agp.c revision 1.62 1 /* $NetBSD: agp.c,v 1.62 2008/10/17 17:15:09 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.62 2008/10/17 17:15:09 christos Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115
116 const struct agp_product {
117 uint32_t ap_vendor;
118 uint32_t ap_product;
119 int (*ap_match)(const struct pci_attach_args *);
120 int (*ap_attach)(device_t, device_t, void *);
121 } agp_products[] = {
122 #if NAGP_AMD64 > 0
123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
124 agp_amd64_match, agp_amd64_attach },
125 #endif
126
127 #if NAGP_ALI > 0
128 { PCI_VENDOR_ALI, -1,
129 NULL, agp_ali_attach },
130 #endif
131
132 #if NAGP_AMD64 > 0
133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
134 agp_amd64_match, agp_amd64_attach },
135 #endif
136
137 #if NAGP_AMD > 0
138 { PCI_VENDOR_AMD, -1,
139 agp_amd_match, agp_amd_attach },
140 #endif
141
142 #if NAGP_I810 > 0
143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
144 NULL, agp_i810_attach },
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
184 NULL, agp_i810_attach },
185 #endif
186
187 #if NAGP_INTEL > 0
188 { PCI_VENDOR_INTEL, -1,
189 NULL, agp_intel_attach },
190 #endif
191
192 #if NAGP_AMD64 > 0
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
194 agp_amd64_match, agp_amd64_attach },
195 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
196 agp_amd64_match, agp_amd64_attach },
197 #endif
198
199 #if NAGP_AMD64 > 0
200 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
201 agp_amd64_match, agp_amd64_attach },
202 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
203 agp_amd64_match, agp_amd64_attach },
204 #endif
205
206 #if NAGP_SIS > 0
207 { PCI_VENDOR_SIS, -1,
208 NULL, agp_sis_attach },
209 #endif
210
211 #if NAGP_AMD64 > 0
212 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
213 agp_amd64_match, agp_amd64_attach },
214 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
215 agp_amd64_match, agp_amd64_attach },
216 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
217 agp_amd64_match, agp_amd64_attach },
218 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
219 agp_amd64_match, agp_amd64_attach },
220 #endif
221
222 #if NAGP_VIA > 0
223 { PCI_VENDOR_VIATECH, -1,
224 NULL, agp_via_attach },
225 #endif
226
227 { 0, 0,
228 NULL, NULL },
229 };
230
231 static const struct agp_product *
232 agp_lookup(const struct pci_attach_args *pa)
233 {
234 const struct agp_product *ap;
235
236 /* First find the vendor. */
237 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
238 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
239 break;
240 }
241
242 if (ap->ap_attach == NULL)
243 return (NULL);
244
245 /* Now find the product within the vendor's domain. */
246 for (; ap->ap_attach != NULL; ap++) {
247 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
248 /* Ran out of this vendor's section of the table. */
249 return (NULL);
250 }
251 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
252 /* Exact match. */
253 break;
254 }
255 if (ap->ap_product == (uint32_t) -1) {
256 /* Wildcard match. */
257 break;
258 }
259 }
260
261 if (ap->ap_attach == NULL)
262 return (NULL);
263
264 /* Now let the product-specific driver filter the match. */
265 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
266 return (NULL);
267
268 return (ap);
269 }
270
271 static int
272 agpmatch(device_t parent, cfdata_t match, void *aux)
273 {
274 struct agpbus_attach_args *apa = aux;
275 struct pci_attach_args *pa = &apa->apa_pci_args;
276
277 if (agp_lookup(pa) == NULL)
278 return (0);
279
280 return (1);
281 }
282
283 static const int agp_max[][2] = {
284 {0, 0},
285 {32, 4},
286 {64, 28},
287 {128, 96},
288 {256, 204},
289 {512, 440},
290 {1024, 942},
291 {2048, 1920},
292 {4096, 3932}
293 };
294 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
295
296 static void
297 agpattach(device_t parent, device_t self, void *aux)
298 {
299 struct agpbus_attach_args *apa = aux;
300 struct pci_attach_args *pa = &apa->apa_pci_args;
301 struct agp_softc *sc = device_private(self);
302 const struct agp_product *ap;
303 int memsize, i, ret;
304
305 ap = agp_lookup(pa);
306 KASSERT(ap != NULL);
307
308 aprint_naive(": AGP controller\n");
309
310 sc->as_dev = self;
311 sc->as_dmat = pa->pa_dmat;
312 sc->as_pc = pa->pa_pc;
313 sc->as_tag = pa->pa_tag;
314 sc->as_id = pa->pa_id;
315
316 /*
317 * Work out an upper bound for agp memory allocation. This
318 * uses a heuristic table from the Linux driver.
319 */
320 memsize = ptoa(physmem) >> 20;
321 for (i = 0; i < agp_max_size; i++) {
322 if (memsize <= agp_max[i][0])
323 break;
324 }
325 if (i == agp_max_size)
326 i = agp_max_size - 1;
327 sc->as_maxmem = agp_max[i][1] << 20U;
328
329 /*
330 * The mutex is used to prevent re-entry to
331 * agp_generic_bind_memory() since that function can sleep.
332 */
333 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
334
335 TAILQ_INIT(&sc->as_memory);
336
337 ret = (*ap->ap_attach)(parent, self, pa);
338 if (ret == 0)
339 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
340 (unsigned long)sc->as_apaddr,
341 (unsigned long)AGP_GET_APERTURE(sc));
342 else
343 sc->as_chipc = NULL;
344
345 if (!device_pmf_is_registered(self)) {
346 if (!pmf_device_register(self, NULL, agp_resume))
347 aprint_error_dev(self, "couldn't establish power "
348 "handler\n");
349 }
350 }
351
352 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
353 agpmatch, agpattach, NULL, NULL);
354
355 int
356 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
357 {
358 /*
359 * Find the aperture. Don't map it (yet), this would
360 * eat KVA.
361 */
362 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
363 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
364 &sc->as_apflags) != 0)
365 return ENXIO;
366
367 sc->as_apt = pa->pa_memt;
368
369 return 0;
370 }
371
372 struct agp_gatt *
373 agp_alloc_gatt(struct agp_softc *sc)
374 {
375 u_int32_t apsize = AGP_GET_APERTURE(sc);
376 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
377 struct agp_gatt *gatt;
378 void *virtual;
379 int dummyseg;
380
381 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
382 if (!gatt)
383 return NULL;
384 gatt->ag_entries = entries;
385
386 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
387 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
388 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
389 free(gatt, M_AGP);
390 return NULL;
391 }
392 gatt->ag_virtual = (uint32_t *)virtual;
393
394 gatt->ag_size = entries * sizeof(u_int32_t);
395 memset(gatt->ag_virtual, 0, gatt->ag_size);
396 agp_flush_cache();
397
398 return gatt;
399 }
400
401 void
402 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
403 {
404 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
405 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
406 free(gatt, M_AGP);
407 }
408
409
410 int
411 agp_generic_detach(struct agp_softc *sc)
412 {
413 mutex_destroy(&sc->as_mtx);
414 agp_flush_cache();
415 return 0;
416 }
417
418 static int
419 agpdev_match(struct pci_attach_args *pa)
420 {
421 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
422 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
423 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
424 NULL, NULL))
425 return 1;
426
427 return 0;
428 }
429
430 int
431 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
432 {
433 struct pci_attach_args pa;
434 pcireg_t tstatus, mstatus;
435 pcireg_t command;
436 int rq, sba, fw, rate, capoff;
437
438 if (pci_find_device(&pa, agpdev_match) == 0 ||
439 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
440 &capoff, NULL) == 0) {
441 aprint_error_dev(sc->as_dev, "can't find display\n");
442 return ENXIO;
443 }
444
445 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
446 sc->as_capoff + AGP_STATUS);
447 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
448 capoff + AGP_STATUS);
449
450 /* Set RQ to the min of mode, tstatus and mstatus */
451 rq = AGP_MODE_GET_RQ(mode);
452 if (AGP_MODE_GET_RQ(tstatus) < rq)
453 rq = AGP_MODE_GET_RQ(tstatus);
454 if (AGP_MODE_GET_RQ(mstatus) < rq)
455 rq = AGP_MODE_GET_RQ(mstatus);
456
457 /* Set SBA if all three can deal with SBA */
458 sba = (AGP_MODE_GET_SBA(tstatus)
459 & AGP_MODE_GET_SBA(mstatus)
460 & AGP_MODE_GET_SBA(mode));
461
462 /* Similar for FW */
463 fw = (AGP_MODE_GET_FW(tstatus)
464 & AGP_MODE_GET_FW(mstatus)
465 & AGP_MODE_GET_FW(mode));
466
467 /* Figure out the max rate */
468 rate = (AGP_MODE_GET_RATE(tstatus)
469 & AGP_MODE_GET_RATE(mstatus)
470 & AGP_MODE_GET_RATE(mode));
471 if (rate & AGP_MODE_RATE_4x)
472 rate = AGP_MODE_RATE_4x;
473 else if (rate & AGP_MODE_RATE_2x)
474 rate = AGP_MODE_RATE_2x;
475 else
476 rate = AGP_MODE_RATE_1x;
477
478 /* Construct the new mode word and tell the hardware */
479 command = AGP_MODE_SET_RQ(0, rq);
480 command = AGP_MODE_SET_SBA(command, sba);
481 command = AGP_MODE_SET_FW(command, fw);
482 command = AGP_MODE_SET_RATE(command, rate);
483 command = AGP_MODE_SET_AGP(command, 1);
484 pci_conf_write(sc->as_pc, sc->as_tag,
485 sc->as_capoff + AGP_COMMAND, command);
486 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
487
488 return 0;
489 }
490
491 struct agp_memory *
492 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
493 {
494 struct agp_memory *mem;
495
496 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
497 return 0;
498
499 if (sc->as_allocated + size > sc->as_maxmem)
500 return 0;
501
502 if (type != 0) {
503 printf("agp_generic_alloc_memory: unsupported type %d\n",
504 type);
505 return 0;
506 }
507
508 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
509 if (mem == NULL)
510 return NULL;
511
512 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
513 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
514 free(mem, M_AGP);
515 return NULL;
516 }
517
518 mem->am_id = sc->as_nextid++;
519 mem->am_size = size;
520 mem->am_type = 0;
521 mem->am_physical = 0;
522 mem->am_offset = 0;
523 mem->am_is_bound = 0;
524 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
525 sc->as_allocated += size;
526
527 return mem;
528 }
529
530 int
531 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
532 {
533 if (mem->am_is_bound)
534 return EBUSY;
535
536 sc->as_allocated -= mem->am_size;
537 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
538 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
539 free(mem, M_AGP);
540 return 0;
541 }
542
543 int
544 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
545 off_t offset)
546 {
547 off_t i, k;
548 bus_size_t done, j;
549 int error;
550 bus_dma_segment_t *segs, *seg;
551 bus_addr_t pa;
552 int contigpages, nseg;
553
554 mutex_enter(&sc->as_mtx);
555
556 if (mem->am_is_bound) {
557 aprint_error_dev(sc->as_dev, "memory already bound\n");
558 mutex_exit(&sc->as_mtx);
559 return EINVAL;
560 }
561
562 if (offset < 0
563 || (offset & (AGP_PAGE_SIZE - 1)) != 0
564 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
565 aprint_error_dev(sc->as_dev,
566 "binding memory at bad offset %#lx\n",
567 (unsigned long) offset);
568 mutex_exit(&sc->as_mtx);
569 return EINVAL;
570 }
571
572 /*
573 * XXXfvdl
574 * The memory here needs to be directly accessable from the
575 * AGP video card, so it should be allocated using bus_dma.
576 * However, it need not be contiguous, since individual pages
577 * are translated using the GATT.
578 *
579 * Using a large chunk of contiguous memory may get in the way
580 * of other subsystems that may need one, so we try to be friendly
581 * and ask for allocation in chunks of a minimum of 8 pages
582 * of contiguous memory on average, falling back to 4, 2 and 1
583 * if really needed. Larger chunks are preferred, since allocating
584 * a bus_dma_segment per page would be overkill.
585 */
586
587 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
588 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
589 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
590 if (segs == NULL) {
591 mutex_exit(&sc->as_mtx);
592 return ENOMEM;
593 }
594 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
595 segs, nseg, &mem->am_nseg,
596 contigpages > 1 ?
597 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
598 free(segs, M_AGP);
599 continue;
600 }
601 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
602 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
603 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
604 free(segs, M_AGP);
605 continue;
606 }
607 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
608 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
609 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
610 mem->am_size);
611 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
612 free(segs, M_AGP);
613 continue;
614 }
615 mem->am_dmaseg = segs;
616 break;
617 }
618
619 if (contigpages == 0) {
620 mutex_exit(&sc->as_mtx);
621 return ENOMEM;
622 }
623
624
625 /*
626 * Bind the individual pages and flush the chipset's
627 * TLB.
628 */
629 done = 0;
630 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
631 seg = &mem->am_dmamap->dm_segs[i];
632 /*
633 * Install entries in the GATT, making sure that if
634 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
635 * aligned to PAGE_SIZE, we don't modify too many GATT
636 * entries.
637 */
638 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
639 j += AGP_PAGE_SIZE) {
640 pa = seg->ds_addr + j;
641 AGP_DPF(("binding offset %#lx to pa %#lx\n",
642 (unsigned long)(offset + done + j),
643 (unsigned long)pa));
644 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
645 if (error) {
646 /*
647 * Bail out. Reverse all the mappings
648 * and unwire the pages.
649 */
650 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
651 AGP_UNBIND_PAGE(sc, offset + k);
652
653 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
654 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
655 mem->am_size);
656 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
657 mem->am_nseg);
658 free(mem->am_dmaseg, M_AGP);
659 mutex_exit(&sc->as_mtx);
660 return error;
661 }
662 }
663 done += seg->ds_len;
664 }
665
666 /*
667 * Flush the CPU cache since we are providing a new mapping
668 * for these pages.
669 */
670 agp_flush_cache();
671
672 /*
673 * Make sure the chipset gets the new mappings.
674 */
675 AGP_FLUSH_TLB(sc);
676
677 mem->am_offset = offset;
678 mem->am_is_bound = 1;
679
680 mutex_exit(&sc->as_mtx);
681
682 return 0;
683 }
684
685 int
686 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
687 {
688 int i;
689
690 mutex_enter(&sc->as_mtx);
691
692 if (!mem->am_is_bound) {
693 aprint_error_dev(sc->as_dev, "memory is not bound\n");
694 mutex_exit(&sc->as_mtx);
695 return EINVAL;
696 }
697
698
699 /*
700 * Unbind the individual pages and flush the chipset's
701 * TLB. Unwire the pages so they can be swapped.
702 */
703 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
704 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
705
706 agp_flush_cache();
707 AGP_FLUSH_TLB(sc);
708
709 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
710 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
711 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
712
713 free(mem->am_dmaseg, M_AGP);
714
715 mem->am_offset = 0;
716 mem->am_is_bound = 0;
717
718 mutex_exit(&sc->as_mtx);
719
720 return 0;
721 }
722
723 /* Helper functions for implementing user/kernel api */
724
725 static int
726 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
727 {
728 if (sc->as_state != AGP_ACQUIRE_FREE)
729 return EBUSY;
730 sc->as_state = state;
731
732 return 0;
733 }
734
735 static int
736 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
737 {
738
739 if (sc->as_state == AGP_ACQUIRE_FREE)
740 return 0;
741
742 if (sc->as_state != state)
743 return EBUSY;
744
745 sc->as_state = AGP_ACQUIRE_FREE;
746 return 0;
747 }
748
749 static struct agp_memory *
750 agp_find_memory(struct agp_softc *sc, int id)
751 {
752 struct agp_memory *mem;
753
754 AGP_DPF(("searching for memory block %d\n", id));
755 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
756 AGP_DPF(("considering memory block %d\n", mem->am_id));
757 if (mem->am_id == id)
758 return mem;
759 }
760 return 0;
761 }
762
763 /* Implementation of the userland ioctl api */
764
765 static int
766 agp_info_user(struct agp_softc *sc, agp_info *info)
767 {
768 memset(info, 0, sizeof *info);
769 info->bridge_id = sc->as_id;
770 if (sc->as_capoff != 0)
771 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
772 sc->as_capoff + AGP_STATUS);
773 else
774 info->agp_mode = 0; /* i810 doesn't have real AGP */
775 info->aper_base = sc->as_apaddr;
776 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
777 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
778 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
779
780 return 0;
781 }
782
783 static int
784 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
785 {
786 return AGP_ENABLE(sc, setup->agp_mode);
787 }
788
789 static int
790 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
791 {
792 struct agp_memory *mem;
793
794 mem = AGP_ALLOC_MEMORY(sc,
795 alloc->type,
796 alloc->pg_count << AGP_PAGE_SHIFT);
797 if (mem) {
798 alloc->key = mem->am_id;
799 alloc->physical = mem->am_physical;
800 return 0;
801 } else {
802 return ENOMEM;
803 }
804 }
805
806 static int
807 agp_deallocate_user(struct agp_softc *sc, int id)
808 {
809 struct agp_memory *mem = agp_find_memory(sc, id);
810
811 if (mem) {
812 AGP_FREE_MEMORY(sc, mem);
813 return 0;
814 } else {
815 return ENOENT;
816 }
817 }
818
819 static int
820 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
821 {
822 struct agp_memory *mem = agp_find_memory(sc, bind->key);
823
824 if (!mem)
825 return ENOENT;
826
827 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
828 }
829
830 static int
831 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
832 {
833 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
834
835 if (!mem)
836 return ENOENT;
837
838 return AGP_UNBIND_MEMORY(sc, mem);
839 }
840
841 static int
842 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
843 {
844 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
845
846 if (sc == NULL)
847 return ENXIO;
848
849 if (sc->as_chipc == NULL)
850 return ENXIO;
851
852 if (!sc->as_isopen)
853 sc->as_isopen = 1;
854 else
855 return EBUSY;
856
857 return 0;
858 }
859
860 static int
861 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
862 {
863 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
864 struct agp_memory *mem;
865
866 if (sc == NULL)
867 return ENODEV;
868
869 /*
870 * Clear the GATT and force release on last close
871 */
872 if (sc->as_state == AGP_ACQUIRE_USER) {
873 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
874 if (mem->am_is_bound) {
875 printf("agpclose: mem %d is bound\n",
876 mem->am_id);
877 AGP_UNBIND_MEMORY(sc, mem);
878 }
879 /*
880 * XXX it is not documented, but if the protocol allows
881 * allocate->acquire->bind, it would be possible that
882 * memory ranges are allocated by the kernel here,
883 * which we shouldn't free. We'd have to keep track of
884 * the memory range's owner.
885 * The kernel API is unsed yet, so we get away with
886 * freeing all.
887 */
888 AGP_FREE_MEMORY(sc, mem);
889 }
890 agp_release_helper(sc, AGP_ACQUIRE_USER);
891 }
892 sc->as_isopen = 0;
893
894 return 0;
895 }
896
897 static int
898 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
899 {
900 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
901
902 if (sc == NULL)
903 return ENODEV;
904
905 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
906 return EPERM;
907
908 switch (cmd) {
909 case AGPIOC_INFO:
910 return agp_info_user(sc, (agp_info *) data);
911
912 case AGPIOC_ACQUIRE:
913 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
914
915 case AGPIOC_RELEASE:
916 return agp_release_helper(sc, AGP_ACQUIRE_USER);
917
918 case AGPIOC_SETUP:
919 return agp_setup_user(sc, (agp_setup *)data);
920
921 case AGPIOC_ALLOCATE:
922 return agp_allocate_user(sc, (agp_allocate *)data);
923
924 case AGPIOC_DEALLOCATE:
925 return agp_deallocate_user(sc, *(int *) data);
926
927 case AGPIOC_BIND:
928 return agp_bind_user(sc, (agp_bind *)data);
929
930 case AGPIOC_UNBIND:
931 return agp_unbind_user(sc, (agp_unbind *)data);
932
933 }
934
935 return EINVAL;
936 }
937
938 static paddr_t
939 agpmmap(dev_t dev, off_t offset, int prot)
940 {
941 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
942
943 if (sc == NULL)
944 return ENODEV;
945
946 if (offset > AGP_GET_APERTURE(sc))
947 return -1;
948
949 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
950 BUS_SPACE_MAP_LINEAR));
951 }
952
953 const struct cdevsw agp_cdevsw = {
954 agpopen, agpclose, noread, nowrite, agpioctl,
955 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
956 };
957
958 /* Implementation of the kernel api */
959
960 void *
961 agp_find_device(int unit)
962 {
963 return device_lookup_private(&agp_cd, unit);
964 }
965
966 enum agp_acquire_state
967 agp_state(void *devcookie)
968 {
969 struct agp_softc *sc = devcookie;
970
971 return sc->as_state;
972 }
973
974 void
975 agp_get_info(void *devcookie, struct agp_info *info)
976 {
977 struct agp_softc *sc = devcookie;
978
979 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
980 sc->as_capoff + AGP_STATUS);
981 info->ai_aperture_base = sc->as_apaddr;
982 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
983 info->ai_memory_allowed = sc->as_maxmem;
984 info->ai_memory_used = sc->as_allocated;
985 }
986
987 int
988 agp_acquire(void *dev)
989 {
990 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
991 }
992
993 int
994 agp_release(void *dev)
995 {
996 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
997 }
998
999 int
1000 agp_enable(void *dev, u_int32_t mode)
1001 {
1002 struct agp_softc *sc = dev;
1003
1004 return AGP_ENABLE(sc, mode);
1005 }
1006
1007 void *
1008 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1009 {
1010 struct agp_softc *sc = dev;
1011
1012 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1013 }
1014
1015 void
1016 agp_free_memory(void *dev, void *handle)
1017 {
1018 struct agp_softc *sc = dev;
1019 struct agp_memory *mem = handle;
1020
1021 AGP_FREE_MEMORY(sc, mem);
1022 }
1023
1024 int
1025 agp_bind_memory(void *dev, void *handle, off_t offset)
1026 {
1027 struct agp_softc *sc = dev;
1028 struct agp_memory *mem = handle;
1029
1030 return AGP_BIND_MEMORY(sc, mem, offset);
1031 }
1032
1033 int
1034 agp_unbind_memory(void *dev, void *handle)
1035 {
1036 struct agp_softc *sc = dev;
1037 struct agp_memory *mem = handle;
1038
1039 return AGP_UNBIND_MEMORY(sc, mem);
1040 }
1041
1042 void
1043 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1044 {
1045 struct agp_memory *mem = handle;
1046
1047 mi->ami_size = mem->am_size;
1048 mi->ami_physical = mem->am_physical;
1049 mi->ami_offset = mem->am_offset;
1050 mi->ami_is_bound = mem->am_is_bound;
1051 }
1052
1053 int
1054 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1055 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1056 bus_dma_segment_t *seg, int nseg, int *rseg)
1057
1058 {
1059 int error, level = 0;
1060
1061 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1062 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1063 goto out;
1064 level++;
1065
1066 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1067 BUS_DMA_NOWAIT | flags)) != 0)
1068 goto out;
1069 level++;
1070
1071 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1072 BUS_DMA_NOWAIT, mapp)) != 0)
1073 goto out;
1074 level++;
1075
1076 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1077 BUS_DMA_NOWAIT)) != 0)
1078 goto out;
1079
1080 *baddr = (*mapp)->dm_segs[0].ds_addr;
1081
1082 return 0;
1083 out:
1084 switch (level) {
1085 case 3:
1086 bus_dmamap_destroy(tag, *mapp);
1087 /* FALLTHROUGH */
1088 case 2:
1089 bus_dmamem_unmap(tag, *vaddr, size);
1090 /* FALLTHROUGH */
1091 case 1:
1092 bus_dmamem_free(tag, seg, *rseg);
1093 break;
1094 default:
1095 break;
1096 }
1097
1098 return error;
1099 }
1100
1101 void
1102 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1103 void *vaddr, bus_dma_segment_t *seg, int nseg)
1104 {
1105 bus_dmamap_unload(tag, map);
1106 bus_dmamap_destroy(tag, map);
1107 bus_dmamem_unmap(tag, vaddr, size);
1108 bus_dmamem_free(tag, seg, nseg);
1109 }
1110
1111 static bool
1112 agp_resume(device_t dv PMF_FN_ARGS)
1113 {
1114 agp_flush_cache();
1115
1116 return true;
1117 }
1118