agp.c revision 1.63 1 /* $NetBSD: agp.c,v 1.63 2008/11/08 17:26:28 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.63 2008/11/08 17:26:28 christos Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115
116 const struct agp_product {
117 uint32_t ap_vendor;
118 uint32_t ap_product;
119 int (*ap_match)(const struct pci_attach_args *);
120 int (*ap_attach)(device_t, device_t, void *);
121 } agp_products[] = {
122 #if NAGP_AMD64 > 0
123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
124 agp_amd64_match, agp_amd64_attach },
125 #endif
126
127 #if NAGP_ALI > 0
128 { PCI_VENDOR_ALI, -1,
129 NULL, agp_ali_attach },
130 #endif
131
132 #if NAGP_AMD64 > 0
133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
134 agp_amd64_match, agp_amd64_attach },
135 #endif
136
137 #if NAGP_AMD > 0
138 { PCI_VENDOR_AMD, -1,
139 agp_amd_match, agp_amd_attach },
140 #endif
141
142 #if NAGP_I810 > 0
143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
144 NULL, agp_i810_attach },
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
186 NULL, agp_i810_attach },
187 #endif
188
189 #if NAGP_INTEL > 0
190 { PCI_VENDOR_INTEL, -1,
191 NULL, agp_intel_attach },
192 #endif
193
194 #if NAGP_AMD64 > 0
195 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
196 agp_amd64_match, agp_amd64_attach },
197 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
198 agp_amd64_match, agp_amd64_attach },
199 #endif
200
201 #if NAGP_AMD64 > 0
202 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
203 agp_amd64_match, agp_amd64_attach },
204 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
205 agp_amd64_match, agp_amd64_attach },
206 #endif
207
208 #if NAGP_SIS > 0
209 { PCI_VENDOR_SIS, -1,
210 NULL, agp_sis_attach },
211 #endif
212
213 #if NAGP_AMD64 > 0
214 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
215 agp_amd64_match, agp_amd64_attach },
216 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
217 agp_amd64_match, agp_amd64_attach },
218 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
219 agp_amd64_match, agp_amd64_attach },
220 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
221 agp_amd64_match, agp_amd64_attach },
222 #endif
223
224 #if NAGP_VIA > 0
225 { PCI_VENDOR_VIATECH, -1,
226 NULL, agp_via_attach },
227 #endif
228
229 { 0, 0,
230 NULL, NULL },
231 };
232
233 static const struct agp_product *
234 agp_lookup(const struct pci_attach_args *pa)
235 {
236 const struct agp_product *ap;
237
238 /* First find the vendor. */
239 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
240 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
241 break;
242 }
243
244 if (ap->ap_attach == NULL)
245 return (NULL);
246
247 /* Now find the product within the vendor's domain. */
248 for (; ap->ap_attach != NULL; ap++) {
249 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
250 /* Ran out of this vendor's section of the table. */
251 return (NULL);
252 }
253 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
254 /* Exact match. */
255 break;
256 }
257 if (ap->ap_product == (uint32_t) -1) {
258 /* Wildcard match. */
259 break;
260 }
261 }
262
263 if (ap->ap_attach == NULL)
264 return (NULL);
265
266 /* Now let the product-specific driver filter the match. */
267 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
268 return (NULL);
269
270 return (ap);
271 }
272
273 static int
274 agpmatch(device_t parent, cfdata_t match, void *aux)
275 {
276 struct agpbus_attach_args *apa = aux;
277 struct pci_attach_args *pa = &apa->apa_pci_args;
278
279 if (agp_lookup(pa) == NULL)
280 return (0);
281
282 return (1);
283 }
284
285 static const int agp_max[][2] = {
286 {0, 0},
287 {32, 4},
288 {64, 28},
289 {128, 96},
290 {256, 204},
291 {512, 440},
292 {1024, 942},
293 {2048, 1920},
294 {4096, 3932}
295 };
296 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
297
298 static void
299 agpattach(device_t parent, device_t self, void *aux)
300 {
301 struct agpbus_attach_args *apa = aux;
302 struct pci_attach_args *pa = &apa->apa_pci_args;
303 struct agp_softc *sc = device_private(self);
304 const struct agp_product *ap;
305 int memsize, i, ret;
306
307 ap = agp_lookup(pa);
308 KASSERT(ap != NULL);
309
310 aprint_naive(": AGP controller\n");
311
312 sc->as_dev = self;
313 sc->as_dmat = pa->pa_dmat;
314 sc->as_pc = pa->pa_pc;
315 sc->as_tag = pa->pa_tag;
316 sc->as_id = pa->pa_id;
317
318 /*
319 * Work out an upper bound for agp memory allocation. This
320 * uses a heuristic table from the Linux driver.
321 */
322 memsize = ptoa(physmem) >> 20;
323 for (i = 0; i < agp_max_size; i++) {
324 if (memsize <= agp_max[i][0])
325 break;
326 }
327 if (i == agp_max_size)
328 i = agp_max_size - 1;
329 sc->as_maxmem = agp_max[i][1] << 20U;
330
331 /*
332 * The mutex is used to prevent re-entry to
333 * agp_generic_bind_memory() since that function can sleep.
334 */
335 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
336
337 TAILQ_INIT(&sc->as_memory);
338
339 ret = (*ap->ap_attach)(parent, self, pa);
340 if (ret == 0)
341 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
342 (unsigned long)sc->as_apaddr,
343 (unsigned long)AGP_GET_APERTURE(sc));
344 else
345 sc->as_chipc = NULL;
346
347 if (!device_pmf_is_registered(self)) {
348 if (!pmf_device_register(self, NULL, agp_resume))
349 aprint_error_dev(self, "couldn't establish power "
350 "handler\n");
351 }
352 }
353
354 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
355 agpmatch, agpattach, NULL, NULL);
356
357 int
358 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
359 {
360 /*
361 * Find the aperture. Don't map it (yet), this would
362 * eat KVA.
363 */
364 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
365 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
366 &sc->as_apflags) != 0)
367 return ENXIO;
368
369 sc->as_apt = pa->pa_memt;
370
371 return 0;
372 }
373
374 struct agp_gatt *
375 agp_alloc_gatt(struct agp_softc *sc)
376 {
377 u_int32_t apsize = AGP_GET_APERTURE(sc);
378 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
379 struct agp_gatt *gatt;
380 void *virtual;
381 int dummyseg;
382
383 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
384 if (!gatt)
385 return NULL;
386 gatt->ag_entries = entries;
387
388 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
389 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
390 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
391 free(gatt, M_AGP);
392 return NULL;
393 }
394 gatt->ag_virtual = (uint32_t *)virtual;
395
396 gatt->ag_size = entries * sizeof(u_int32_t);
397 memset(gatt->ag_virtual, 0, gatt->ag_size);
398 agp_flush_cache();
399
400 return gatt;
401 }
402
403 void
404 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
405 {
406 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
407 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
408 free(gatt, M_AGP);
409 }
410
411
412 int
413 agp_generic_detach(struct agp_softc *sc)
414 {
415 mutex_destroy(&sc->as_mtx);
416 agp_flush_cache();
417 return 0;
418 }
419
420 static int
421 agpdev_match(struct pci_attach_args *pa)
422 {
423 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
424 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
425 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
426 NULL, NULL))
427 return 1;
428
429 return 0;
430 }
431
432 int
433 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
434 {
435 struct pci_attach_args pa;
436 pcireg_t tstatus, mstatus;
437 pcireg_t command;
438 int rq, sba, fw, rate, capoff;
439
440 if (pci_find_device(&pa, agpdev_match) == 0 ||
441 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
442 &capoff, NULL) == 0) {
443 aprint_error_dev(sc->as_dev, "can't find display\n");
444 return ENXIO;
445 }
446
447 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
448 sc->as_capoff + AGP_STATUS);
449 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
450 capoff + AGP_STATUS);
451
452 /* Set RQ to the min of mode, tstatus and mstatus */
453 rq = AGP_MODE_GET_RQ(mode);
454 if (AGP_MODE_GET_RQ(tstatus) < rq)
455 rq = AGP_MODE_GET_RQ(tstatus);
456 if (AGP_MODE_GET_RQ(mstatus) < rq)
457 rq = AGP_MODE_GET_RQ(mstatus);
458
459 /* Set SBA if all three can deal with SBA */
460 sba = (AGP_MODE_GET_SBA(tstatus)
461 & AGP_MODE_GET_SBA(mstatus)
462 & AGP_MODE_GET_SBA(mode));
463
464 /* Similar for FW */
465 fw = (AGP_MODE_GET_FW(tstatus)
466 & AGP_MODE_GET_FW(mstatus)
467 & AGP_MODE_GET_FW(mode));
468
469 /* Figure out the max rate */
470 rate = (AGP_MODE_GET_RATE(tstatus)
471 & AGP_MODE_GET_RATE(mstatus)
472 & AGP_MODE_GET_RATE(mode));
473 if (rate & AGP_MODE_RATE_4x)
474 rate = AGP_MODE_RATE_4x;
475 else if (rate & AGP_MODE_RATE_2x)
476 rate = AGP_MODE_RATE_2x;
477 else
478 rate = AGP_MODE_RATE_1x;
479
480 /* Construct the new mode word and tell the hardware */
481 command = AGP_MODE_SET_RQ(0, rq);
482 command = AGP_MODE_SET_SBA(command, sba);
483 command = AGP_MODE_SET_FW(command, fw);
484 command = AGP_MODE_SET_RATE(command, rate);
485 command = AGP_MODE_SET_AGP(command, 1);
486 pci_conf_write(sc->as_pc, sc->as_tag,
487 sc->as_capoff + AGP_COMMAND, command);
488 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
489
490 return 0;
491 }
492
493 struct agp_memory *
494 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
495 {
496 struct agp_memory *mem;
497
498 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
499 return 0;
500
501 if (sc->as_allocated + size > sc->as_maxmem)
502 return 0;
503
504 if (type != 0) {
505 printf("agp_generic_alloc_memory: unsupported type %d\n",
506 type);
507 return 0;
508 }
509
510 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
511 if (mem == NULL)
512 return NULL;
513
514 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
515 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
516 free(mem, M_AGP);
517 return NULL;
518 }
519
520 mem->am_id = sc->as_nextid++;
521 mem->am_size = size;
522 mem->am_type = 0;
523 mem->am_physical = 0;
524 mem->am_offset = 0;
525 mem->am_is_bound = 0;
526 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
527 sc->as_allocated += size;
528
529 return mem;
530 }
531
532 int
533 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
534 {
535 if (mem->am_is_bound)
536 return EBUSY;
537
538 sc->as_allocated -= mem->am_size;
539 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
540 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
541 free(mem, M_AGP);
542 return 0;
543 }
544
545 int
546 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
547 off_t offset)
548 {
549 off_t i, k;
550 bus_size_t done, j;
551 int error;
552 bus_dma_segment_t *segs, *seg;
553 bus_addr_t pa;
554 int contigpages, nseg;
555
556 mutex_enter(&sc->as_mtx);
557
558 if (mem->am_is_bound) {
559 aprint_error_dev(sc->as_dev, "memory already bound\n");
560 mutex_exit(&sc->as_mtx);
561 return EINVAL;
562 }
563
564 if (offset < 0
565 || (offset & (AGP_PAGE_SIZE - 1)) != 0
566 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
567 aprint_error_dev(sc->as_dev,
568 "binding memory at bad offset %#lx\n",
569 (unsigned long) offset);
570 mutex_exit(&sc->as_mtx);
571 return EINVAL;
572 }
573
574 /*
575 * XXXfvdl
576 * The memory here needs to be directly accessable from the
577 * AGP video card, so it should be allocated using bus_dma.
578 * However, it need not be contiguous, since individual pages
579 * are translated using the GATT.
580 *
581 * Using a large chunk of contiguous memory may get in the way
582 * of other subsystems that may need one, so we try to be friendly
583 * and ask for allocation in chunks of a minimum of 8 pages
584 * of contiguous memory on average, falling back to 4, 2 and 1
585 * if really needed. Larger chunks are preferred, since allocating
586 * a bus_dma_segment per page would be overkill.
587 */
588
589 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
590 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
591 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
592 if (segs == NULL) {
593 mutex_exit(&sc->as_mtx);
594 return ENOMEM;
595 }
596 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
597 segs, nseg, &mem->am_nseg,
598 contigpages > 1 ?
599 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
600 free(segs, M_AGP);
601 continue;
602 }
603 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
604 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
605 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
606 free(segs, M_AGP);
607 continue;
608 }
609 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
610 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
611 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
612 mem->am_size);
613 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
614 free(segs, M_AGP);
615 continue;
616 }
617 mem->am_dmaseg = segs;
618 break;
619 }
620
621 if (contigpages == 0) {
622 mutex_exit(&sc->as_mtx);
623 return ENOMEM;
624 }
625
626
627 /*
628 * Bind the individual pages and flush the chipset's
629 * TLB.
630 */
631 done = 0;
632 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
633 seg = &mem->am_dmamap->dm_segs[i];
634 /*
635 * Install entries in the GATT, making sure that if
636 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
637 * aligned to PAGE_SIZE, we don't modify too many GATT
638 * entries.
639 */
640 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
641 j += AGP_PAGE_SIZE) {
642 pa = seg->ds_addr + j;
643 AGP_DPF(("binding offset %#lx to pa %#lx\n",
644 (unsigned long)(offset + done + j),
645 (unsigned long)pa));
646 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
647 if (error) {
648 /*
649 * Bail out. Reverse all the mappings
650 * and unwire the pages.
651 */
652 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
653 AGP_UNBIND_PAGE(sc, offset + k);
654
655 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
656 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
657 mem->am_size);
658 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
659 mem->am_nseg);
660 free(mem->am_dmaseg, M_AGP);
661 mutex_exit(&sc->as_mtx);
662 return error;
663 }
664 }
665 done += seg->ds_len;
666 }
667
668 /*
669 * Flush the CPU cache since we are providing a new mapping
670 * for these pages.
671 */
672 agp_flush_cache();
673
674 /*
675 * Make sure the chipset gets the new mappings.
676 */
677 AGP_FLUSH_TLB(sc);
678
679 mem->am_offset = offset;
680 mem->am_is_bound = 1;
681
682 mutex_exit(&sc->as_mtx);
683
684 return 0;
685 }
686
687 int
688 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
689 {
690 int i;
691
692 mutex_enter(&sc->as_mtx);
693
694 if (!mem->am_is_bound) {
695 aprint_error_dev(sc->as_dev, "memory is not bound\n");
696 mutex_exit(&sc->as_mtx);
697 return EINVAL;
698 }
699
700
701 /*
702 * Unbind the individual pages and flush the chipset's
703 * TLB. Unwire the pages so they can be swapped.
704 */
705 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
706 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
707
708 agp_flush_cache();
709 AGP_FLUSH_TLB(sc);
710
711 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
712 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
713 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
714
715 free(mem->am_dmaseg, M_AGP);
716
717 mem->am_offset = 0;
718 mem->am_is_bound = 0;
719
720 mutex_exit(&sc->as_mtx);
721
722 return 0;
723 }
724
725 /* Helper functions for implementing user/kernel api */
726
727 static int
728 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
729 {
730 if (sc->as_state != AGP_ACQUIRE_FREE)
731 return EBUSY;
732 sc->as_state = state;
733
734 return 0;
735 }
736
737 static int
738 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
739 {
740
741 if (sc->as_state == AGP_ACQUIRE_FREE)
742 return 0;
743
744 if (sc->as_state != state)
745 return EBUSY;
746
747 sc->as_state = AGP_ACQUIRE_FREE;
748 return 0;
749 }
750
751 static struct agp_memory *
752 agp_find_memory(struct agp_softc *sc, int id)
753 {
754 struct agp_memory *mem;
755
756 AGP_DPF(("searching for memory block %d\n", id));
757 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
758 AGP_DPF(("considering memory block %d\n", mem->am_id));
759 if (mem->am_id == id)
760 return mem;
761 }
762 return 0;
763 }
764
765 /* Implementation of the userland ioctl api */
766
767 static int
768 agp_info_user(struct agp_softc *sc, agp_info *info)
769 {
770 memset(info, 0, sizeof *info);
771 info->bridge_id = sc->as_id;
772 if (sc->as_capoff != 0)
773 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
774 sc->as_capoff + AGP_STATUS);
775 else
776 info->agp_mode = 0; /* i810 doesn't have real AGP */
777 info->aper_base = sc->as_apaddr;
778 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
779 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
780 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
781
782 return 0;
783 }
784
785 static int
786 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
787 {
788 return AGP_ENABLE(sc, setup->agp_mode);
789 }
790
791 static int
792 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
793 {
794 struct agp_memory *mem;
795
796 mem = AGP_ALLOC_MEMORY(sc,
797 alloc->type,
798 alloc->pg_count << AGP_PAGE_SHIFT);
799 if (mem) {
800 alloc->key = mem->am_id;
801 alloc->physical = mem->am_physical;
802 return 0;
803 } else {
804 return ENOMEM;
805 }
806 }
807
808 static int
809 agp_deallocate_user(struct agp_softc *sc, int id)
810 {
811 struct agp_memory *mem = agp_find_memory(sc, id);
812
813 if (mem) {
814 AGP_FREE_MEMORY(sc, mem);
815 return 0;
816 } else {
817 return ENOENT;
818 }
819 }
820
821 static int
822 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
823 {
824 struct agp_memory *mem = agp_find_memory(sc, bind->key);
825
826 if (!mem)
827 return ENOENT;
828
829 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
830 }
831
832 static int
833 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
834 {
835 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
836
837 if (!mem)
838 return ENOENT;
839
840 return AGP_UNBIND_MEMORY(sc, mem);
841 }
842
843 static int
844 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
845 {
846 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
847
848 if (sc == NULL)
849 return ENXIO;
850
851 if (sc->as_chipc == NULL)
852 return ENXIO;
853
854 if (!sc->as_isopen)
855 sc->as_isopen = 1;
856 else
857 return EBUSY;
858
859 return 0;
860 }
861
862 static int
863 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
864 {
865 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
866 struct agp_memory *mem;
867
868 if (sc == NULL)
869 return ENODEV;
870
871 /*
872 * Clear the GATT and force release on last close
873 */
874 if (sc->as_state == AGP_ACQUIRE_USER) {
875 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
876 if (mem->am_is_bound) {
877 printf("agpclose: mem %d is bound\n",
878 mem->am_id);
879 AGP_UNBIND_MEMORY(sc, mem);
880 }
881 /*
882 * XXX it is not documented, but if the protocol allows
883 * allocate->acquire->bind, it would be possible that
884 * memory ranges are allocated by the kernel here,
885 * which we shouldn't free. We'd have to keep track of
886 * the memory range's owner.
887 * The kernel API is unsed yet, so we get away with
888 * freeing all.
889 */
890 AGP_FREE_MEMORY(sc, mem);
891 }
892 agp_release_helper(sc, AGP_ACQUIRE_USER);
893 }
894 sc->as_isopen = 0;
895
896 return 0;
897 }
898
899 static int
900 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
901 {
902 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
903
904 if (sc == NULL)
905 return ENODEV;
906
907 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
908 return EPERM;
909
910 switch (cmd) {
911 case AGPIOC_INFO:
912 return agp_info_user(sc, (agp_info *) data);
913
914 case AGPIOC_ACQUIRE:
915 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
916
917 case AGPIOC_RELEASE:
918 return agp_release_helper(sc, AGP_ACQUIRE_USER);
919
920 case AGPIOC_SETUP:
921 return agp_setup_user(sc, (agp_setup *)data);
922
923 case AGPIOC_ALLOCATE:
924 return agp_allocate_user(sc, (agp_allocate *)data);
925
926 case AGPIOC_DEALLOCATE:
927 return agp_deallocate_user(sc, *(int *) data);
928
929 case AGPIOC_BIND:
930 return agp_bind_user(sc, (agp_bind *)data);
931
932 case AGPIOC_UNBIND:
933 return agp_unbind_user(sc, (agp_unbind *)data);
934
935 }
936
937 return EINVAL;
938 }
939
940 static paddr_t
941 agpmmap(dev_t dev, off_t offset, int prot)
942 {
943 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
944
945 if (sc == NULL)
946 return ENODEV;
947
948 if (offset > AGP_GET_APERTURE(sc))
949 return -1;
950
951 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
952 BUS_SPACE_MAP_LINEAR));
953 }
954
955 const struct cdevsw agp_cdevsw = {
956 agpopen, agpclose, noread, nowrite, agpioctl,
957 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
958 };
959
960 /* Implementation of the kernel api */
961
962 void *
963 agp_find_device(int unit)
964 {
965 return device_lookup_private(&agp_cd, unit);
966 }
967
968 enum agp_acquire_state
969 agp_state(void *devcookie)
970 {
971 struct agp_softc *sc = devcookie;
972
973 return sc->as_state;
974 }
975
976 void
977 agp_get_info(void *devcookie, struct agp_info *info)
978 {
979 struct agp_softc *sc = devcookie;
980
981 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
982 sc->as_capoff + AGP_STATUS);
983 info->ai_aperture_base = sc->as_apaddr;
984 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
985 info->ai_memory_allowed = sc->as_maxmem;
986 info->ai_memory_used = sc->as_allocated;
987 }
988
989 int
990 agp_acquire(void *dev)
991 {
992 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
993 }
994
995 int
996 agp_release(void *dev)
997 {
998 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
999 }
1000
1001 int
1002 agp_enable(void *dev, u_int32_t mode)
1003 {
1004 struct agp_softc *sc = dev;
1005
1006 return AGP_ENABLE(sc, mode);
1007 }
1008
1009 void *
1010 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1011 {
1012 struct agp_softc *sc = dev;
1013
1014 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1015 }
1016
1017 void
1018 agp_free_memory(void *dev, void *handle)
1019 {
1020 struct agp_softc *sc = dev;
1021 struct agp_memory *mem = handle;
1022
1023 AGP_FREE_MEMORY(sc, mem);
1024 }
1025
1026 int
1027 agp_bind_memory(void *dev, void *handle, off_t offset)
1028 {
1029 struct agp_softc *sc = dev;
1030 struct agp_memory *mem = handle;
1031
1032 return AGP_BIND_MEMORY(sc, mem, offset);
1033 }
1034
1035 int
1036 agp_unbind_memory(void *dev, void *handle)
1037 {
1038 struct agp_softc *sc = dev;
1039 struct agp_memory *mem = handle;
1040
1041 return AGP_UNBIND_MEMORY(sc, mem);
1042 }
1043
1044 void
1045 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1046 {
1047 struct agp_memory *mem = handle;
1048
1049 mi->ami_size = mem->am_size;
1050 mi->ami_physical = mem->am_physical;
1051 mi->ami_offset = mem->am_offset;
1052 mi->ami_is_bound = mem->am_is_bound;
1053 }
1054
1055 int
1056 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1057 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1058 bus_dma_segment_t *seg, int nseg, int *rseg)
1059
1060 {
1061 int error, level = 0;
1062
1063 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1064 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1065 goto out;
1066 level++;
1067
1068 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1069 BUS_DMA_NOWAIT | flags)) != 0)
1070 goto out;
1071 level++;
1072
1073 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1074 BUS_DMA_NOWAIT, mapp)) != 0)
1075 goto out;
1076 level++;
1077
1078 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1079 BUS_DMA_NOWAIT)) != 0)
1080 goto out;
1081
1082 *baddr = (*mapp)->dm_segs[0].ds_addr;
1083
1084 return 0;
1085 out:
1086 switch (level) {
1087 case 3:
1088 bus_dmamap_destroy(tag, *mapp);
1089 /* FALLTHROUGH */
1090 case 2:
1091 bus_dmamem_unmap(tag, *vaddr, size);
1092 /* FALLTHROUGH */
1093 case 1:
1094 bus_dmamem_free(tag, seg, *rseg);
1095 break;
1096 default:
1097 break;
1098 }
1099
1100 return error;
1101 }
1102
1103 void
1104 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1105 void *vaddr, bus_dma_segment_t *seg, int nseg)
1106 {
1107 bus_dmamap_unload(tag, map);
1108 bus_dmamap_destroy(tag, map);
1109 bus_dmamem_unmap(tag, vaddr, size);
1110 bus_dmamem_free(tag, seg, nseg);
1111 }
1112
1113 static bool
1114 agp_resume(device_t dv PMF_FN_ARGS)
1115 {
1116 agp_flush_cache();
1117
1118 return true;
1119 }
1120