <dev/pci/pcivar.h>
     86 #include <dev/pci/agpvar.h>
     87 #include <dev/pci/agpreg.h>
     88 #include <dev/pci/pcidevs.h>
     89 
     90 #include <sys/bus.h>
     91 
     92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93 
     94 /* Helper functions for implementing chipset mini drivers. */
     95 /* XXXfvdl get rid of this one. */
     96 
     97 extern struct cfdriver agp_cd;
     98 
     99 static int agp_info_user(struct agp_softc *, agp_info *);
    100 static int agp_setup_user(struct agp_softc *, agp_setup *);
    101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102 static int agp_deallocate_user(struct agp_softc *, int);
    103 static int agp_bind_user(struct agp_softc *, agp_bind *);
    104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105 static int agpdev_match(struct pci_attach_args *);
    106 static bool agp_resume(device_t PMF_FN_PROTO);
    107 
    108 #include "agp_ali.h"
    109 #include "agp_amd.h"
    110 #include "agp_i810.h"
    111 #include "agp_intel.h"
    112 #include "agp_sis.h"
    113 #include "agp_via.h"
    114 #include "agp_amd64.h"
    115 
    116 const struct agp_product {
    117 	uint32_t	ap_vendor;
    118 	uint32_t	ap_product;
    119 	int		(*ap_match)(const struct pci_attach_args *);
    120 	int		(*ap_attach)(device_t, device_t, void *);
    121 } agp_products[] = {
    122 #if NAGP_AMD64 > 0
    123 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
    124 	  agp_amd64_match,	agp_amd64_attach },
    125 #endif
    126 
    127 #if NAGP_ALI > 0
    128 	{ PCI_VENDOR_ALI,	-1,
    129 	  NULL,			agp_ali_attach },
    130 #endif
    131 
    132 #if NAGP_AMD64 > 0
    133 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    134 	  agp_amd64_match,	agp_amd64_attach },
    135 #endif
    136 
    137 #if NAGP_AMD > 0
    138 	{ PCI_VENDOR_AMD,	-1,
    139 	  agp_amd_match,	agp_amd_attach },
    140 #endif
    141 
    142 #if NAGP_I810 > 0
    143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    144 	  NULL,			agp_i810_attach },
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    166 	  NULL,			agp_i810_attach },
    167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    168 	  NULL,			agp_i810_attach },
    169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    170 	  NULL,			agp_i810_attach },
    171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    172 	  NULL,			agp_i810_attach },
    173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    174 	  NULL,			agp_i810_attach },
    175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    176 	  NULL,			agp_i810_attach },
    177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    178 	  NULL,			agp_i810_attach },
    179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    180 	  NULL,			agp_i810_attach },
    181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
    182 	  NULL,			agp_i810_attach },
    183 #endif
    184 
    185 #if NAGP_INTEL > 0
    186 	{ PCI_VENDOR_INTEL,	-1,
    187 	  NULL,			agp_intel_attach },
    188 #endif
    189 
    190 #if NAGP_AMD64 > 0
    191 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    192 	  agp_amd64_match,	agp_amd64_attach },
    193 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    194 	  agp_amd64_match,	agp_amd64_attach },
    195 #endif
    196 
    197 #if NAGP_AMD64 > 0
    198 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    199 	  agp_amd64_match,	agp_amd64_attach },
    200 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    201 	  agp_amd64_match,	agp_amd64_attach },
    202 #endif
    203 
    204 #if NAGP_SIS > 0
    205 	{ PCI_VENDOR_SIS,	-1,
    206 	  NULL,			agp_sis_attach },
    207 #endif
    208 
    209 #if NAGP_AMD64 > 0
    210 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    211 	  agp_amd64_match,	agp_amd64_attach },
    212 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    213 	  agp_amd64_match,	agp_amd64_attach },
    214 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    215 	  agp_amd64_match,	agp_amd64_attach },
    216 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    217 	  agp_amd64_match,	agp_amd64_attach },
    218 #endif
    219 
    220 #if NAGP_VIA > 0
    221 	{ PCI_VENDOR_VIATECH,	-1,
    222 	  NULL,			agp_via_attach },
    223 #endif
    224 
    225 	{ 0,			0,
    226 	  NULL,			NULL },
    227 };
    228 
    229 static const struct agp_product *
    230 agp_lookup(const struct pci_attach_args *pa)
    231 {
    232 	const struct agp_product *ap;
    233 
    234 	/* First find the vendor. */
    235 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    236 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    237 			break;
    238 	}
    239 
    240 	if (ap->ap_attach == NULL)
    241 		return (NULL);
    242 
    243 	/* Now find the product within the vendor's domain. */
    244 	for (; ap->ap_attach != NULL; ap++) {
    245 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    246 			/* Ran out of this vendor's section of the table. */
    247 			return (NULL);
    248 		}
    249 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    250 			/* Exact match. */
    251 			break;
    252 		}
    253 		if (ap->ap_product == (uint32_t) -1) {
    254 			/* Wildcard match. */
    255 			break;
    256 		}
    257 	}
    258 
    259 	if (ap->ap_attach == NULL)
    260 		return (NULL);
    261 
    262 	/* Now let the product-specific driver filter the match. */
    263 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    264 		return (NULL);
    265 
    266 	return (ap);
    267 }
    268 
    269 static int
    270 agpmatch(device_t parent, cfdata_t match, void *aux)
    271 {
    272 	struct agpbus_attach_args *apa = aux;
    273 	struct pci_attach_args *pa = &apa->apa_pci_args;
    274 
    275 	if (agp_lookup(pa) == NULL)
    276 		return (0);
    277 
    278 	return (1);
    279 }
    280 
    281 static const int agp_max[][2] = {
    282 	{0,	0},
    283 	{32,	4},
    284 	{64,	28},
    285 	{128,	96},
    286 	{256,	204},
    287 	{512,	440},
    288 	{1024,	942},
    289 	{2048,	1920},
    290 	{4096,	3932}
    291 };
    292 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    293 
    294 static void
    295 agpattach(device_t parent, device_t self, void *aux)
    296 {
    297 	struct agpbus_attach_args *apa = aux;
    298 	struct pci_attach_args *pa = &apa->apa_pci_args;
    299 	struct agp_softc *sc = device_private(self);
    300 	const struct agp_product *ap;
    301 	int memsize, i, ret;
    302 
    303 	ap = agp_lookup(pa);
    304 	KASSERT(ap != NULL);
    305 
    306 	aprint_naive(": AGP controller\n");
    307 
    308 	sc->as_dev = self;
    309 	sc->as_dmat = pa->pa_dmat;
    310 	sc->as_pc = pa->pa_pc;
    311 	sc->as_tag = pa->pa_tag;
    312 	sc->as_id = pa->pa_id;
    313 
    314 	/*
    315 	 * Work out an upper bound for agp memory allocation. This
    316 	 * uses a heuristic table from the Linux driver.
    317 	 */
    318 	memsize = ptoa(physmem) >> 20;
    319 	for (i = 0; i < agp_max_size; i++) {
    320 		if (memsize <= agp_max[i][0])
    321 			break;
    322 	}
    323 	if (i == agp_max_size)
    324 		i = agp_max_size - 1;
    325 	sc->as_maxmem = agp_max[i][1] << 20U;
    326 
    327 	/*
    328 	 * The mutex is used to prevent re-entry to
    329 	 * agp_generic_bind_memory() since that function can sleep.
    330 	 */
    331 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    332 
    333 	TAILQ_INIT(&sc->as_memory);
    334 
    335 	ret = (*ap->ap_attach)(parent, self, pa);
    336 	if (ret == 0)
    337 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    338 		    (unsigned long)sc->as_apaddr,
    339 		    (unsigned long)AGP_GET_APERTURE(sc));
    340 	else
    341 		sc->as_chipc = NULL;
    342 
    343 	if (!device_pmf_is_registered(self)) {
    344 		if (!pmf_device_register(self, NULL, agp_resume))
    345 			aprint_error_dev(self, "couldn't establish power "
    346 			    "handler\n");
    347 	}
    348 }
    349 
    350 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
    351     agpmatch, agpattach, NULL, NULL);
    352 
    353 int
    354 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    355 {
    356 	/*
    357 	 * Find the aperture. Don't map it (yet), this would
    358 	 * eat KVA.
    359 	 */
    360 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    361 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    362 	    &sc->as_apflags) != 0)
    363 		return ENXIO;
    364 
    365 	sc->as_apt = pa->pa_memt;
    366 
    367 	return 0;
    368 }
    369 
    370 struct agp_gatt *
    371 agp_alloc_gatt(struct agp_softc *sc)
    372 {
    373 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    374 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    375 	struct agp_gatt *gatt;
    376 	void *virtual;
    377 	int dummyseg;
    378 
    379 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    380 	if (!gatt)
    381 		return NULL;
    382 	gatt->ag_entries = entries;
    383 
    384 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    385 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    386 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
    387 		return NULL;
    388 	gatt->ag_virtual = (uint32_t *)virtual;
    389 
    390 	gatt->ag_size = entries * sizeof(u_int32_t);
    391 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    392 	agp_flush_cache();
    393 
    394 	return gatt;
    395 }
    396 
    397 void
    398 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    399 {
    400 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    401 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    402 	free(gatt, M_AGP);
    403 }
    404 
    405 
    406 int
    407 agp_generic_detach(struct agp_softc *sc)
    408 {
    409 	mutex_destroy(&sc->as_mtx);
    410 	agp_flush_cache();
    411 	return 0;
    412 }
    413 
    414 static int
    415 agpdev_match(struct pci_attach_args *pa)
    416 {
    417 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    418 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    419 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    420 		    NULL, NULL))
    421 		return 1;
    422 
    423 	return 0;
    424 }
    425 
    426 int
    427 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    428 {
    429 	struct pci_attach_args pa;
    430 	pcireg_t tstatus, mstatus;
    431 	pcireg_t command;
    432 	int rq, sba, fw, rate, capoff;
    433 
    434 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    435 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    436 	     &capoff, NULL) == 0) {
    437 		aprint_error_dev(sc->as_dev, "can't find display\n");
    438 		return ENXIO;
    439 	}
    440 
    441 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    442 	    sc->as_capoff + AGP_STATUS);
    443 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    444 	    capoff + AGP_STATUS);
    445 
    446 	/* Set RQ to the min of mode, tstatus and mstatus */
    447 	rq = AGP_MODE_GET_RQ(mode);
    448 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    449 		rq = AGP_MODE_GET_RQ(tstatus);
    450 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    451 		rq = AGP_MODE_GET_RQ(mstatus);
    452 
    453 	/* Set SBA if all three can deal with SBA */
    454 	sba = (AGP_MODE_GET_SBA(tstatus)
    455 	       & AGP_MODE_GET_SBA(mstatus)
    456 	       & AGP_MODE_GET_SBA(mode));
    457 
    458 	/* Similar for FW */
    459 	fw = (AGP_MODE_GET_FW(tstatus)
    460 	       & AGP_MODE_GET_FW(mstatus)
    461 	       & AGP_MODE_GET_FW(mode));
    462 
    463 	/* Figure out the max rate */
    464 	rate = (AGP_MODE_GET_RATE(tstatus)
    465 		& AGP_MODE_GET_RATE(mstatus)
    466 		& AGP_MODE_GET_RATE(mode));
    467 	if (rate & AGP_MODE_RATE_4x)
    468 		rate = AGP_MODE_RATE_4x;
    469 	else if (rate & AGP_MODE_RATE_2x)
    470 		rate = AGP_MODE_RATE_2x;
    471 	else
    472 		rate = AGP_MODE_RATE_1x;
    473 
    474 	/* Construct the new mode word and tell the hardware */
    475 	command = AGP_MODE_SET_RQ(0, rq);
    476 	command = AGP_MODE_SET_SBA(command, sba);
    477 	command = AGP_MODE_SET_FW(command, fw);
    478 	command = AGP_MODE_SET_RATE(command, rate);
    479 	command = AGP_MODE_SET_AGP(command, 1);
    480 	pci_conf_write(sc->as_pc, sc->as_tag,
    481 	    sc->as_capoff + AGP_COMMAND, command);
    482 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    483 
    484 	return 0;
    485 }
    486 
    487 struct agp_memory *
    488 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    489 {
    490 	struct agp_memory *mem;
    491 
    492 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    493 		return 0;
    494 
    495 	if (sc->as_allocated + size > sc->as_maxmem)
    496 		return 0;
    497 
    498 	if (type != 0) {
    499 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    500 		       type);
    501 		return 0;
    502 	}
    503 
    504 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    505 	if (mem == NULL)
    506 		return NULL;
    507 
    508 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    509 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    510 		free(mem, M_AGP);
    511 		return NULL;
    512 	}
    513 
    514 	mem->am_id = sc->as_nextid++;
    515 	mem->am_size = size;
    516 	mem->am_type = 0;
    517 	mem->am_physical = 0;
    518 	mem->am_offset = 0;
    519 	mem->am_is_bound = 0;
    520 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    521 	sc->as_allocated += size;
    522 
    523 	return mem;
    524 }
    525 
    526 int
    527 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    528 {
    529 	if (mem->am_is_bound)
    530 		return EBUSY;
    531 
    532 	sc->as_allocated -= mem->am_size;
    533 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    534 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    535 	free(mem, M_AGP);
    536 	return 0;
    537 }
    538 
    539 int
    540 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    541 			off_t offset)
    542 {
    543 	off_t i, k;
    544 	bus_size_t done, j;
    545 	int error;
    546 	bus_dma_segment_t *segs, *seg;
    547 	bus_addr_t pa;
    548 	int contigpages, nseg;
    549 
    550 	mutex_enter(&sc->as_mtx);
    551 
    552 	if (mem->am_is_bound) {
    553 		aprint_error_dev(sc->as_dev, "memory already bound\n");
    554 		mutex_exit(&sc->as_mtx);
    555 		return EINVAL;
    556 	}
    557 
    558 	if (offset < 0
    559 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    560 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    561 		aprint_error_dev(sc->as_dev,
    562 			      "binding memory at bad offset %#lx\n",
    563 			      (unsigned long) offset);
    564 		mutex_exit(&sc->as_mtx);
    565 		return EINVAL;
    566 	}
    567 
    568 	/*
    569 	 * XXXfvdl
    570 	 * The memory here needs to be directly accessable from the
    571 	 * AGP video card, so it should be allocated using bus_dma.
    572 	 * However, it need not be contiguous, since individual pages
    573 	 * are translated using the GATT.
    574 	 *
    575 	 * Using a large chunk of contiguous memory may get in the way
    576 	 * of other subsystems that may need one, so we try to be friendly
    577 	 * and ask for allocation in chunks of a minimum of 8 pages
    578 	 * of contiguous memory on average, falling back to 4, 2 and 1
    579 	 * if really needed. Larger chunks are preferred, since allocating
    580 	 * a bus_dma_segment per page would be overkill.
    581 	 */
    582 
    583 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    584 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    585 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    586 		if (segs == NULL) {
    587 			mutex_exit(&sc->as_mtx);
    588 			return ENOMEM;
    589 		}
    590 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    591 				     segs, nseg, &mem->am_nseg,
    592 				     contigpages > 1 ?
    593 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    594 			free(segs, M_AGP);
    595 			continue;
    596 		}
    597 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    598 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    599 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    600 			free(segs, M_AGP);
    601 			continue;
    602 		}
    603 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    604 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    605 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    606 			    mem->am_size);
    607 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    608 			free(segs, M_AGP);
    609 			continue;
    610 		}
    611 		mem->am_dmaseg = segs;
    612 		break;
    613 	}
    614 
    615 	if (contigpages == 0) {
    616 		mutex_exit(&sc->as_mtx);
    617 		return ENOMEM;
    618 	}
    619 
    620 
    621 	/*
    622 	 * Bind the individual pages and flush the chipset's
    623 	 * TLB.
    624 	 */
    625 	done = 0;
    626 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    627 		seg = &mem->am_dmamap->dm_segs[i];
    628 		/*
    629 		 * Install entries in the GATT, making sure that if
    630 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    631 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    632 		 * entries.
    633 		 */
    634 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    635 		     j += AGP_PAGE_SIZE) {
    636 			pa = seg->ds_addr + j;
    637 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    638 				(unsigned long)(offset + done + j),
    639 				(unsigned long)pa));
    640 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    641 			if (error) {
    642 				/*
    643 				 * Bail out. Reverse all the mappings
    644 				 * and unwire the pages.
    645 				 */
    646 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    647 					AGP_UNBIND_PAGE(sc, offset + k);
    648 
    649 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    650 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    651 						 mem->am_size);
    652 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    653 						mem->am_nseg);
    654 				free(mem->am_dmaseg, M_AGP);
    655 				mutex_exit(&sc->as_mtx);
    656 				return error;
    657 			}
    658 		}
    659 		done += seg->ds_len;
    660 	}
    661 
    662 	/*
    663 	 * Flush the CPU cache since we are providing a new mapping
    664 	 * for these pages.
    665 	 */
    666 	agp_flush_cache();
    667 
    668 	/*
    669 	 * Make sure the chipset gets the new mappings.
    670 	 */
    671 	AGP_FLUSH_TLB(sc);
    672 
    673 	mem->am_offset = offset;
    674 	mem->am_is_bound = 1;
    675 
    676 	mutex_exit(&sc->as_mtx);
    677 
    678 	return 0;
    679 }
    680 
    681 int
    682 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    683 {
    684 	int i;
    685 
    686 	mutex_enter(&sc->as_mtx);
    687 
    688 	if (!mem->am_is_bound) {
    689 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
    690 		mutex_exit(&sc->as_mtx);
    691 		return EINVAL;
    692 	}
    693 
    694 
    695 	/*
    696 	 * Unbind the individual pages and flush the chipset's
    697 	 * TLB. Unwire the pages so they can be swapped.
    698 	 */
    699 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    700 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    701 
    702 	agp_flush_cache();
    703 	AGP_FLUSH_TLB(sc);
    704 
    705 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    706 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    707 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    708 
    709 	free(mem->am_dmaseg, M_AGP);
    710 
    711 	mem->am_offset = 0;
    712 	mem->am_is_bound = 0;
    713 
    714 	mutex_exit(&sc->as_mtx);
    715 
    716 	return 0;
    717 }
    718 
    719 /* Helper functions for implementing user/kernel api */
    720 
    721 static int
    722 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    723 {
    724 	if (sc->as_state != AGP_ACQUIRE_FREE)
    725 		return EBUSY;
    726 	sc->as_state = state;
    727 
    728 	return 0;
    729 }
    730 
    731 static int
    732 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    733 {
    734 
    735 	if (sc->as_state == AGP_ACQUIRE_FREE)
    736 		return 0;
    737 
    738 	if (sc->as_state != state)
    739 		return EBUSY;
    740 
    741 	sc->as_state = AGP_ACQUIRE_FREE;
    742 	return 0;
    743 }
    744 
    745 static struct agp_memory *
    746 agp_find_memory(struct agp_softc *sc, int id)
    747 {
    748 	struct agp_memory *mem;
    749 
    750 	AGP_DPF(("searching for memory block %d\n", id));
    751 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    752 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    753 		if (mem->am_id == id)
    754 			return mem;
    755 	}
    756 	return 0;
    757 }
    758 
    759 /* Implementation of the userland ioctl api */
    760 
    761 static int
    762 agp_info_user(struct agp_softc *sc, agp_info *info)
    763 {
    764 	memset(info, 0, sizeof *info);
    765 	info->bridge_id = sc->as_id;
    766 	if (sc->as_capoff != 0)
    767 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    768 					       sc->as_capoff + AGP_STATUS);
    769 	else
    770 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    771 	info->aper_base = sc->as_apaddr;
    772 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    773 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    774 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    775 
    776 	return 0;
    777 }
    778 
    779 static int
    780 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    781 {
    782 	return AGP_ENABLE(sc, setup->agp_mode);
    783 }
    784 
    785 static int
    786 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    787 {
    788 	struct agp_memory *mem;
    789 
    790 	mem = AGP_ALLOC_MEMORY(sc,
    791 			       alloc->type,
    792 			       alloc->pg_count << AGP_PAGE_SHIFT);
    793 	if (mem) {
    794 		alloc->key = mem->am_id;
    795 		alloc->physical = mem->am_physical;
    796 		return 0;
    797 	} else {
    798 		return ENOMEM;
    799 	}
    800 }
    801 
    802 static int
    803 agp_deallocate_user(struct agp_softc *sc, int id)
    804 {
    805 	struct agp_memory *mem = agp_find_memory(sc, id);
    806 
    807 	if (mem) {
    808 		AGP_FREE_MEMORY(sc, mem);
    809 		return 0;
    810 	} else {
    811 		return ENOENT;
    812 	}
    813 }
    814 
    815 static int
    816 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    817 {
    818 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    819 
    820 	if (!mem)
    821 		return ENOENT;
    822 
    823 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    824 }
    825 
    826 static int
    827 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    828 {
    829 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    830 
    831 	if (!mem)
    832 		return ENOENT;
    833 
    834 	return AGP_UNBIND_MEMORY(sc, mem);
    835 }
    836 
    837 static int
    838 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
    839 {
    840 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    841 
    842 	if (sc == NULL)
    843 		return ENXIO;
    844 
    845 	if (sc->as_chipc == NULL)
    846 		return ENXIO;
    847 
    848 	if (!sc->as_isopen)
    849 		sc->as_isopen = 1;
    850 	else
    851 		return EBUSY;
    852 
    853 	return 0;
    854 }
    855 
    856 static int
    857 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
    858 {
    859 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    860 	struct agp_memory *mem;
    861 
    862 	if (sc == NULL)
    863 		return ENODEV;
    864 
    865 	/*
    866 	 * Clear the GATT and force release on last close
    867 	 */
    868 	if (sc->as_state == AGP_ACQUIRE_USER) {
    869 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    870 			if (mem->am_is_bound) {
    871 				printf("agpclose: mem %d is bound\n",
    872 				       mem->am_id);
    873 				AGP_UNBIND_MEMORY(sc, mem);
    874 			}
    875 			/*
    876 			 * XXX it is not documented, but if the protocol allows
    877 			 * allocate->acquire->bind, it would be possible that
    878 			 * memory ranges are allocated by the kernel here,
    879 			 * which we shouldn't free. We'd have to keep track of
    880 			 * the memory range's owner.
    881 			 * The kernel API is unsed yet, so we get away with
    882 			 * freeing all.
    883 			 */
    884 			AGP_FREE_MEMORY(sc, mem);
    885 		}
    886 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    887 	}
    888 	sc->as_isopen = 0;
    889 
    890 	return 0;
    891 }
    892 
    893 static int
    894 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    895 {
    896 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    897 
    898 	if (sc == NULL)
    899 		return ENODEV;
    900 
    901 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    902 		return EPERM;
    903 
    904 	switch (cmd) {
    905 	case AGPIOC_INFO:
    906 		return agp_info_user(sc, (agp_info *) data);
    907 
    908 	case AGPIOC_ACQUIRE:
    909 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    910 
    911 	case AGPIOC_RELEASE:
    912 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    913 
    914 	case AGPIOC_SETUP:
    915 		return agp_setup_user(sc, (agp_setup *)data);
    916 
    917 	case AGPIOC_ALLOCATE:
    918 		return agp_allocate_user(sc, (agp_allocate *)data);
    919 
    920 	case AGPIOC_DEALLOCATE:
    921 		return agp_deallocate_user(sc, *(int *) data);
    922 
    923 	case AGPIOC_BIND:
    924 		return agp_bind_user(sc, (agp_bind *)data);
    925 
    926 	case AGPIOC_UNBIND:
    927 		return agp_unbind_user(sc, (agp_unbind *)data);
    928 
    929 	}
    930 
    931 	return EINVAL;
    932 }
    933 
    934 static paddr_t
    935 agpmmap(dev_t dev, off_t offset, int prot)
    936 {
    937 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    938 
    939 	if (sc == NULL)
    940 		return ENODEV;
    941 
    942 	if (offset > AGP_GET_APERTURE(sc))
    943 		return -1;
    944 
    945 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    946 	    BUS_SPACE_MAP_LINEAR));
    947 }
    948 
    949 const struct cdevsw agp_cdevsw = {
    950 	agpopen, agpclose, noread, nowrite, agpioctl,
    951 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    952 };
    953 
    954 /* Implementation of the kernel api */
    955 
    956 void *
    957 agp_find_device(int unit)
    958 {
    959 	return device_lookup_private(&agp_cd, unit);
    960 }
    961 
    962 enum agp_acquire_state
    963 agp_state(void *devcookie)
    964 {
    965 	struct agp_softc *sc = devcookie;
    966 
    967 	return sc->as_state;
    968 }
    969 
    970 void
    971 agp_get_info(void *devcookie, struct agp_info *info)
    972 {
    973 	struct agp_softc *sc = devcookie;
    974 
    975 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    976 	    sc->as_capoff + AGP_STATUS);
    977 	info->ai_aperture_base = sc->as_apaddr;
    978 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
    979 	info->ai_memory_allowed = sc->as_maxmem;
    980 	info->ai_memory_used = sc->as_allocated;
    981 }
    982 
    983 int
    984 agp_acquire(void *dev)
    985 {
    986 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
    987 }
    988 
    989 int
    990 agp_release(void *dev)
    991 {
    992 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
    993 }
    994 
    995 int
    996 agp_enable(void *dev, u_int32_t mode)
    997 {
    998 	struct agp_softc *sc = dev;
    999 
   1000 	return AGP_ENABLE(sc, mode);
   1001 }
   1002 
   1003 void *
   1004 agp_alloc_memory(void *dev, int type, vsize_t bytes)
   1005 {
   1006 	struct agp_softc *sc = dev;
   1007 
   1008 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
   1009 }
   1010 
   1011 void
   1012 agp_free_memory(void *dev, void *handle)
   1013 {
   1014 	struct agp_softc *sc = dev;
   1015 	struct agp_memory *mem = handle;
   1016 
   1017 	AGP_FREE_MEMORY(sc, mem);
   1018 }
   1019 
   1020 int
   1021 agp_bind_memory(void *dev, void *handle, off_t offset)
   1022 {
   1023 	struct agp_softc *sc = dev;
   1024 	struct agp_memory *mem = handle;
   1025 
   1026 	return AGP_BIND_MEMORY(sc, mem, offset);
   1027 }
   1028 
   1029 int
   1030 agp_unbind_memory(void *dev, void *handle)
   1031 {
   1032 	struct agp_softc *sc = dev;
   1033 	struct agp_memory *mem = handle;
   1034 
   1035 	return AGP_UNBIND_MEMORY(sc, mem);
   1036 }
   1037 
   1038 void
   1039 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
   1040 {
   1041 	struct agp_memory *mem = handle;
   1042 
   1043 	mi->ami_size = mem->am_size;
   1044 	mi->ami_physical = mem->am_physical;
   1045 	mi->ami_offset = mem->am_offset;
   1046 	mi->ami_is_bound = mem->am_is_bound;
   1047 }
   1048 
   1049 int
   1050 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1051 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1052 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1053 
   1054 {
   1055 	int error, level = 0;
   1056 
   1057 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1058 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1059 		goto out;
   1060 	level++;
   1061 
   1062 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1063 			BUS_DMA_NOWAIT | flags)) != 0)
   1064 		goto out;
   1065 	level++;
   1066 
   1067 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1068 			BUS_DMA_NOWAIT, mapp)) != 0)
   1069 		goto out;
   1070 	level++;
   1071 
   1072 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1073 			BUS_DMA_NOWAIT)) != 0)
   1074 		goto out;
   1075 
   1076 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1077 
   1078 	return 0;
   1079 out:
   1080 	switch (level) {
   1081 	case 3:
   1082 		bus_dmamap_destroy(tag, *mapp);
   1083 		/* FALLTHROUGH */
   1084 	case 2:
   1085 		bus_dmamem_unmap(tag, *vaddr, size);
   1086 		/* FALLTHROUGH */
   1087 	case 1:
   1088 		bus_dmamem_free(tag, seg, *rseg);
   1089 		break;
   1090 	default:
   1091 		break;
   1092 	}
   1093 
   1094 	return error;
   1095 }
   1096 
   1097 void
   1098 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1099 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1100 {
   1101 	bus_dmamap_unload(tag, map);
   1102 	bus_dmamap_destroy(tag, map);
   1103 	bus_dmamem_unmap(tag, vaddr, size);
   1104 	bus_dmamem_free(tag, seg, nseg);
   1105 }
   1106 
   1107 static bool
   1108 agp_resume(device_t dv PMF_FN_ARGS)
   1109 {
   1110 	agp_flush_cache();
   1111 
   1112 	return true;
   1113 }
   1114