Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.69
      1 /*	$NetBSD: agp.c,v 1.69 2010/06/16 03:35:01 riz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.69 2010/06/16 03:35:01 riz Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <uvm/uvm_extern.h>
     83 
     84 #include <dev/pci/pcireg.h>
     85 #include <dev/pci/pcivar.h>
     86 #include <dev/pci/agpvar.h>
     87 #include <dev/pci/agpreg.h>
     88 #include <dev/pci/pcidevs.h>
     89 
     90 #include <sys/bus.h>
     91 
     92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     93 
     94 /* Helper functions for implementing chipset mini drivers. */
     95 /* XXXfvdl get rid of this one. */
     96 
     97 extern struct cfdriver agp_cd;
     98 
     99 static int agp_info_user(struct agp_softc *, agp_info *);
    100 static int agp_setup_user(struct agp_softc *, agp_setup *);
    101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    102 static int agp_deallocate_user(struct agp_softc *, int);
    103 static int agp_bind_user(struct agp_softc *, agp_bind *);
    104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    105 static int agpdev_match(struct pci_attach_args *);
    106 static bool agp_resume(device_t, const pmf_qual_t *);
    107 
    108 #include "agp_ali.h"
    109 #include "agp_amd.h"
    110 #include "agp_i810.h"
    111 #include "agp_intel.h"
    112 #include "agp_sis.h"
    113 #include "agp_via.h"
    114 #include "agp_amd64.h"
    115 
    116 const struct agp_product {
    117 	uint32_t	ap_vendor;
    118 	uint32_t	ap_product;
    119 	int		(*ap_match)(const struct pci_attach_args *);
    120 	int		(*ap_attach)(device_t, device_t, void *);
    121 } agp_products[] = {
    122 #if NAGP_AMD64 > 0
    123 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
    124 	  agp_amd64_match,	agp_amd64_attach },
    125 #endif
    126 
    127 #if NAGP_ALI > 0
    128 	{ PCI_VENDOR_ALI,	-1,
    129 	  NULL,			agp_ali_attach },
    130 #endif
    131 
    132 #if NAGP_AMD64 > 0
    133 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    134 	  agp_amd64_match,	agp_amd64_attach },
    135 #endif
    136 
    137 #if NAGP_AMD > 0
    138 	{ PCI_VENDOR_AMD,	-1,
    139 	  agp_amd_match,	agp_amd_attach },
    140 #endif
    141 
    142 #if NAGP_I810 > 0
    143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    144 	  NULL,			agp_i810_attach },
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    166 	  NULL,			agp_i810_attach },
    167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    168 	  NULL,			agp_i810_attach },
    169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
    170 	  NULL,			agp_i810_attach },
    171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    172 	  NULL,			agp_i810_attach },
    173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    174 	  NULL,			agp_i810_attach },
    175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    176 	  NULL,			agp_i810_attach },
    177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    178 	  NULL,			agp_i810_attach },
    179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    180 	  NULL,			agp_i810_attach },
    181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    182 	  NULL,			agp_i810_attach },
    183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
    184 	  NULL,			agp_i810_attach },
    185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
    186 	  NULL,			agp_i810_attach },
    187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
    188 	  NULL, 		agp_i810_attach },
    189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
    190 	  NULL, 		agp_i810_attach },
    191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
    192 	  NULL, 		agp_i810_attach },
    193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
    194 	  NULL, 		agp_i810_attach },
    195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
    196 	  NULL, 		agp_i810_attach },
    197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
    198 	  NULL, 		agp_i810_attach },
    199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
    200 	  NULL, 		agp_i810_attach },
    201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
    202 	  NULL, 		agp_i810_attach },
    203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
    204 	  NULL, 		agp_i810_attach },
    205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
    206 	  NULL, 		agp_i810_attach },
    207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
    208 	  NULL, 		agp_i810_attach },
    209 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
    210 	  NULL, 		agp_i810_attach },
    211 #endif
    212 
    213 #if NAGP_INTEL > 0
    214 	{ PCI_VENDOR_INTEL,	-1,
    215 	  NULL,			agp_intel_attach },
    216 #endif
    217 
    218 #if NAGP_AMD64 > 0
    219 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    220 	  agp_amd64_match,	agp_amd64_attach },
    221 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    222 	  agp_amd64_match,	agp_amd64_attach },
    223 #endif
    224 
    225 #if NAGP_AMD64 > 0
    226 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    227 	  agp_amd64_match,	agp_amd64_attach },
    228 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    229 	  agp_amd64_match,	agp_amd64_attach },
    230 #endif
    231 
    232 #if NAGP_SIS > 0
    233 	{ PCI_VENDOR_SIS,	-1,
    234 	  NULL,			agp_sis_attach },
    235 #endif
    236 
    237 #if NAGP_AMD64 > 0
    238 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    239 	  agp_amd64_match,	agp_amd64_attach },
    240 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    241 	  agp_amd64_match,	agp_amd64_attach },
    242 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    243 	  agp_amd64_match,	agp_amd64_attach },
    244 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    245 	  agp_amd64_match,	agp_amd64_attach },
    246 #endif
    247 
    248 #if NAGP_VIA > 0
    249 	{ PCI_VENDOR_VIATECH,	-1,
    250 	  NULL,			agp_via_attach },
    251 #endif
    252 
    253 	{ 0,			0,
    254 	  NULL,			NULL },
    255 };
    256 
    257 static const struct agp_product *
    258 agp_lookup(const struct pci_attach_args *pa)
    259 {
    260 	const struct agp_product *ap;
    261 
    262 	/* First find the vendor. */
    263 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    264 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    265 			break;
    266 	}
    267 
    268 	if (ap->ap_attach == NULL)
    269 		return (NULL);
    270 
    271 	/* Now find the product within the vendor's domain. */
    272 	for (; ap->ap_attach != NULL; ap++) {
    273 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    274 			/* Ran out of this vendor's section of the table. */
    275 			return (NULL);
    276 		}
    277 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    278 			/* Exact match. */
    279 			break;
    280 		}
    281 		if (ap->ap_product == (uint32_t) -1) {
    282 			/* Wildcard match. */
    283 			break;
    284 		}
    285 	}
    286 
    287 	if (ap->ap_attach == NULL)
    288 		return (NULL);
    289 
    290 	/* Now let the product-specific driver filter the match. */
    291 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    292 		return (NULL);
    293 
    294 	return (ap);
    295 }
    296 
    297 static int
    298 agpmatch(device_t parent, cfdata_t match, void *aux)
    299 {
    300 	struct agpbus_attach_args *apa = aux;
    301 	struct pci_attach_args *pa = &apa->apa_pci_args;
    302 
    303 	if (agp_lookup(pa) == NULL)
    304 		return (0);
    305 
    306 	return (1);
    307 }
    308 
    309 static const int agp_max[][2] = {
    310 	{0,	0},
    311 	{32,	4},
    312 	{64,	28},
    313 	{128,	96},
    314 	{256,	204},
    315 	{512,	440},
    316 	{1024,	942},
    317 	{2048,	1920},
    318 	{4096,	3932}
    319 };
    320 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    321 
    322 static void
    323 agpattach(device_t parent, device_t self, void *aux)
    324 {
    325 	struct agpbus_attach_args *apa = aux;
    326 	struct pci_attach_args *pa = &apa->apa_pci_args;
    327 	struct agp_softc *sc = device_private(self);
    328 	const struct agp_product *ap;
    329 	int memsize, i, ret;
    330 
    331 	ap = agp_lookup(pa);
    332 	KASSERT(ap != NULL);
    333 
    334 	aprint_naive(": AGP controller\n");
    335 
    336 	sc->as_dev = self;
    337 	sc->as_dmat = pa->pa_dmat;
    338 	sc->as_pc = pa->pa_pc;
    339 	sc->as_tag = pa->pa_tag;
    340 	sc->as_id = pa->pa_id;
    341 
    342 	/*
    343 	 * Work out an upper bound for agp memory allocation. This
    344 	 * uses a heuristic table from the Linux driver.
    345 	 */
    346 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
    347 	for (i = 0; i < agp_max_size; i++) {
    348 		if (memsize <= agp_max[i][0])
    349 			break;
    350 	}
    351 	if (i == agp_max_size)
    352 		i = agp_max_size - 1;
    353 	sc->as_maxmem = agp_max[i][1] << 20U;
    354 
    355 	/*
    356 	 * The mutex is used to prevent re-entry to
    357 	 * agp_generic_bind_memory() since that function can sleep.
    358 	 */
    359 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    360 
    361 	TAILQ_INIT(&sc->as_memory);
    362 
    363 	ret = (*ap->ap_attach)(parent, self, pa);
    364 	if (ret == 0)
    365 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    366 		    (unsigned long)sc->as_apaddr,
    367 		    (unsigned long)AGP_GET_APERTURE(sc));
    368 	else
    369 		sc->as_chipc = NULL;
    370 
    371 	if (!device_pmf_is_registered(self)) {
    372 		if (!pmf_device_register(self, NULL, agp_resume))
    373 			aprint_error_dev(self, "couldn't establish power "
    374 			    "handler\n");
    375 	}
    376 }
    377 
    378 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
    379     agpmatch, agpattach, NULL, NULL);
    380 
    381 int
    382 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    383 {
    384 	/*
    385 	 * Find the aperture. Don't map it (yet), this would
    386 	 * eat KVA.
    387 	 */
    388 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    389 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    390 	    &sc->as_apflags) != 0)
    391 		return ENXIO;
    392 
    393 	sc->as_apt = pa->pa_memt;
    394 
    395 	return 0;
    396 }
    397 
    398 struct agp_gatt *
    399 agp_alloc_gatt(struct agp_softc *sc)
    400 {
    401 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    402 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    403 	struct agp_gatt *gatt;
    404 	void *virtual;
    405 	int dummyseg;
    406 
    407 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    408 	if (!gatt)
    409 		return NULL;
    410 	gatt->ag_entries = entries;
    411 
    412 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    413 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    414 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
    415 		free(gatt, M_AGP);
    416 		return NULL;
    417 	}
    418 	gatt->ag_virtual = (uint32_t *)virtual;
    419 
    420 	gatt->ag_size = entries * sizeof(u_int32_t);
    421 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    422 	agp_flush_cache();
    423 
    424 	return gatt;
    425 }
    426 
    427 void
    428 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    429 {
    430 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    431 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    432 	free(gatt, M_AGP);
    433 }
    434 
    435 
    436 int
    437 agp_generic_detach(struct agp_softc *sc)
    438 {
    439 	mutex_destroy(&sc->as_mtx);
    440 	agp_flush_cache();
    441 	return 0;
    442 }
    443 
    444 static int
    445 agpdev_match(struct pci_attach_args *pa)
    446 {
    447 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    448 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    449 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    450 		    NULL, NULL))
    451 		return 1;
    452 
    453 	return 0;
    454 }
    455 
    456 int
    457 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    458 {
    459 	struct pci_attach_args pa;
    460 	pcireg_t tstatus, mstatus;
    461 	pcireg_t command;
    462 	int rq, sba, fw, rate, capoff;
    463 
    464 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    465 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    466 	     &capoff, NULL) == 0) {
    467 		aprint_error_dev(sc->as_dev, "can't find display\n");
    468 		return ENXIO;
    469 	}
    470 
    471 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    472 	    sc->as_capoff + AGP_STATUS);
    473 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    474 	    capoff + AGP_STATUS);
    475 
    476 	/* Set RQ to the min of mode, tstatus and mstatus */
    477 	rq = AGP_MODE_GET_RQ(mode);
    478 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    479 		rq = AGP_MODE_GET_RQ(tstatus);
    480 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    481 		rq = AGP_MODE_GET_RQ(mstatus);
    482 
    483 	/* Set SBA if all three can deal with SBA */
    484 	sba = (AGP_MODE_GET_SBA(tstatus)
    485 	       & AGP_MODE_GET_SBA(mstatus)
    486 	       & AGP_MODE_GET_SBA(mode));
    487 
    488 	/* Similar for FW */
    489 	fw = (AGP_MODE_GET_FW(tstatus)
    490 	       & AGP_MODE_GET_FW(mstatus)
    491 	       & AGP_MODE_GET_FW(mode));
    492 
    493 	/* Figure out the max rate */
    494 	rate = (AGP_MODE_GET_RATE(tstatus)
    495 		& AGP_MODE_GET_RATE(mstatus)
    496 		& AGP_MODE_GET_RATE(mode));
    497 	if (rate & AGP_MODE_RATE_4x)
    498 		rate = AGP_MODE_RATE_4x;
    499 	else if (rate & AGP_MODE_RATE_2x)
    500 		rate = AGP_MODE_RATE_2x;
    501 	else
    502 		rate = AGP_MODE_RATE_1x;
    503 
    504 	/* Construct the new mode word and tell the hardware */
    505 	command = AGP_MODE_SET_RQ(0, rq);
    506 	command = AGP_MODE_SET_SBA(command, sba);
    507 	command = AGP_MODE_SET_FW(command, fw);
    508 	command = AGP_MODE_SET_RATE(command, rate);
    509 	command = AGP_MODE_SET_AGP(command, 1);
    510 	pci_conf_write(sc->as_pc, sc->as_tag,
    511 	    sc->as_capoff + AGP_COMMAND, command);
    512 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
    513 
    514 	return 0;
    515 }
    516 
    517 struct agp_memory *
    518 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    519 {
    520 	struct agp_memory *mem;
    521 
    522 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    523 		return 0;
    524 
    525 	if (sc->as_allocated + size > sc->as_maxmem)
    526 		return 0;
    527 
    528 	if (type != 0) {
    529 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    530 		       type);
    531 		return 0;
    532 	}
    533 
    534 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    535 	if (mem == NULL)
    536 		return NULL;
    537 
    538 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    539 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    540 		free(mem, M_AGP);
    541 		return NULL;
    542 	}
    543 
    544 	mem->am_id = sc->as_nextid++;
    545 	mem->am_size = size;
    546 	mem->am_type = 0;
    547 	mem->am_physical = 0;
    548 	mem->am_offset = 0;
    549 	mem->am_is_bound = 0;
    550 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    551 	sc->as_allocated += size;
    552 
    553 	return mem;
    554 }
    555 
    556 int
    557 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    558 {
    559 	if (mem->am_is_bound)
    560 		return EBUSY;
    561 
    562 	sc->as_allocated -= mem->am_size;
    563 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    564 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    565 	free(mem, M_AGP);
    566 	return 0;
    567 }
    568 
    569 int
    570 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    571 			off_t offset)
    572 {
    573 	off_t i, k;
    574 	bus_size_t done, j;
    575 	int error;
    576 	bus_dma_segment_t *segs, *seg;
    577 	bus_addr_t pa;
    578 	int contigpages, nseg;
    579 
    580 	mutex_enter(&sc->as_mtx);
    581 
    582 	if (mem->am_is_bound) {
    583 		aprint_error_dev(sc->as_dev, "memory already bound\n");
    584 		mutex_exit(&sc->as_mtx);
    585 		return EINVAL;
    586 	}
    587 
    588 	if (offset < 0
    589 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    590 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    591 		aprint_error_dev(sc->as_dev,
    592 			      "binding memory at bad offset %#lx\n",
    593 			      (unsigned long) offset);
    594 		mutex_exit(&sc->as_mtx);
    595 		return EINVAL;
    596 	}
    597 
    598 	/*
    599 	 * XXXfvdl
    600 	 * The memory here needs to be directly accessable from the
    601 	 * AGP video card, so it should be allocated using bus_dma.
    602 	 * However, it need not be contiguous, since individual pages
    603 	 * are translated using the GATT.
    604 	 *
    605 	 * Using a large chunk of contiguous memory may get in the way
    606 	 * of other subsystems that may need one, so we try to be friendly
    607 	 * and ask for allocation in chunks of a minimum of 8 pages
    608 	 * of contiguous memory on average, falling back to 4, 2 and 1
    609 	 * if really needed. Larger chunks are preferred, since allocating
    610 	 * a bus_dma_segment per page would be overkill.
    611 	 */
    612 
    613 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    614 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    615 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    616 		if (segs == NULL) {
    617 			mutex_exit(&sc->as_mtx);
    618 			return ENOMEM;
    619 		}
    620 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    621 				     segs, nseg, &mem->am_nseg,
    622 				     contigpages > 1 ?
    623 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    624 			free(segs, M_AGP);
    625 			continue;
    626 		}
    627 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    628 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    629 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    630 			free(segs, M_AGP);
    631 			continue;
    632 		}
    633 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    634 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    635 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    636 			    mem->am_size);
    637 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    638 			free(segs, M_AGP);
    639 			continue;
    640 		}
    641 		mem->am_dmaseg = segs;
    642 		break;
    643 	}
    644 
    645 	if (contigpages == 0) {
    646 		mutex_exit(&sc->as_mtx);
    647 		return ENOMEM;
    648 	}
    649 
    650 
    651 	/*
    652 	 * Bind the individual pages and flush the chipset's
    653 	 * TLB.
    654 	 */
    655 	done = 0;
    656 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    657 		seg = &mem->am_dmamap->dm_segs[i];
    658 		/*
    659 		 * Install entries in the GATT, making sure that if
    660 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    661 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    662 		 * entries.
    663 		 */
    664 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    665 		     j += AGP_PAGE_SIZE) {
    666 			pa = seg->ds_addr + j;
    667 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    668 				(unsigned long)(offset + done + j),
    669 				(unsigned long)pa));
    670 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    671 			if (error) {
    672 				/*
    673 				 * Bail out. Reverse all the mappings
    674 				 * and unwire the pages.
    675 				 */
    676 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    677 					AGP_UNBIND_PAGE(sc, offset + k);
    678 
    679 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    680 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    681 						 mem->am_size);
    682 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    683 						mem->am_nseg);
    684 				free(mem->am_dmaseg, M_AGP);
    685 				mutex_exit(&sc->as_mtx);
    686 				return error;
    687 			}
    688 		}
    689 		done += seg->ds_len;
    690 	}
    691 
    692 	/*
    693 	 * Flush the CPU cache since we are providing a new mapping
    694 	 * for these pages.
    695 	 */
    696 	agp_flush_cache();
    697 
    698 	/*
    699 	 * Make sure the chipset gets the new mappings.
    700 	 */
    701 	AGP_FLUSH_TLB(sc);
    702 
    703 	mem->am_offset = offset;
    704 	mem->am_is_bound = 1;
    705 
    706 	mutex_exit(&sc->as_mtx);
    707 
    708 	return 0;
    709 }
    710 
    711 int
    712 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    713 {
    714 	int i;
    715 
    716 	mutex_enter(&sc->as_mtx);
    717 
    718 	if (!mem->am_is_bound) {
    719 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
    720 		mutex_exit(&sc->as_mtx);
    721 		return EINVAL;
    722 	}
    723 
    724 
    725 	/*
    726 	 * Unbind the individual pages and flush the chipset's
    727 	 * TLB. Unwire the pages so they can be swapped.
    728 	 */
    729 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    730 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    731 
    732 	agp_flush_cache();
    733 	AGP_FLUSH_TLB(sc);
    734 
    735 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    736 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    737 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    738 
    739 	free(mem->am_dmaseg, M_AGP);
    740 
    741 	mem->am_offset = 0;
    742 	mem->am_is_bound = 0;
    743 
    744 	mutex_exit(&sc->as_mtx);
    745 
    746 	return 0;
    747 }
    748 
    749 /* Helper functions for implementing user/kernel api */
    750 
    751 static int
    752 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    753 {
    754 	if (sc->as_state != AGP_ACQUIRE_FREE)
    755 		return EBUSY;
    756 	sc->as_state = state;
    757 
    758 	return 0;
    759 }
    760 
    761 static int
    762 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    763 {
    764 
    765 	if (sc->as_state == AGP_ACQUIRE_FREE)
    766 		return 0;
    767 
    768 	if (sc->as_state != state)
    769 		return EBUSY;
    770 
    771 	sc->as_state = AGP_ACQUIRE_FREE;
    772 	return 0;
    773 }
    774 
    775 static struct agp_memory *
    776 agp_find_memory(struct agp_softc *sc, int id)
    777 {
    778 	struct agp_memory *mem;
    779 
    780 	AGP_DPF(("searching for memory block %d\n", id));
    781 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    782 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    783 		if (mem->am_id == id)
    784 			return mem;
    785 	}
    786 	return 0;
    787 }
    788 
    789 /* Implementation of the userland ioctl api */
    790 
    791 static int
    792 agp_info_user(struct agp_softc *sc, agp_info *info)
    793 {
    794 	memset(info, 0, sizeof *info);
    795 	info->bridge_id = sc->as_id;
    796 	if (sc->as_capoff != 0)
    797 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    798 					       sc->as_capoff + AGP_STATUS);
    799 	else
    800 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    801 	info->aper_base = sc->as_apaddr;
    802 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    803 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    804 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    805 
    806 	return 0;
    807 }
    808 
    809 static int
    810 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    811 {
    812 	return AGP_ENABLE(sc, setup->agp_mode);
    813 }
    814 
    815 static int
    816 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    817 {
    818 	struct agp_memory *mem;
    819 
    820 	mem = AGP_ALLOC_MEMORY(sc,
    821 			       alloc->type,
    822 			       alloc->pg_count << AGP_PAGE_SHIFT);
    823 	if (mem) {
    824 		alloc->key = mem->am_id;
    825 		alloc->physical = mem->am_physical;
    826 		return 0;
    827 	} else {
    828 		return ENOMEM;
    829 	}
    830 }
    831 
    832 static int
    833 agp_deallocate_user(struct agp_softc *sc, int id)
    834 {
    835 	struct agp_memory *mem = agp_find_memory(sc, id);
    836 
    837 	if (mem) {
    838 		AGP_FREE_MEMORY(sc, mem);
    839 		return 0;
    840 	} else {
    841 		return ENOENT;
    842 	}
    843 }
    844 
    845 static int
    846 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    847 {
    848 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    849 
    850 	if (!mem)
    851 		return ENOENT;
    852 
    853 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    854 }
    855 
    856 static int
    857 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    858 {
    859 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    860 
    861 	if (!mem)
    862 		return ENOENT;
    863 
    864 	return AGP_UNBIND_MEMORY(sc, mem);
    865 }
    866 
    867 static int
    868 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
    869 {
    870 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    871 
    872 	if (sc == NULL)
    873 		return ENXIO;
    874 
    875 	if (sc->as_chipc == NULL)
    876 		return ENXIO;
    877 
    878 	if (!sc->as_isopen)
    879 		sc->as_isopen = 1;
    880 	else
    881 		return EBUSY;
    882 
    883 	return 0;
    884 }
    885 
    886 static int
    887 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
    888 {
    889 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    890 	struct agp_memory *mem;
    891 
    892 	if (sc == NULL)
    893 		return ENODEV;
    894 
    895 	/*
    896 	 * Clear the GATT and force release on last close
    897 	 */
    898 	if (sc->as_state == AGP_ACQUIRE_USER) {
    899 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    900 			if (mem->am_is_bound) {
    901 				printf("agpclose: mem %d is bound\n",
    902 				       mem->am_id);
    903 				AGP_UNBIND_MEMORY(sc, mem);
    904 			}
    905 			/*
    906 			 * XXX it is not documented, but if the protocol allows
    907 			 * allocate->acquire->bind, it would be possible that
    908 			 * memory ranges are allocated by the kernel here,
    909 			 * which we shouldn't free. We'd have to keep track of
    910 			 * the memory range's owner.
    911 			 * The kernel API is unsed yet, so we get away with
    912 			 * freeing all.
    913 			 */
    914 			AGP_FREE_MEMORY(sc, mem);
    915 		}
    916 		agp_release_helper(sc, AGP_ACQUIRE_USER);
    917 	}
    918 	sc->as_isopen = 0;
    919 
    920 	return 0;
    921 }
    922 
    923 static int
    924 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
    925 {
    926 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    927 
    928 	if (sc == NULL)
    929 		return ENODEV;
    930 
    931 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
    932 		return EPERM;
    933 
    934 	switch (cmd) {
    935 	case AGPIOC_INFO:
    936 		return agp_info_user(sc, (agp_info *) data);
    937 
    938 	case AGPIOC_ACQUIRE:
    939 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
    940 
    941 	case AGPIOC_RELEASE:
    942 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
    943 
    944 	case AGPIOC_SETUP:
    945 		return agp_setup_user(sc, (agp_setup *)data);
    946 
    947 	case AGPIOC_ALLOCATE:
    948 		return agp_allocate_user(sc, (agp_allocate *)data);
    949 
    950 	case AGPIOC_DEALLOCATE:
    951 		return agp_deallocate_user(sc, *(int *) data);
    952 
    953 	case AGPIOC_BIND:
    954 		return agp_bind_user(sc, (agp_bind *)data);
    955 
    956 	case AGPIOC_UNBIND:
    957 		return agp_unbind_user(sc, (agp_unbind *)data);
    958 
    959 	}
    960 
    961 	return EINVAL;
    962 }
    963 
    964 static paddr_t
    965 agpmmap(dev_t dev, off_t offset, int prot)
    966 {
    967 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    968 
    969 	if (sc == NULL)
    970 		return ENODEV;
    971 
    972 	if (offset > AGP_GET_APERTURE(sc))
    973 		return -1;
    974 
    975 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
    976 	    BUS_SPACE_MAP_LINEAR));
    977 }
    978 
    979 const struct cdevsw agp_cdevsw = {
    980 	agpopen, agpclose, noread, nowrite, agpioctl,
    981 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
    982 };
    983 
    984 /* Implementation of the kernel api */
    985 
    986 void *
    987 agp_find_device(int unit)
    988 {
    989 	return device_lookup_private(&agp_cd, unit);
    990 }
    991 
    992 enum agp_acquire_state
    993 agp_state(void *devcookie)
    994 {
    995 	struct agp_softc *sc = devcookie;
    996 
    997 	return sc->as_state;
    998 }
    999 
   1000 void
   1001 agp_get_info(void *devcookie, struct agp_info *info)
   1002 {
   1003 	struct agp_softc *sc = devcookie;
   1004 
   1005 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
   1006 	    sc->as_capoff + AGP_STATUS);
   1007 	info->ai_aperture_base = sc->as_apaddr;
   1008 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
   1009 	info->ai_memory_allowed = sc->as_maxmem;
   1010 	info->ai_memory_used = sc->as_allocated;
   1011 }
   1012 
   1013 int
   1014 agp_acquire(void *dev)
   1015 {
   1016 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
   1017 }
   1018 
   1019 int
   1020 agp_release(void *dev)
   1021 {
   1022 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
   1023 }
   1024 
   1025 int
   1026 agp_enable(void *dev, u_int32_t mode)
   1027 {
   1028 	struct agp_softc *sc = dev;
   1029 
   1030 	return AGP_ENABLE(sc, mode);
   1031 }
   1032 
   1033 void *
   1034 agp_alloc_memory(void *dev, int type, vsize_t bytes)
   1035 {
   1036 	struct agp_softc *sc = dev;
   1037 
   1038 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
   1039 }
   1040 
   1041 void
   1042 agp_free_memory(void *dev, void *handle)
   1043 {
   1044 	struct agp_softc *sc = dev;
   1045 	struct agp_memory *mem = handle;
   1046 
   1047 	AGP_FREE_MEMORY(sc, mem);
   1048 }
   1049 
   1050 int
   1051 agp_bind_memory(void *dev, void *handle, off_t offset)
   1052 {
   1053 	struct agp_softc *sc = dev;
   1054 	struct agp_memory *mem = handle;
   1055 
   1056 	return AGP_BIND_MEMORY(sc, mem, offset);
   1057 }
   1058 
   1059 int
   1060 agp_unbind_memory(void *dev, void *handle)
   1061 {
   1062 	struct agp_softc *sc = dev;
   1063 	struct agp_memory *mem = handle;
   1064 
   1065 	return AGP_UNBIND_MEMORY(sc, mem);
   1066 }
   1067 
   1068 void
   1069 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
   1070 {
   1071 	struct agp_memory *mem = handle;
   1072 
   1073 	mi->ami_size = mem->am_size;
   1074 	mi->ami_physical = mem->am_physical;
   1075 	mi->ami_offset = mem->am_offset;
   1076 	mi->ami_is_bound = mem->am_is_bound;
   1077 }
   1078 
   1079 int
   1080 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1081 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1082 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1083 
   1084 {
   1085 	int error, level = 0;
   1086 
   1087 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1088 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1089 		goto out;
   1090 	level++;
   1091 
   1092 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1093 			BUS_DMA_NOWAIT | flags)) != 0)
   1094 		goto out;
   1095 	level++;
   1096 
   1097 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1098 			BUS_DMA_NOWAIT, mapp)) != 0)
   1099 		goto out;
   1100 	level++;
   1101 
   1102 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1103 			BUS_DMA_NOWAIT)) != 0)
   1104 		goto out;
   1105 
   1106 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1107 
   1108 	return 0;
   1109 out:
   1110 	switch (level) {
   1111 	case 3:
   1112 		bus_dmamap_destroy(tag, *mapp);
   1113 		/* FALLTHROUGH */
   1114 	case 2:
   1115 		bus_dmamem_unmap(tag, *vaddr, size);
   1116 		/* FALLTHROUGH */
   1117 	case 1:
   1118 		bus_dmamem_free(tag, seg, *rseg);
   1119 		break;
   1120 	default:
   1121 		break;
   1122 	}
   1123 
   1124 	return error;
   1125 }
   1126 
   1127 void
   1128 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1129 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1130 {
   1131 	bus_dmamap_unload(tag, map);
   1132 	bus_dmamap_destroy(tag, map);
   1133 	bus_dmamem_unmap(tag, vaddr, size);
   1134 	bus_dmamem_free(tag, seg, nseg);
   1135 }
   1136 
   1137 static bool
   1138 agp_resume(device_t dv, const pmf_qual_t *qual)
   1139 {
   1140 	agp_flush_cache();
   1141 
   1142 	return true;
   1143 }
   1144