agp.c revision 1.61 1 /* $NetBSD: agp.c,v 1.61 2008/08/22 18:05:44 tnn Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.61 2008/08/22 18:05:44 tnn Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115
116 const struct agp_product {
117 uint32_t ap_vendor;
118 uint32_t ap_product;
119 int (*ap_match)(const struct pci_attach_args *);
120 int (*ap_attach)(device_t, device_t, void *);
121 } agp_products[] = {
122 #if NAGP_AMD64 > 0
123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
124 agp_amd64_match, agp_amd64_attach },
125 #endif
126
127 #if NAGP_ALI > 0
128 { PCI_VENDOR_ALI, -1,
129 NULL, agp_ali_attach },
130 #endif
131
132 #if NAGP_AMD64 > 0
133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
134 agp_amd64_match, agp_amd64_attach },
135 #endif
136
137 #if NAGP_AMD > 0
138 { PCI_VENDOR_AMD, -1,
139 agp_amd_match, agp_amd_attach },
140 #endif
141
142 #if NAGP_I810 > 0
143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
144 NULL, agp_i810_attach },
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
184 NULL, agp_i810_attach },
185 #endif
186
187 #if NAGP_INTEL > 0
188 { PCI_VENDOR_INTEL, -1,
189 NULL, agp_intel_attach },
190 #endif
191
192 #if NAGP_AMD64 > 0
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
194 agp_amd64_match, agp_amd64_attach },
195 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
196 agp_amd64_match, agp_amd64_attach },
197 #endif
198
199 #if NAGP_AMD64 > 0
200 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
201 agp_amd64_match, agp_amd64_attach },
202 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
203 agp_amd64_match, agp_amd64_attach },
204 #endif
205
206 #if NAGP_SIS > 0
207 { PCI_VENDOR_SIS, -1,
208 NULL, agp_sis_attach },
209 #endif
210
211 #if NAGP_AMD64 > 0
212 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
213 agp_amd64_match, agp_amd64_attach },
214 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
215 agp_amd64_match, agp_amd64_attach },
216 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
217 agp_amd64_match, agp_amd64_attach },
218 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
219 agp_amd64_match, agp_amd64_attach },
220 #endif
221
222 #if NAGP_VIA > 0
223 { PCI_VENDOR_VIATECH, -1,
224 NULL, agp_via_attach },
225 #endif
226
227 { 0, 0,
228 NULL, NULL },
229 };
230
231 static const struct agp_product *
232 agp_lookup(const struct pci_attach_args *pa)
233 {
234 const struct agp_product *ap;
235
236 /* First find the vendor. */
237 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
238 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
239 break;
240 }
241
242 if (ap->ap_attach == NULL)
243 return (NULL);
244
245 /* Now find the product within the vendor's domain. */
246 for (; ap->ap_attach != NULL; ap++) {
247 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
248 /* Ran out of this vendor's section of the table. */
249 return (NULL);
250 }
251 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
252 /* Exact match. */
253 break;
254 }
255 if (ap->ap_product == (uint32_t) -1) {
256 /* Wildcard match. */
257 break;
258 }
259 }
260
261 if (ap->ap_attach == NULL)
262 return (NULL);
263
264 /* Now let the product-specific driver filter the match. */
265 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
266 return (NULL);
267
268 return (ap);
269 }
270
271 static int
272 agpmatch(device_t parent, cfdata_t match, void *aux)
273 {
274 struct agpbus_attach_args *apa = aux;
275 struct pci_attach_args *pa = &apa->apa_pci_args;
276
277 if (agp_lookup(pa) == NULL)
278 return (0);
279
280 return (1);
281 }
282
283 static const int agp_max[][2] = {
284 {0, 0},
285 {32, 4},
286 {64, 28},
287 {128, 96},
288 {256, 204},
289 {512, 440},
290 {1024, 942},
291 {2048, 1920},
292 {4096, 3932}
293 };
294 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
295
296 static void
297 agpattach(device_t parent, device_t self, void *aux)
298 {
299 struct agpbus_attach_args *apa = aux;
300 struct pci_attach_args *pa = &apa->apa_pci_args;
301 struct agp_softc *sc = device_private(self);
302 const struct agp_product *ap;
303 int memsize, i, ret;
304
305 ap = agp_lookup(pa);
306 KASSERT(ap != NULL);
307
308 aprint_naive(": AGP controller\n");
309
310 sc->as_dev = self;
311 sc->as_dmat = pa->pa_dmat;
312 sc->as_pc = pa->pa_pc;
313 sc->as_tag = pa->pa_tag;
314 sc->as_id = pa->pa_id;
315
316 /*
317 * Work out an upper bound for agp memory allocation. This
318 * uses a heuristic table from the Linux driver.
319 */
320 memsize = ptoa(physmem) >> 20;
321 for (i = 0; i < agp_max_size; i++) {
322 if (memsize <= agp_max[i][0])
323 break;
324 }
325 if (i == agp_max_size)
326 i = agp_max_size - 1;
327 sc->as_maxmem = agp_max[i][1] << 20U;
328
329 /*
330 * The mutex is used to prevent re-entry to
331 * agp_generic_bind_memory() since that function can sleep.
332 */
333 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
334
335 TAILQ_INIT(&sc->as_memory);
336
337 ret = (*ap->ap_attach)(parent, self, pa);
338 if (ret == 0)
339 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
340 (unsigned long)sc->as_apaddr,
341 (unsigned long)AGP_GET_APERTURE(sc));
342 else
343 sc->as_chipc = NULL;
344
345 if (!device_pmf_is_registered(self)) {
346 if (!pmf_device_register(self, NULL, agp_resume))
347 aprint_error_dev(self, "couldn't establish power "
348 "handler\n");
349 }
350 }
351
352 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
353 agpmatch, agpattach, NULL, NULL);
354
355 int
356 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
357 {
358 /*
359 * Find the aperture. Don't map it (yet), this would
360 * eat KVA.
361 */
362 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
363 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
364 &sc->as_apflags) != 0)
365 return ENXIO;
366
367 sc->as_apt = pa->pa_memt;
368
369 return 0;
370 }
371
372 struct agp_gatt *
373 agp_alloc_gatt(struct agp_softc *sc)
374 {
375 u_int32_t apsize = AGP_GET_APERTURE(sc);
376 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
377 struct agp_gatt *gatt;
378 void *virtual;
379 int dummyseg;
380
381 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
382 if (!gatt)
383 return NULL;
384 gatt->ag_entries = entries;
385
386 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
387 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
388 &gatt->ag_dmaseg, 1, &dummyseg) != 0)
389 return NULL;
390 gatt->ag_virtual = (uint32_t *)virtual;
391
392 gatt->ag_size = entries * sizeof(u_int32_t);
393 memset(gatt->ag_virtual, 0, gatt->ag_size);
394 agp_flush_cache();
395
396 return gatt;
397 }
398
399 void
400 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
401 {
402 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
403 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
404 free(gatt, M_AGP);
405 }
406
407
408 int
409 agp_generic_detach(struct agp_softc *sc)
410 {
411 mutex_destroy(&sc->as_mtx);
412 agp_flush_cache();
413 return 0;
414 }
415
416 static int
417 agpdev_match(struct pci_attach_args *pa)
418 {
419 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
420 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
421 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
422 NULL, NULL))
423 return 1;
424
425 return 0;
426 }
427
428 int
429 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
430 {
431 struct pci_attach_args pa;
432 pcireg_t tstatus, mstatus;
433 pcireg_t command;
434 int rq, sba, fw, rate, capoff;
435
436 if (pci_find_device(&pa, agpdev_match) == 0 ||
437 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
438 &capoff, NULL) == 0) {
439 aprint_error_dev(sc->as_dev, "can't find display\n");
440 return ENXIO;
441 }
442
443 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
444 sc->as_capoff + AGP_STATUS);
445 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
446 capoff + AGP_STATUS);
447
448 /* Set RQ to the min of mode, tstatus and mstatus */
449 rq = AGP_MODE_GET_RQ(mode);
450 if (AGP_MODE_GET_RQ(tstatus) < rq)
451 rq = AGP_MODE_GET_RQ(tstatus);
452 if (AGP_MODE_GET_RQ(mstatus) < rq)
453 rq = AGP_MODE_GET_RQ(mstatus);
454
455 /* Set SBA if all three can deal with SBA */
456 sba = (AGP_MODE_GET_SBA(tstatus)
457 & AGP_MODE_GET_SBA(mstatus)
458 & AGP_MODE_GET_SBA(mode));
459
460 /* Similar for FW */
461 fw = (AGP_MODE_GET_FW(tstatus)
462 & AGP_MODE_GET_FW(mstatus)
463 & AGP_MODE_GET_FW(mode));
464
465 /* Figure out the max rate */
466 rate = (AGP_MODE_GET_RATE(tstatus)
467 & AGP_MODE_GET_RATE(mstatus)
468 & AGP_MODE_GET_RATE(mode));
469 if (rate & AGP_MODE_RATE_4x)
470 rate = AGP_MODE_RATE_4x;
471 else if (rate & AGP_MODE_RATE_2x)
472 rate = AGP_MODE_RATE_2x;
473 else
474 rate = AGP_MODE_RATE_1x;
475
476 /* Construct the new mode word and tell the hardware */
477 command = AGP_MODE_SET_RQ(0, rq);
478 command = AGP_MODE_SET_SBA(command, sba);
479 command = AGP_MODE_SET_FW(command, fw);
480 command = AGP_MODE_SET_RATE(command, rate);
481 command = AGP_MODE_SET_AGP(command, 1);
482 pci_conf_write(sc->as_pc, sc->as_tag,
483 sc->as_capoff + AGP_COMMAND, command);
484 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
485
486 return 0;
487 }
488
489 struct agp_memory *
490 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
491 {
492 struct agp_memory *mem;
493
494 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
495 return 0;
496
497 if (sc->as_allocated + size > sc->as_maxmem)
498 return 0;
499
500 if (type != 0) {
501 printf("agp_generic_alloc_memory: unsupported type %d\n",
502 type);
503 return 0;
504 }
505
506 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
507 if (mem == NULL)
508 return NULL;
509
510 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
511 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
512 free(mem, M_AGP);
513 return NULL;
514 }
515
516 mem->am_id = sc->as_nextid++;
517 mem->am_size = size;
518 mem->am_type = 0;
519 mem->am_physical = 0;
520 mem->am_offset = 0;
521 mem->am_is_bound = 0;
522 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
523 sc->as_allocated += size;
524
525 return mem;
526 }
527
528 int
529 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
530 {
531 if (mem->am_is_bound)
532 return EBUSY;
533
534 sc->as_allocated -= mem->am_size;
535 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
536 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
537 free(mem, M_AGP);
538 return 0;
539 }
540
541 int
542 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
543 off_t offset)
544 {
545 off_t i, k;
546 bus_size_t done, j;
547 int error;
548 bus_dma_segment_t *segs, *seg;
549 bus_addr_t pa;
550 int contigpages, nseg;
551
552 mutex_enter(&sc->as_mtx);
553
554 if (mem->am_is_bound) {
555 aprint_error_dev(sc->as_dev, "memory already bound\n");
556 mutex_exit(&sc->as_mtx);
557 return EINVAL;
558 }
559
560 if (offset < 0
561 || (offset & (AGP_PAGE_SIZE - 1)) != 0
562 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
563 aprint_error_dev(sc->as_dev,
564 "binding memory at bad offset %#lx\n",
565 (unsigned long) offset);
566 mutex_exit(&sc->as_mtx);
567 return EINVAL;
568 }
569
570 /*
571 * XXXfvdl
572 * The memory here needs to be directly accessable from the
573 * AGP video card, so it should be allocated using bus_dma.
574 * However, it need not be contiguous, since individual pages
575 * are translated using the GATT.
576 *
577 * Using a large chunk of contiguous memory may get in the way
578 * of other subsystems that may need one, so we try to be friendly
579 * and ask for allocation in chunks of a minimum of 8 pages
580 * of contiguous memory on average, falling back to 4, 2 and 1
581 * if really needed. Larger chunks are preferred, since allocating
582 * a bus_dma_segment per page would be overkill.
583 */
584
585 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
586 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
587 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
588 if (segs == NULL) {
589 mutex_exit(&sc->as_mtx);
590 return ENOMEM;
591 }
592 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
593 segs, nseg, &mem->am_nseg,
594 contigpages > 1 ?
595 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
596 free(segs, M_AGP);
597 continue;
598 }
599 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
600 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
601 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
602 free(segs, M_AGP);
603 continue;
604 }
605 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
606 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
607 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
608 mem->am_size);
609 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
610 free(segs, M_AGP);
611 continue;
612 }
613 mem->am_dmaseg = segs;
614 break;
615 }
616
617 if (contigpages == 0) {
618 mutex_exit(&sc->as_mtx);
619 return ENOMEM;
620 }
621
622
623 /*
624 * Bind the individual pages and flush the chipset's
625 * TLB.
626 */
627 done = 0;
628 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
629 seg = &mem->am_dmamap->dm_segs[i];
630 /*
631 * Install entries in the GATT, making sure that if
632 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
633 * aligned to PAGE_SIZE, we don't modify too many GATT
634 * entries.
635 */
636 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
637 j += AGP_PAGE_SIZE) {
638 pa = seg->ds_addr + j;
639 AGP_DPF(("binding offset %#lx to pa %#lx\n",
640 (unsigned long)(offset + done + j),
641 (unsigned long)pa));
642 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
643 if (error) {
644 /*
645 * Bail out. Reverse all the mappings
646 * and unwire the pages.
647 */
648 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
649 AGP_UNBIND_PAGE(sc, offset + k);
650
651 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
652 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
653 mem->am_size);
654 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
655 mem->am_nseg);
656 free(mem->am_dmaseg, M_AGP);
657 mutex_exit(&sc->as_mtx);
658 return error;
659 }
660 }
661 done += seg->ds_len;
662 }
663
664 /*
665 * Flush the CPU cache since we are providing a new mapping
666 * for these pages.
667 */
668 agp_flush_cache();
669
670 /*
671 * Make sure the chipset gets the new mappings.
672 */
673 AGP_FLUSH_TLB(sc);
674
675 mem->am_offset = offset;
676 mem->am_is_bound = 1;
677
678 mutex_exit(&sc->as_mtx);
679
680 return 0;
681 }
682
683 int
684 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
685 {
686 int i;
687
688 mutex_enter(&sc->as_mtx);
689
690 if (!mem->am_is_bound) {
691 aprint_error_dev(sc->as_dev, "memory is not bound\n");
692 mutex_exit(&sc->as_mtx);
693 return EINVAL;
694 }
695
696
697 /*
698 * Unbind the individual pages and flush the chipset's
699 * TLB. Unwire the pages so they can be swapped.
700 */
701 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
702 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
703
704 agp_flush_cache();
705 AGP_FLUSH_TLB(sc);
706
707 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
708 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
709 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
710
711 free(mem->am_dmaseg, M_AGP);
712
713 mem->am_offset = 0;
714 mem->am_is_bound = 0;
715
716 mutex_exit(&sc->as_mtx);
717
718 return 0;
719 }
720
721 /* Helper functions for implementing user/kernel api */
722
723 static int
724 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
725 {
726 if (sc->as_state != AGP_ACQUIRE_FREE)
727 return EBUSY;
728 sc->as_state = state;
729
730 return 0;
731 }
732
733 static int
734 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
735 {
736
737 if (sc->as_state == AGP_ACQUIRE_FREE)
738 return 0;
739
740 if (sc->as_state != state)
741 return EBUSY;
742
743 sc->as_state = AGP_ACQUIRE_FREE;
744 return 0;
745 }
746
747 static struct agp_memory *
748 agp_find_memory(struct agp_softc *sc, int id)
749 {
750 struct agp_memory *mem;
751
752 AGP_DPF(("searching for memory block %d\n", id));
753 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
754 AGP_DPF(("considering memory block %d\n", mem->am_id));
755 if (mem->am_id == id)
756 return mem;
757 }
758 return 0;
759 }
760
761 /* Implementation of the userland ioctl api */
762
763 static int
764 agp_info_user(struct agp_softc *sc, agp_info *info)
765 {
766 memset(info, 0, sizeof *info);
767 info->bridge_id = sc->as_id;
768 if (sc->as_capoff != 0)
769 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
770 sc->as_capoff + AGP_STATUS);
771 else
772 info->agp_mode = 0; /* i810 doesn't have real AGP */
773 info->aper_base = sc->as_apaddr;
774 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
775 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
776 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
777
778 return 0;
779 }
780
781 static int
782 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
783 {
784 return AGP_ENABLE(sc, setup->agp_mode);
785 }
786
787 static int
788 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
789 {
790 struct agp_memory *mem;
791
792 mem = AGP_ALLOC_MEMORY(sc,
793 alloc->type,
794 alloc->pg_count << AGP_PAGE_SHIFT);
795 if (mem) {
796 alloc->key = mem->am_id;
797 alloc->physical = mem->am_physical;
798 return 0;
799 } else {
800 return ENOMEM;
801 }
802 }
803
804 static int
805 agp_deallocate_user(struct agp_softc *sc, int id)
806 {
807 struct agp_memory *mem = agp_find_memory(sc, id);
808
809 if (mem) {
810 AGP_FREE_MEMORY(sc, mem);
811 return 0;
812 } else {
813 return ENOENT;
814 }
815 }
816
817 static int
818 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
819 {
820 struct agp_memory *mem = agp_find_memory(sc, bind->key);
821
822 if (!mem)
823 return ENOENT;
824
825 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
826 }
827
828 static int
829 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
830 {
831 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
832
833 if (!mem)
834 return ENOENT;
835
836 return AGP_UNBIND_MEMORY(sc, mem);
837 }
838
839 static int
840 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
841 {
842 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
843
844 if (sc == NULL)
845 return ENXIO;
846
847 if (sc->as_chipc == NULL)
848 return ENXIO;
849
850 if (!sc->as_isopen)
851 sc->as_isopen = 1;
852 else
853 return EBUSY;
854
855 return 0;
856 }
857
858 static int
859 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
860 {
861 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
862 struct agp_memory *mem;
863
864 if (sc == NULL)
865 return ENODEV;
866
867 /*
868 * Clear the GATT and force release on last close
869 */
870 if (sc->as_state == AGP_ACQUIRE_USER) {
871 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
872 if (mem->am_is_bound) {
873 printf("agpclose: mem %d is bound\n",
874 mem->am_id);
875 AGP_UNBIND_MEMORY(sc, mem);
876 }
877 /*
878 * XXX it is not documented, but if the protocol allows
879 * allocate->acquire->bind, it would be possible that
880 * memory ranges are allocated by the kernel here,
881 * which we shouldn't free. We'd have to keep track of
882 * the memory range's owner.
883 * The kernel API is unsed yet, so we get away with
884 * freeing all.
885 */
886 AGP_FREE_MEMORY(sc, mem);
887 }
888 agp_release_helper(sc, AGP_ACQUIRE_USER);
889 }
890 sc->as_isopen = 0;
891
892 return 0;
893 }
894
895 static int
896 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
897 {
898 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
899
900 if (sc == NULL)
901 return ENODEV;
902
903 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
904 return EPERM;
905
906 switch (cmd) {
907 case AGPIOC_INFO:
908 return agp_info_user(sc, (agp_info *) data);
909
910 case AGPIOC_ACQUIRE:
911 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
912
913 case AGPIOC_RELEASE:
914 return agp_release_helper(sc, AGP_ACQUIRE_USER);
915
916 case AGPIOC_SETUP:
917 return agp_setup_user(sc, (agp_setup *)data);
918
919 case AGPIOC_ALLOCATE:
920 return agp_allocate_user(sc, (agp_allocate *)data);
921
922 case AGPIOC_DEALLOCATE:
923 return agp_deallocate_user(sc, *(int *) data);
924
925 case AGPIOC_BIND:
926 return agp_bind_user(sc, (agp_bind *)data);
927
928 case AGPIOC_UNBIND:
929 return agp_unbind_user(sc, (agp_unbind *)data);
930
931 }
932
933 return EINVAL;
934 }
935
936 static paddr_t
937 agpmmap(dev_t dev, off_t offset, int prot)
938 {
939 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
940
941 if (sc == NULL)
942 return ENODEV;
943
944 if (offset > AGP_GET_APERTURE(sc))
945 return -1;
946
947 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
948 BUS_SPACE_MAP_LINEAR));
949 }
950
951 const struct cdevsw agp_cdevsw = {
952 agpopen, agpclose, noread, nowrite, agpioctl,
953 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
954 };
955
956 /* Implementation of the kernel api */
957
958 void *
959 agp_find_device(int unit)
960 {
961 return device_lookup_private(&agp_cd, unit);
962 }
963
964 enum agp_acquire_state
965 agp_state(void *devcookie)
966 {
967 struct agp_softc *sc = devcookie;
968
969 return sc->as_state;
970 }
971
972 void
973 agp_get_info(void *devcookie, struct agp_info *info)
974 {
975 struct agp_softc *sc = devcookie;
976
977 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
978 sc->as_capoff + AGP_STATUS);
979 info->ai_aperture_base = sc->as_apaddr;
980 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
981 info->ai_memory_allowed = sc->as_maxmem;
982 info->ai_memory_used = sc->as_allocated;
983 }
984
985 int
986 agp_acquire(void *dev)
987 {
988 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
989 }
990
991 int
992 agp_release(void *dev)
993 {
994 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
995 }
996
997 int
998 agp_enable(void *dev, u_int32_t mode)
999 {
1000 struct agp_softc *sc = dev;
1001
1002 return AGP_ENABLE(sc, mode);
1003 }
1004
1005 void *
1006 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1007 {
1008 struct agp_softc *sc = dev;
1009
1010 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1011 }
1012
1013 void
1014 agp_free_memory(void *dev, void *handle)
1015 {
1016 struct agp_softc *sc = dev;
1017 struct agp_memory *mem = handle;
1018
1019 AGP_FREE_MEMORY(sc, mem);
1020 }
1021
1022 int
1023 agp_bind_memory(void *dev, void *handle, off_t offset)
1024 {
1025 struct agp_softc *sc = dev;
1026 struct agp_memory *mem = handle;
1027
1028 return AGP_BIND_MEMORY(sc, mem, offset);
1029 }
1030
1031 int
1032 agp_unbind_memory(void *dev, void *handle)
1033 {
1034 struct agp_softc *sc = dev;
1035 struct agp_memory *mem = handle;
1036
1037 return AGP_UNBIND_MEMORY(sc, mem);
1038 }
1039
1040 void
1041 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1042 {
1043 struct agp_memory *mem = handle;
1044
1045 mi->ami_size = mem->am_size;
1046 mi->ami_physical = mem->am_physical;
1047 mi->ami_offset = mem->am_offset;
1048 mi->ami_is_bound = mem->am_is_bound;
1049 }
1050
1051 int
1052 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1053 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1054 bus_dma_segment_t *seg, int nseg, int *rseg)
1055
1056 {
1057 int error, level = 0;
1058
1059 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1060 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1061 goto out;
1062 level++;
1063
1064 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1065 BUS_DMA_NOWAIT | flags)) != 0)
1066 goto out;
1067 level++;
1068
1069 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1070 BUS_DMA_NOWAIT, mapp)) != 0)
1071 goto out;
1072 level++;
1073
1074 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1075 BUS_DMA_NOWAIT)) != 0)
1076 goto out;
1077
1078 *baddr = (*mapp)->dm_segs[0].ds_addr;
1079
1080 return 0;
1081 out:
1082 switch (level) {
1083 case 3:
1084 bus_dmamap_destroy(tag, *mapp);
1085 /* FALLTHROUGH */
1086 case 2:
1087 bus_dmamem_unmap(tag, *vaddr, size);
1088 /* FALLTHROUGH */
1089 case 1:
1090 bus_dmamem_free(tag, seg, *rseg);
1091 break;
1092 default:
1093 break;
1094 }
1095
1096 return error;
1097 }
1098
1099 void
1100 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1101 void *vaddr, bus_dma_segment_t *seg, int nseg)
1102 {
1103 bus_dmamap_unload(tag, map);
1104 bus_dmamap_destroy(tag, map);
1105 bus_dmamem_unmap(tag, vaddr, size);
1106 bus_dmamem_free(tag, seg, nseg);
1107 }
1108
1109 static bool
1110 agp_resume(device_t dv PMF_FN_ARGS)
1111 {
1112 agp_flush_cache();
1113
1114 return true;
1115 }
1116