Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.61
      1 /*	$NetBSD: agp.c,v 1.61 2008/08/22 18:05:44 tnn Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.61 2008/08/22 18:05:44 tnn Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <uvm/uvm_extern.h>
     83 
     84 #include <dev/pci/pcireg.h>
     85 #include <dev/pci/pcivar.h>
     86 #include <dev/pci/agpvar.h>
     87 #include <dev/pci/agpreg.h>
     88 #include <dev/pci/pcidevs.h>
     89 
     90 #include <sys/bus.h>
     91 
     92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93 
     94 /* Helper functions for implementing chipset mini drivers. */
     95 /* XXXfvdl get rid of this one. */
     96 
     97 extern struct cfdriver agp_cd;
     98 
     99 static int agp_info_user(struct agp_softc *, agp_info *);
    100 static int agp_setup_user(struct agp_softc *, agp_setup *);
    101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102 static int agp_deallocate_user(struct agp_softc *, int);
    103 static int agp_bind_user(struct agp_softc *, agp_bind *);
    104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105 static int agpdev_match(struct pci_attach_args *);
    106 static bool agp_resume(device_t PMF_FN_PROTO);
    107 
    108 #include "agp_ali.h"
    109 #include "agp_amd.h"
    110 #include "agp_i810.h"
    111 #include "agp_intel.h"
    112 #include "agp_sis.h"
    113 #include "agp_via.h"
    114 #include "agp_amd64.h"
    115 
    116 const struct agp_product {
    117 	uint32_t	ap_vendor;
    118 	uint32_t	ap_product;
    119 	int		(*ap_match)(const struct pci_attach_args *);
    120 	int		(*ap_attach)(device_t, device_t, void *);
    121 } agp_products[] = {
    122 #if NAGP_AMD64 > 0
    123 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
    124 	  agp_amd64_match,	agp_amd64_attach },
    125 #endif
    126 
    127 #if NAGP_ALI > 0
    128 	{ PCI_VENDOR_ALI,	-1,
    129 	  NULL,			agp_ali_attach },
    130 #endif
    131 
    132 #if NAGP_AMD64 > 0
    133 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    134 	  agp_amd64_match,	agp_amd64_attach },
    135 #endif
    136 
    137 #if NAGP_AMD > 0
    138 	{ PCI_VENDOR_AMD,	-1,
    139 	  agp_amd_match,	agp_amd_attach },
    140 #endif
    141 
    142 #if NAGP_I810 > 0
    143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    144 	  NULL,			agp_i810_attach },
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    166 	  NULL,			agp_i810_attach },
    167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    168 	  NULL,			agp_i810_attach },
    169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
    170 	  NULL,			agp_i810_attach },
    171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    172 	  NULL,			agp_i810_attach },
    173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    174 	  NULL,			agp_i810_attach },
    175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    176 	  NULL,			agp_i810_attach },
    177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    178 	  NULL,			agp_i810_attach },
    179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    180 	  NULL,			agp_i810_attach },
    181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    182 	  NULL,			agp_i810_attach },
    183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
    184 	  NULL,			agp_i810_attach },
    185 #endif
    186 
    187 #if NAGP_INTEL > 0
    188 	{ PCI_VENDOR_INTEL,	-1,
    189 	  NULL,			agp_intel_attach },
    190 #endif
    191 
    192 #if NAGP_AMD64 > 0
    193 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    194 	  agp_amd64_match,	agp_amd64_attach },
    195 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    196 	  agp_amd64_match,	agp_amd64_attach },
    197 #endif
    198 
    199 #if NAGP_AMD64 > 0
    200 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    201 	  agp_amd64_match,	agp_amd64_attach },
    202 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    203 	  agp_amd64_match,	agp_amd64_attach },
    204 #endif
    205 
    206 #if NAGP_SIS > 0
    207 	{ PCI_VENDOR_SIS,	-1,
    208 	  NULL,			agp_sis_attach },
    209 #endif
    210 
    211 #if NAGP_AMD64 > 0
    212 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    213 	  agp_amd64_match,	agp_amd64_attach },
    214 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    215 	  agp_amd64_match,	agp_amd64_attach },
    216 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    217 	  agp_amd64_match,	agp_amd64_attach },
    218 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    219 	  agp_amd64_match,	agp_amd64_attach },
    220 #endif
    221 
    222 #if NAGP_VIA > 0
    223 	{ PCI_VENDOR_VIATECH,	-1,
    224 	  NULL,			agp_via_attach },
    225 #endif
    226 
    227 	{ 0,			0,
    228 	  NULL,			NULL },
    229 };
    230 
    231 static const struct agp_product *
    232 agp_lookup(const struct pci_attach_args *pa)
    233 {
    234 	const struct agp_product *ap;
    235 
    236 	/* First find the vendor. */
    237 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    238 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    239 			break;
    240 	}
    241 
    242 	if (ap->ap_attach == NULL)
    243 		return (NULL);
    244 
    245 	/* Now find the product within the vendor's domain. */
    246 	for (; ap->ap_attach != NULL; ap++) {
    247 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    248 			/* Ran out of this vendor's section of the table. */
    249 			return (NULL);
    250 		}
    251 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    252 			/* Exact match. */
    253 			break;
    254 		}
    255 		if (ap->ap_product == (uint32_t) -1) {
    256 			/* Wildcard match. */
    257 			break;
    258 		}
    259 	}
    260 
    261 	if (ap->ap_attach == NULL)
    262 		return (NULL);
    263 
    264 	/* Now let the product-specific driver filter the match. */
    265 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    266 		return (NULL);
    267 
    268 	return (ap);
    269 }
    270 
    271 static int
    272 agpmatch(device_t parent, cfdata_t match, void *aux)
    273 {
    274 	struct agpbus_attach_args *apa = aux;
    275 	struct pci_attach_args *pa = &apa->apa_pci_args;
    276 
    277 	if (agp_lookup(pa) == NULL)
    278 		return (0);
    279 
    280 	return (1);
    281 }
    282 
    283 static const int agp_max[][2] = {
    284 	{0,	0},
    285 	{32,	4},
    286 	{64,	28},
    287 	{128,	96},
    288 	{256,	204},
    289 	{512,	440},
    290 	{1024,	942},
    291 	{2048,	1920},
    292 	{4096,	3932}
    293 };
    294 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    295 
    296 static void
    297 agpattach(device_t parent, device_t self, void *aux)
    298 {
    299 	struct agpbus_attach_args *apa = aux;
    300 	struct pci_attach_args *pa = &apa->apa_pci_args;
    301 	struct agp_softc *sc = device_private(self);
    302 	const struct agp_product *ap;
    303 	int memsize, i, ret;
    304 
    305 	ap = agp_lookup(pa);
    306 	KASSERT(ap != NULL);
    307 
    308 	aprint_naive(": AGP controller\n");
    309 
    310 	sc->as_dev = self;
    311 	sc->as_dmat = pa->pa_dmat;
    312 	sc->as_pc = pa->pa_pc;
    313 	sc->as_tag = pa->pa_tag;
    314 	sc->as_id = pa->pa_id;
    315 
    316 	/*
    317 	 * Work out an upper bound for agp memory allocation. This
    318 	 * uses a heuristic table from the Linux driver.
    319 	 */
    320 	memsize = ptoa(physmem) >> 20;
    321 	for (i = 0; i < agp_max_size; i++) {
    322 		if (memsize <= agp_max[i][0])
    323 			break;
    324 	}
    325 	if (i == agp_max_size)
    326 		i = agp_max_size - 1;
    327 	sc->as_maxmem = agp_max[i][1] << 20U;
    328 
    329 	/*
    330 	 * The mutex is used to prevent re-entry to
    331 	 * agp_generic_bind_memory() since that function can sleep.
    332 	 */
    333 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    334 
    335 	TAILQ_INIT(&sc->as_memory);
    336 
    337 	ret = (*ap->ap_attach)(parent, self, pa);
    338 	if (ret == 0)
    339 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    340 		    (unsigned long)sc->as_apaddr,
    341 		    (unsigned long)AGP_GET_APERTURE(sc));
    342 	else
    343 		sc->as_chipc = NULL;
    344 
    345 	if (!device_pmf_is_registered(self)) {
    346 		if (!pmf_device_register(self, NULL, agp_resume))
    347 			aprint_error_dev(self, "couldn't establish power "
    348 			    "handler\n");
    349 	}
    350 }
    351 
    352 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
    353     agpmatch, agpattach, NULL, NULL);
    354 
    355 int
    356 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    357 {
    358 	/*
    359 	 * Find the aperture. Don't map it (yet), this would
    360 	 * eat KVA.
    361 	 */
    362 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    363 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    364 	    &sc->as_apflags) != 0)
    365 		return ENXIO;
    366 
    367 	sc->as_apt = pa->pa_memt;
    368 
    369 	return 0;
    370 }
    371 
    372 struct agp_gatt *
    373 agp_alloc_gatt(struct agp_softc *sc)
    374 {
    375 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    376 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    377 	struct agp_gatt *gatt;
    378 	void *virtual;
    379 	int dummyseg;
    380 
    381 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    382 	if (!gatt)
    383 		return NULL;
    384 	gatt->ag_entries = entries;
    385 
    386 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    387 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    388 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
    389 		return NULL;
    390 	gatt->ag_virtual = (uint32_t *)virtual;
    391 
    392 	gatt->ag_size = entries * sizeof(u_int32_t);
    393 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    394 	agp_flush_cache();
    395 
    396 	return gatt;
    397 }
    398 
    399 void
    400 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    401 {
    402 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    403 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    404 	free(gatt, M_AGP);
    405 }
    406 
    407 
    408 int
    409 agp_generic_detach(struct agp_softc *sc)
    410 {
    411 	mutex_destroy(&sc->as_mtx);
    412 	agp_flush_cache();
    413 	return 0;
    414 }
    415 
    416 static int
    417 agpdev_match(struct pci_attach_args *pa)
    418 {
    419 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    420 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    421 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    422 		    NULL, NULL))
    423 		return 1;
    424 
    425 	return 0;
    426 }
    427 
    428 int
    429 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    430 {
    431 	struct pci_attach_args pa;
    432 	pcireg_t tstatus, mstatus;
    433 	pcireg_t command;
    434 	int rq, sba, fw, rate, capoff;
    435 
    436 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    437 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    438 	     &capoff, NULL) == 0) {
    439 		aprint_error_dev(sc->as_dev, "can't find display\n");
    440 		return ENXIO;
    441 	}
    442 
    443 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    444 	    sc->as_capoff + AGP_STATUS);
    445 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    446 	    capoff + AGP_STATUS);
    447 
    448 	/* Set RQ to the min of mode, tstatus and mstatus */
    449 	rq = AGP_MODE_GET_RQ(mode);
    450 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    451 		rq = AGP_MODE_GET_RQ(tstatus);
    452 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    453 		rq = AGP_MODE_GET_RQ(mstatus);
    454 
    455 	/* Set SBA if all three can deal with SBA */
    456 	sba = (AGP_MODE_GET_SBA(tstatus)
    457 	       & AGP_MODE_GET_SBA(mstatus)
    458 	       & AGP_MODE_GET_SBA(mode));
    459 
    460 	/* Similar for FW */
    461 	fw = (AGP_MODE_GET_FW(tstatus)
    462 	       & AGP_MODE_GET_FW(mstatus)
    463 	       & AGP_MODE_GET_FW(mode));
    464 
    465 	/* Figure out the max rate */
    466 	rate = (AGP_MODE_GET_RATE(tstatus)
    467 		& AGP_MODE_GET_RATE(mstatus)
    468 		& AGP_MODE_GET_RATE(mode));
    469 	if (rate & AGP_MODE_RATE_4x)
    470 		rate = AGP_MODE_RATE_4x;
    471 	else if (rate & AGP_MODE_RATE_2x)
    472 		rate = AGP_MODE_RATE_2x;
    473 	else
    474 		rate = AGP_MODE_RATE_1x;
    475 
    476 	/* Construct the new mode word and tell the hardware */
    477 	command = AGP_MODE_SET_RQ(0, rq);
    478 	command = AGP_MODE_SET_SBA(command, sba);
    479 	command = AGP_MODE_SET_FW(command, fw);
    480 	command = AGP_MODE_SET_RATE(command, rate);
    481 	command = AGP_MODE_SET_AGP(command, 1);
    482 	pci_conf_write(sc->as_pc, sc->as_tag,
    483 	    sc->as_capoff + AGP_COMMAND, command);
    484 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    485 
    486 	return 0;
    487 }
    488 
    489 struct agp_memory *
    490 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    491 {
    492 	struct agp_memory *mem;
    493 
    494 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    495 		return 0;
    496 
    497 	if (sc->as_allocated + size > sc->as_maxmem)
    498 		return 0;
    499 
    500 	if (type != 0) {
    501 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    502 		       type);
    503 		return 0;
    504 	}
    505 
    506 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    507 	if (mem == NULL)
    508 		return NULL;
    509 
    510 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    511 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    512 		free(mem, M_AGP);
    513 		return NULL;
    514 	}
    515 
    516 	mem->am_id = sc->as_nextid++;
    517 	mem->am_size = size;
    518 	mem->am_type = 0;
    519 	mem->am_physical = 0;
    520 	mem->am_offset = 0;
    521 	mem->am_is_bound = 0;
    522 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    523 	sc->as_allocated += size;
    524 
    525 	return mem;
    526 }
    527 
    528 int
    529 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    530 {
    531 	if (mem->am_is_bound)
    532 		return EBUSY;
    533 
    534 	sc->as_allocated -= mem->am_size;
    535 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    536 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    537 	free(mem, M_AGP);
    538 	return 0;
    539 }
    540 
    541 int
    542 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    543 			off_t offset)
    544 {
    545 	off_t i, k;
    546 	bus_size_t done, j;
    547 	int error;
    548 	bus_dma_segment_t *segs, *seg;
    549 	bus_addr_t pa;
    550 	int contigpages, nseg;
    551 
    552 	mutex_enter(&sc->as_mtx);
    553 
    554 	if (mem->am_is_bound) {
    555 		aprint_error_dev(sc->as_dev, "memory already bound\n");
    556 		mutex_exit(&sc->as_mtx);
    557 		return EINVAL;
    558 	}
    559 
    560 	if (offset < 0
    561 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    562 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    563 		aprint_error_dev(sc->as_dev,
    564 			      "binding memory at bad offset %#lx\n",
    565 			      (unsigned long) offset);
    566 		mutex_exit(&sc->as_mtx);
    567 		return EINVAL;
    568 	}
    569 
    570 	/*
    571 	 * XXXfvdl
    572 	 * The memory here needs to be directly accessable from the
    573 	 * AGP video card, so it should be allocated using bus_dma.
    574 	 * However, it need not be contiguous, since individual pages
    575 	 * are translated using the GATT.
    576 	 *
    577 	 * Using a large chunk of contiguous memory may get in the way
    578 	 * of other subsystems that may need one, so we try to be friendly
    579 	 * and ask for allocation in chunks of a minimum of 8 pages
    580 	 * of contiguous memory on average, falling back to 4, 2 and 1
    581 	 * if really needed. Larger chunks are preferred, since allocating
    582 	 * a bus_dma_segment per page would be overkill.
    583 	 */
    584 
    585 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    586 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    587 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    588 		if (segs == NULL) {
    589 			mutex_exit(&sc->as_mtx);
    590 			return ENOMEM;
    591 		}
    592 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    593 				     segs, nseg, &mem->am_nseg,
    594 				     contigpages > 1 ?
    595 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    596 			free(segs, M_AGP);
    597 			continue;
    598 		}
    599 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    600 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    601 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    602 			free(segs, M_AGP);
    603 			continue;
    604 		}
    605 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    606 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    607 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    608 			    mem->am_size);
    609 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    610 			free(segs, M_AGP);
    611 			continue;
    612 		}
    613 		mem->am_dmaseg = segs;
    614 		break;
    615 	}
    616 
    617 	if (contigpages == 0) {
    618 		mutex_exit(&sc->as_mtx);
    619 		return ENOMEM;
    620 	}
    621 
    622 
    623 	/*
    624 	 * Bind the individual pages and flush the chipset's
    625 	 * TLB.
    626 	 */
    627 	done = 0;
    628 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    629 		seg = &mem->am_dmamap->dm_segs[i];
    630 		/*
    631 		 * Install entries in the GATT, making sure that if
    632 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    633 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    634 		 * entries.
    635 		 */
    636 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    637 		     j += AGP_PAGE_SIZE) {
    638 			pa = seg->ds_addr + j;
    639 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    640 				(unsigned long)(offset + done + j),
    641 				(unsigned long)pa));
    642 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    643 			if (error) {
    644 				/*
    645 				 * Bail out. Reverse all the mappings
    646 				 * and unwire the pages.
    647 				 */
    648 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    649 					AGP_UNBIND_PAGE(sc, offset + k);
    650 
    651 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    652 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    653 						 mem->am_size);
    654 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    655 						mem->am_nseg);
    656 				free(mem->am_dmaseg, M_AGP);
    657 				mutex_exit(&sc->as_mtx);
    658 				return error;
    659 			}
    660 		}
    661 		done += seg->ds_len;
    662 	}
    663 
    664 	/*
    665 	 * Flush the CPU cache since we are providing a new mapping
    666 	 * for these pages.
    667 	 */
    668 	agp_flush_cache();
    669 
    670 	/*
    671 	 * Make sure the chipset gets the new mappings.
    672 	 */
    673 	AGP_FLUSH_TLB(sc);
    674 
    675 	mem->am_offset = offset;
    676 	mem->am_is_bound = 1;
    677 
    678 	mutex_exit(&sc->as_mtx);
    679 
    680 	return 0;
    681 }
    682 
    683 int
    684 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    685 {
    686 	int i;
    687 
    688 	mutex_enter(&sc->as_mtx);
    689 
    690 	if (!mem->am_is_bound) {
    691 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
    692 		mutex_exit(&sc->as_mtx);
    693 		return EINVAL;
    694 	}
    695 
    696 
    697 	/*
    698 	 * Unbind the individual pages and flush the chipset's
    699 	 * TLB. Unwire the pages so they can be swapped.
    700 	 */
    701 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    702 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    703 
    704 	agp_flush_cache();
    705 	AGP_FLUSH_TLB(sc);
    706 
    707 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    708 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    709 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    710 
    711 	free(mem->am_dmaseg, M_AGP);
    712 
    713 	mem->am_offset = 0;
    714 	mem->am_is_bound = 0;
    715 
    716 	mutex_exit(&sc->as_mtx);
    717 
    718 	return 0;
    719 }
    720 
    721 /* Helper functions for implementing user/kernel api */
    722 
    723 static int
    724 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    725 {
    726 	if (sc->as_state != AGP_ACQUIRE_FREE)
    727 		return EBUSY;
    728 	sc->as_state = state;
    729 
    730 	return 0;
    731 }
    732 
    733 static int
    734 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    735 {
    736 
    737 	if (sc->as_state == AGP_ACQUIRE_FREE)
    738 		return 0;
    739 
    740 	if (sc->as_state != state)
    741 		return EBUSY;
    742 
    743 	sc->as_state = AGP_ACQUIRE_FREE;
    744 	return 0;
    745 }
    746 
    747 static struct agp_memory *
    748 agp_find_memory(struct agp_softc *sc, int id)
    749 {
    750 	struct agp_memory *mem;
    751 
    752 	AGP_DPF(("searching for memory block %d\n", id));
    753 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    754 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    755 		if (mem->am_id == id)
    756 			return mem;
    757 	}
    758 	return 0;
    759 }
    760 
    761 /* Implementation of the userland ioctl api */
    762 
    763 static int
    764 agp_info_user(struct agp_softc *sc, agp_info *info)
    765 {
    766 	memset(info, 0, sizeof *info);
    767 	info->bridge_id = sc->as_id;
    768 	if (sc->as_capoff != 0)
    769 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    770 					       sc->as_capoff + AGP_STATUS);
    771 	else
    772 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    773 	info->aper_base = sc->as_apaddr;
    774 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    775 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    776 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    777 
    778 	return 0;
    779 }
    780 
    781 static int
    782 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    783 {
    784 	return AGP_ENABLE(sc, setup->agp_mode);
    785 }
    786 
    787 static int
    788 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    789 {
    790 	struct agp_memory *mem;
    791 
    792 	mem = AGP_ALLOC_MEMORY(sc,
    793 			       alloc->type,
    794 			       alloc->pg_count << AGP_PAGE_SHIFT);
    795 	if (mem) {
    796 		alloc->key = mem->am_id;
    797 		alloc->physical = mem->am_physical;
    798 		return 0;
    799 	} else {
    800 		return ENOMEM;
    801 	}
    802 }
    803 
    804 static int
    805 agp_deallocate_user(struct agp_softc *sc, int id)
    806 {
    807 	struct agp_memory *mem = agp_find_memory(sc, id);
    808 
    809 	if (mem) {
    810 		AGP_FREE_MEMORY(sc, mem);
    811 		return 0;
    812 	} else {
    813 		return ENOENT;
    814 	}
    815 }
    816 
    817 static int
    818 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    819 {
    820 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    821 
    822 	if (!mem)
    823 		return ENOENT;
    824 
    825 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    826 }
    827 
    828 static int
    829 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    830 {
    831 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    832 
    833 	if (!mem)
    834 		return ENOENT;
    835 
    836 	return AGP_UNBIND_MEMORY(sc, mem);
    837 }
    838 
    839 static int
    840 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
    841 {
    842 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    843 
    844 	if (sc == NULL)
    845 		return ENXIO;
    846 
    847 	if (sc->as_chipc == NULL)
    848 		return ENXIO;
    849 
    850 	if (!sc->as_isopen)
    851 		sc->as_isopen = 1;
    852 	else
    853 		return EBUSY;
    854 
    855 	return 0;
    856 }
    857 
    858 static int
    859 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
    860 {
    861 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    862 	struct agp_memory *mem;
    863 
    864 	if (sc == NULL)
    865 		return ENODEV;
    866 
    867 	/*
    868 	 * Clear the GATT and force release on last close
    869 	 */
    870 	if (sc->as_state == AGP_ACQUIRE_USER) {
    871 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    872 			if (mem->am_is_bound) {
    873 				printf("agpclose: mem %d is bound\n",
    874 				       mem->am_id);
    875 				AGP_UNBIND_MEMORY(sc, mem);
    876 			}
    877 			/*
    878 			 * XXX it is not documented, but if the protocol allows
    879 			 * allocate->acquire->bind, it would be possible that
    880 			 * memory ranges are allocated by the kernel here,
    881 			 * which we shouldn't free. We'd have to keep track of
    882 			 * the memory range's owner.
    883 			 * The kernel API is unsed yet, so we get away with
    884 			 * freeing all.
    885 			 */
    886 			AGP_FREE_MEMORY(sc, mem);
    887 		}
    888 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    889 	}
    890 	sc->as_isopen = 0;
    891 
    892 	return 0;
    893 }
    894 
    895 static int
    896 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    897 {
    898 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    899 
    900 	if (sc == NULL)
    901 		return ENODEV;
    902 
    903 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    904 		return EPERM;
    905 
    906 	switch (cmd) {
    907 	case AGPIOC_INFO:
    908 		return agp_info_user(sc, (agp_info *) data);
    909 
    910 	case AGPIOC_ACQUIRE:
    911 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    912 
    913 	case AGPIOC_RELEASE:
    914 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    915 
    916 	case AGPIOC_SETUP:
    917 		return agp_setup_user(sc, (agp_setup *)data);
    918 
    919 	case AGPIOC_ALLOCATE:
    920 		return agp_allocate_user(sc, (agp_allocate *)data);
    921 
    922 	case AGPIOC_DEALLOCATE:
    923 		return agp_deallocate_user(sc, *(int *) data);
    924 
    925 	case AGPIOC_BIND:
    926 		return agp_bind_user(sc, (agp_bind *)data);
    927 
    928 	case AGPIOC_UNBIND:
    929 		return agp_unbind_user(sc, (agp_unbind *)data);
    930 
    931 	}
    932 
    933 	return EINVAL;
    934 }
    935 
    936 static paddr_t
    937 agpmmap(dev_t dev, off_t offset, int prot)
    938 {
    939 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    940 
    941 	if (sc == NULL)
    942 		return ENODEV;
    943 
    944 	if (offset > AGP_GET_APERTURE(sc))
    945 		return -1;
    946 
    947 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    948 	    BUS_SPACE_MAP_LINEAR));
    949 }
    950 
    951 const struct cdevsw agp_cdevsw = {
    952 	agpopen, agpclose, noread, nowrite, agpioctl,
    953 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    954 };
    955 
    956 /* Implementation of the kernel api */
    957 
    958 void *
    959 agp_find_device(int unit)
    960 {
    961 	return device_lookup_private(&agp_cd, unit);
    962 }
    963 
    964 enum agp_acquire_state
    965 agp_state(void *devcookie)
    966 {
    967 	struct agp_softc *sc = devcookie;
    968 
    969 	return sc->as_state;
    970 }
    971 
    972 void
    973 agp_get_info(void *devcookie, struct agp_info *info)
    974 {
    975 	struct agp_softc *sc = devcookie;
    976 
    977 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    978 	    sc->as_capoff + AGP_STATUS);
    979 	info->ai_aperture_base = sc->as_apaddr;
    980 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
    981 	info->ai_memory_allowed = sc->as_maxmem;
    982 	info->ai_memory_used = sc->as_allocated;
    983 }
    984 
    985 int
    986 agp_acquire(void *dev)
    987 {
    988 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
    989 }
    990 
    991 int
    992 agp_release(void *dev)
    993 {
    994 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
    995 }
    996 
    997 int
    998 agp_enable(void *dev, u_int32_t mode)
    999 {
   1000 	struct agp_softc *sc = dev;
   1001 
   1002 	return AGP_ENABLE(sc, mode);
   1003 }
   1004 
   1005 void *
   1006 agp_alloc_memory(void *dev, int type, vsize_t bytes)
   1007 {
   1008 	struct agp_softc *sc = dev;
   1009 
   1010 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
   1011 }
   1012 
   1013 void
   1014 agp_free_memory(void *dev, void *handle)
   1015 {
   1016 	struct agp_softc *sc = dev;
   1017 	struct agp_memory *mem = handle;
   1018 
   1019 	AGP_FREE_MEMORY(sc, mem);
   1020 }
   1021 
   1022 int
   1023 agp_bind_memory(void *dev, void *handle, off_t offset)
   1024 {
   1025 	struct agp_softc *sc = dev;
   1026 	struct agp_memory *mem = handle;
   1027 
   1028 	return AGP_BIND_MEMORY(sc, mem, offset);
   1029 }
   1030 
   1031 int
   1032 agp_unbind_memory(void *dev, void *handle)
   1033 {
   1034 	struct agp_softc *sc = dev;
   1035 	struct agp_memory *mem = handle;
   1036 
   1037 	return AGP_UNBIND_MEMORY(sc, mem);
   1038 }
   1039 
   1040 void
   1041 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
   1042 {
   1043 	struct agp_memory *mem = handle;
   1044 
   1045 	mi->ami_size = mem->am_size;
   1046 	mi->ami_physical = mem->am_physical;
   1047 	mi->ami_offset = mem->am_offset;
   1048 	mi->ami_is_bound = mem->am_is_bound;
   1049 }
   1050 
   1051 int
   1052 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1053 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1054 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1055 
   1056 {
   1057 	int error, level = 0;
   1058 
   1059 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1060 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1061 		goto out;
   1062 	level++;
   1063 
   1064 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1065 			BUS_DMA_NOWAIT | flags)) != 0)
   1066 		goto out;
   1067 	level++;
   1068 
   1069 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1070 			BUS_DMA_NOWAIT, mapp)) != 0)
   1071 		goto out;
   1072 	level++;
   1073 
   1074 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1075 			BUS_DMA_NOWAIT)) != 0)
   1076 		goto out;
   1077 
   1078 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1079 
   1080 	return 0;
   1081 out:
   1082 	switch (level) {
   1083 	case 3:
   1084 		bus_dmamap_destroy(tag, *mapp);
   1085 		/* FALLTHROUGH */
   1086 	case 2:
   1087 		bus_dmamem_unmap(tag, *vaddr, size);
   1088 		/* FALLTHROUGH */
   1089 	case 1:
   1090 		bus_dmamem_free(tag, seg, *rseg);
   1091 		break;
   1092 	default:
   1093 		break;
   1094 	}
   1095 
   1096 	return error;
   1097 }
   1098 
   1099 void
   1100 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1101 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1102 {
   1103 	bus_dmamap_unload(tag, map);
   1104 	bus_dmamap_destroy(tag, map);
   1105 	bus_dmamem_unmap(tag, vaddr, size);
   1106 	bus_dmamem_free(tag, seg, nseg);
   1107 }
   1108 
   1109 static bool
   1110 agp_resume(device_t dv PMF_FN_ARGS)
   1111 {
   1112 	agp_flush_cache();
   1113 
   1114 	return true;
   1115 }
   1116