agp.c revision 1.69 1 /* $NetBSD: agp.c,v 1.69 2010/06/16 03:35:01 riz Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.69 2010/06/16 03:35:01 riz Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <uvm/uvm_extern.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89
90 #include <sys/bus.h>
91
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96
97 extern struct cfdriver agp_cd;
98
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t, const pmf_qual_t *);
107
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115
116 const struct agp_product {
117 uint32_t ap_vendor;
118 uint32_t ap_product;
119 int (*ap_match)(const struct pci_attach_args *);
120 int (*ap_attach)(device_t, device_t, void *);
121 } agp_products[] = {
122 #if NAGP_AMD64 > 0
123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
124 agp_amd64_match, agp_amd64_attach },
125 #endif
126
127 #if NAGP_ALI > 0
128 { PCI_VENDOR_ALI, -1,
129 NULL, agp_ali_attach },
130 #endif
131
132 #if NAGP_AMD64 > 0
133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
134 agp_amd64_match, agp_amd64_attach },
135 #endif
136
137 #if NAGP_AMD > 0
138 { PCI_VENDOR_AMD, -1,
139 agp_amd_match, agp_amd_attach },
140 #endif
141
142 #if NAGP_I810 > 0
143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
144 NULL, agp_i810_attach },
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
186 NULL, agp_i810_attach },
187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
188 NULL, agp_i810_attach },
189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB,
190 NULL, agp_i810_attach },
191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB,
192 NULL, agp_i810_attach },
193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB,
194 NULL, agp_i810_attach },
195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB,
196 NULL, agp_i810_attach },
197 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB,
198 NULL, agp_i810_attach },
199 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB,
200 NULL, agp_i810_attach },
201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB,
202 NULL, agp_i810_attach },
203 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
204 NULL, agp_i810_attach },
205 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
206 NULL, agp_i810_attach },
207 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
208 NULL, agp_i810_attach },
209 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
210 NULL, agp_i810_attach },
211 #endif
212
213 #if NAGP_INTEL > 0
214 { PCI_VENDOR_INTEL, -1,
215 NULL, agp_intel_attach },
216 #endif
217
218 #if NAGP_AMD64 > 0
219 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
220 agp_amd64_match, agp_amd64_attach },
221 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
222 agp_amd64_match, agp_amd64_attach },
223 #endif
224
225 #if NAGP_AMD64 > 0
226 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
227 agp_amd64_match, agp_amd64_attach },
228 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
229 agp_amd64_match, agp_amd64_attach },
230 #endif
231
232 #if NAGP_SIS > 0
233 { PCI_VENDOR_SIS, -1,
234 NULL, agp_sis_attach },
235 #endif
236
237 #if NAGP_AMD64 > 0
238 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
239 agp_amd64_match, agp_amd64_attach },
240 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
241 agp_amd64_match, agp_amd64_attach },
242 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
243 agp_amd64_match, agp_amd64_attach },
244 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
245 agp_amd64_match, agp_amd64_attach },
246 #endif
247
248 #if NAGP_VIA > 0
249 { PCI_VENDOR_VIATECH, -1,
250 NULL, agp_via_attach },
251 #endif
252
253 { 0, 0,
254 NULL, NULL },
255 };
256
257 static const struct agp_product *
258 agp_lookup(const struct pci_attach_args *pa)
259 {
260 const struct agp_product *ap;
261
262 /* First find the vendor. */
263 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
264 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
265 break;
266 }
267
268 if (ap->ap_attach == NULL)
269 return (NULL);
270
271 /* Now find the product within the vendor's domain. */
272 for (; ap->ap_attach != NULL; ap++) {
273 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
274 /* Ran out of this vendor's section of the table. */
275 return (NULL);
276 }
277 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
278 /* Exact match. */
279 break;
280 }
281 if (ap->ap_product == (uint32_t) -1) {
282 /* Wildcard match. */
283 break;
284 }
285 }
286
287 if (ap->ap_attach == NULL)
288 return (NULL);
289
290 /* Now let the product-specific driver filter the match. */
291 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
292 return (NULL);
293
294 return (ap);
295 }
296
297 static int
298 agpmatch(device_t parent, cfdata_t match, void *aux)
299 {
300 struct agpbus_attach_args *apa = aux;
301 struct pci_attach_args *pa = &apa->apa_pci_args;
302
303 if (agp_lookup(pa) == NULL)
304 return (0);
305
306 return (1);
307 }
308
309 static const int agp_max[][2] = {
310 {0, 0},
311 {32, 4},
312 {64, 28},
313 {128, 96},
314 {256, 204},
315 {512, 440},
316 {1024, 942},
317 {2048, 1920},
318 {4096, 3932}
319 };
320 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
321
322 static void
323 agpattach(device_t parent, device_t self, void *aux)
324 {
325 struct agpbus_attach_args *apa = aux;
326 struct pci_attach_args *pa = &apa->apa_pci_args;
327 struct agp_softc *sc = device_private(self);
328 const struct agp_product *ap;
329 int memsize, i, ret;
330
331 ap = agp_lookup(pa);
332 KASSERT(ap != NULL);
333
334 aprint_naive(": AGP controller\n");
335
336 sc->as_dev = self;
337 sc->as_dmat = pa->pa_dmat;
338 sc->as_pc = pa->pa_pc;
339 sc->as_tag = pa->pa_tag;
340 sc->as_id = pa->pa_id;
341
342 /*
343 * Work out an upper bound for agp memory allocation. This
344 * uses a heuristic table from the Linux driver.
345 */
346 memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
347 for (i = 0; i < agp_max_size; i++) {
348 if (memsize <= agp_max[i][0])
349 break;
350 }
351 if (i == agp_max_size)
352 i = agp_max_size - 1;
353 sc->as_maxmem = agp_max[i][1] << 20U;
354
355 /*
356 * The mutex is used to prevent re-entry to
357 * agp_generic_bind_memory() since that function can sleep.
358 */
359 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
360
361 TAILQ_INIT(&sc->as_memory);
362
363 ret = (*ap->ap_attach)(parent, self, pa);
364 if (ret == 0)
365 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
366 (unsigned long)sc->as_apaddr,
367 (unsigned long)AGP_GET_APERTURE(sc));
368 else
369 sc->as_chipc = NULL;
370
371 if (!device_pmf_is_registered(self)) {
372 if (!pmf_device_register(self, NULL, agp_resume))
373 aprint_error_dev(self, "couldn't establish power "
374 "handler\n");
375 }
376 }
377
378 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
379 agpmatch, agpattach, NULL, NULL);
380
381 int
382 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
383 {
384 /*
385 * Find the aperture. Don't map it (yet), this would
386 * eat KVA.
387 */
388 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
389 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
390 &sc->as_apflags) != 0)
391 return ENXIO;
392
393 sc->as_apt = pa->pa_memt;
394
395 return 0;
396 }
397
398 struct agp_gatt *
399 agp_alloc_gatt(struct agp_softc *sc)
400 {
401 u_int32_t apsize = AGP_GET_APERTURE(sc);
402 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
403 struct agp_gatt *gatt;
404 void *virtual;
405 int dummyseg;
406
407 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
408 if (!gatt)
409 return NULL;
410 gatt->ag_entries = entries;
411
412 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
413 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
414 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
415 free(gatt, M_AGP);
416 return NULL;
417 }
418 gatt->ag_virtual = (uint32_t *)virtual;
419
420 gatt->ag_size = entries * sizeof(u_int32_t);
421 memset(gatt->ag_virtual, 0, gatt->ag_size);
422 agp_flush_cache();
423
424 return gatt;
425 }
426
427 void
428 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
429 {
430 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
431 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
432 free(gatt, M_AGP);
433 }
434
435
436 int
437 agp_generic_detach(struct agp_softc *sc)
438 {
439 mutex_destroy(&sc->as_mtx);
440 agp_flush_cache();
441 return 0;
442 }
443
444 static int
445 agpdev_match(struct pci_attach_args *pa)
446 {
447 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
448 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
449 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
450 NULL, NULL))
451 return 1;
452
453 return 0;
454 }
455
456 int
457 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
458 {
459 struct pci_attach_args pa;
460 pcireg_t tstatus, mstatus;
461 pcireg_t command;
462 int rq, sba, fw, rate, capoff;
463
464 if (pci_find_device(&pa, agpdev_match) == 0 ||
465 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
466 &capoff, NULL) == 0) {
467 aprint_error_dev(sc->as_dev, "can't find display\n");
468 return ENXIO;
469 }
470
471 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
472 sc->as_capoff + AGP_STATUS);
473 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
474 capoff + AGP_STATUS);
475
476 /* Set RQ to the min of mode, tstatus and mstatus */
477 rq = AGP_MODE_GET_RQ(mode);
478 if (AGP_MODE_GET_RQ(tstatus) < rq)
479 rq = AGP_MODE_GET_RQ(tstatus);
480 if (AGP_MODE_GET_RQ(mstatus) < rq)
481 rq = AGP_MODE_GET_RQ(mstatus);
482
483 /* Set SBA if all three can deal with SBA */
484 sba = (AGP_MODE_GET_SBA(tstatus)
485 & AGP_MODE_GET_SBA(mstatus)
486 & AGP_MODE_GET_SBA(mode));
487
488 /* Similar for FW */
489 fw = (AGP_MODE_GET_FW(tstatus)
490 & AGP_MODE_GET_FW(mstatus)
491 & AGP_MODE_GET_FW(mode));
492
493 /* Figure out the max rate */
494 rate = (AGP_MODE_GET_RATE(tstatus)
495 & AGP_MODE_GET_RATE(mstatus)
496 & AGP_MODE_GET_RATE(mode));
497 if (rate & AGP_MODE_RATE_4x)
498 rate = AGP_MODE_RATE_4x;
499 else if (rate & AGP_MODE_RATE_2x)
500 rate = AGP_MODE_RATE_2x;
501 else
502 rate = AGP_MODE_RATE_1x;
503
504 /* Construct the new mode word and tell the hardware */
505 command = AGP_MODE_SET_RQ(0, rq);
506 command = AGP_MODE_SET_SBA(command, sba);
507 command = AGP_MODE_SET_FW(command, fw);
508 command = AGP_MODE_SET_RATE(command, rate);
509 command = AGP_MODE_SET_AGP(command, 1);
510 pci_conf_write(sc->as_pc, sc->as_tag,
511 sc->as_capoff + AGP_COMMAND, command);
512 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
513
514 return 0;
515 }
516
517 struct agp_memory *
518 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
519 {
520 struct agp_memory *mem;
521
522 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
523 return 0;
524
525 if (sc->as_allocated + size > sc->as_maxmem)
526 return 0;
527
528 if (type != 0) {
529 printf("agp_generic_alloc_memory: unsupported type %d\n",
530 type);
531 return 0;
532 }
533
534 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
535 if (mem == NULL)
536 return NULL;
537
538 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
539 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
540 free(mem, M_AGP);
541 return NULL;
542 }
543
544 mem->am_id = sc->as_nextid++;
545 mem->am_size = size;
546 mem->am_type = 0;
547 mem->am_physical = 0;
548 mem->am_offset = 0;
549 mem->am_is_bound = 0;
550 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
551 sc->as_allocated += size;
552
553 return mem;
554 }
555
556 int
557 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
558 {
559 if (mem->am_is_bound)
560 return EBUSY;
561
562 sc->as_allocated -= mem->am_size;
563 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
564 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
565 free(mem, M_AGP);
566 return 0;
567 }
568
569 int
570 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
571 off_t offset)
572 {
573 off_t i, k;
574 bus_size_t done, j;
575 int error;
576 bus_dma_segment_t *segs, *seg;
577 bus_addr_t pa;
578 int contigpages, nseg;
579
580 mutex_enter(&sc->as_mtx);
581
582 if (mem->am_is_bound) {
583 aprint_error_dev(sc->as_dev, "memory already bound\n");
584 mutex_exit(&sc->as_mtx);
585 return EINVAL;
586 }
587
588 if (offset < 0
589 || (offset & (AGP_PAGE_SIZE - 1)) != 0
590 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
591 aprint_error_dev(sc->as_dev,
592 "binding memory at bad offset %#lx\n",
593 (unsigned long) offset);
594 mutex_exit(&sc->as_mtx);
595 return EINVAL;
596 }
597
598 /*
599 * XXXfvdl
600 * The memory here needs to be directly accessable from the
601 * AGP video card, so it should be allocated using bus_dma.
602 * However, it need not be contiguous, since individual pages
603 * are translated using the GATT.
604 *
605 * Using a large chunk of contiguous memory may get in the way
606 * of other subsystems that may need one, so we try to be friendly
607 * and ask for allocation in chunks of a minimum of 8 pages
608 * of contiguous memory on average, falling back to 4, 2 and 1
609 * if really needed. Larger chunks are preferred, since allocating
610 * a bus_dma_segment per page would be overkill.
611 */
612
613 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
614 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
615 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
616 if (segs == NULL) {
617 mutex_exit(&sc->as_mtx);
618 return ENOMEM;
619 }
620 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
621 segs, nseg, &mem->am_nseg,
622 contigpages > 1 ?
623 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
624 free(segs, M_AGP);
625 continue;
626 }
627 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
628 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
629 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
630 free(segs, M_AGP);
631 continue;
632 }
633 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
634 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
635 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
636 mem->am_size);
637 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
638 free(segs, M_AGP);
639 continue;
640 }
641 mem->am_dmaseg = segs;
642 break;
643 }
644
645 if (contigpages == 0) {
646 mutex_exit(&sc->as_mtx);
647 return ENOMEM;
648 }
649
650
651 /*
652 * Bind the individual pages and flush the chipset's
653 * TLB.
654 */
655 done = 0;
656 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
657 seg = &mem->am_dmamap->dm_segs[i];
658 /*
659 * Install entries in the GATT, making sure that if
660 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
661 * aligned to PAGE_SIZE, we don't modify too many GATT
662 * entries.
663 */
664 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
665 j += AGP_PAGE_SIZE) {
666 pa = seg->ds_addr + j;
667 AGP_DPF(("binding offset %#lx to pa %#lx\n",
668 (unsigned long)(offset + done + j),
669 (unsigned long)pa));
670 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
671 if (error) {
672 /*
673 * Bail out. Reverse all the mappings
674 * and unwire the pages.
675 */
676 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
677 AGP_UNBIND_PAGE(sc, offset + k);
678
679 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
680 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
681 mem->am_size);
682 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
683 mem->am_nseg);
684 free(mem->am_dmaseg, M_AGP);
685 mutex_exit(&sc->as_mtx);
686 return error;
687 }
688 }
689 done += seg->ds_len;
690 }
691
692 /*
693 * Flush the CPU cache since we are providing a new mapping
694 * for these pages.
695 */
696 agp_flush_cache();
697
698 /*
699 * Make sure the chipset gets the new mappings.
700 */
701 AGP_FLUSH_TLB(sc);
702
703 mem->am_offset = offset;
704 mem->am_is_bound = 1;
705
706 mutex_exit(&sc->as_mtx);
707
708 return 0;
709 }
710
711 int
712 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
713 {
714 int i;
715
716 mutex_enter(&sc->as_mtx);
717
718 if (!mem->am_is_bound) {
719 aprint_error_dev(sc->as_dev, "memory is not bound\n");
720 mutex_exit(&sc->as_mtx);
721 return EINVAL;
722 }
723
724
725 /*
726 * Unbind the individual pages and flush the chipset's
727 * TLB. Unwire the pages so they can be swapped.
728 */
729 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
730 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
731
732 agp_flush_cache();
733 AGP_FLUSH_TLB(sc);
734
735 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
736 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
737 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
738
739 free(mem->am_dmaseg, M_AGP);
740
741 mem->am_offset = 0;
742 mem->am_is_bound = 0;
743
744 mutex_exit(&sc->as_mtx);
745
746 return 0;
747 }
748
749 /* Helper functions for implementing user/kernel api */
750
751 static int
752 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
753 {
754 if (sc->as_state != AGP_ACQUIRE_FREE)
755 return EBUSY;
756 sc->as_state = state;
757
758 return 0;
759 }
760
761 static int
762 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
763 {
764
765 if (sc->as_state == AGP_ACQUIRE_FREE)
766 return 0;
767
768 if (sc->as_state != state)
769 return EBUSY;
770
771 sc->as_state = AGP_ACQUIRE_FREE;
772 return 0;
773 }
774
775 static struct agp_memory *
776 agp_find_memory(struct agp_softc *sc, int id)
777 {
778 struct agp_memory *mem;
779
780 AGP_DPF(("searching for memory block %d\n", id));
781 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
782 AGP_DPF(("considering memory block %d\n", mem->am_id));
783 if (mem->am_id == id)
784 return mem;
785 }
786 return 0;
787 }
788
789 /* Implementation of the userland ioctl api */
790
791 static int
792 agp_info_user(struct agp_softc *sc, agp_info *info)
793 {
794 memset(info, 0, sizeof *info);
795 info->bridge_id = sc->as_id;
796 if (sc->as_capoff != 0)
797 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
798 sc->as_capoff + AGP_STATUS);
799 else
800 info->agp_mode = 0; /* i810 doesn't have real AGP */
801 info->aper_base = sc->as_apaddr;
802 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
803 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
804 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
805
806 return 0;
807 }
808
809 static int
810 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
811 {
812 return AGP_ENABLE(sc, setup->agp_mode);
813 }
814
815 static int
816 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
817 {
818 struct agp_memory *mem;
819
820 mem = AGP_ALLOC_MEMORY(sc,
821 alloc->type,
822 alloc->pg_count << AGP_PAGE_SHIFT);
823 if (mem) {
824 alloc->key = mem->am_id;
825 alloc->physical = mem->am_physical;
826 return 0;
827 } else {
828 return ENOMEM;
829 }
830 }
831
832 static int
833 agp_deallocate_user(struct agp_softc *sc, int id)
834 {
835 struct agp_memory *mem = agp_find_memory(sc, id);
836
837 if (mem) {
838 AGP_FREE_MEMORY(sc, mem);
839 return 0;
840 } else {
841 return ENOENT;
842 }
843 }
844
845 static int
846 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
847 {
848 struct agp_memory *mem = agp_find_memory(sc, bind->key);
849
850 if (!mem)
851 return ENOENT;
852
853 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
854 }
855
856 static int
857 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
858 {
859 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
860
861 if (!mem)
862 return ENOENT;
863
864 return AGP_UNBIND_MEMORY(sc, mem);
865 }
866
867 static int
868 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
869 {
870 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
871
872 if (sc == NULL)
873 return ENXIO;
874
875 if (sc->as_chipc == NULL)
876 return ENXIO;
877
878 if (!sc->as_isopen)
879 sc->as_isopen = 1;
880 else
881 return EBUSY;
882
883 return 0;
884 }
885
886 static int
887 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
888 {
889 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
890 struct agp_memory *mem;
891
892 if (sc == NULL)
893 return ENODEV;
894
895 /*
896 * Clear the GATT and force release on last close
897 */
898 if (sc->as_state == AGP_ACQUIRE_USER) {
899 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
900 if (mem->am_is_bound) {
901 printf("agpclose: mem %d is bound\n",
902 mem->am_id);
903 AGP_UNBIND_MEMORY(sc, mem);
904 }
905 /*
906 * XXX it is not documented, but if the protocol allows
907 * allocate->acquire->bind, it would be possible that
908 * memory ranges are allocated by the kernel here,
909 * which we shouldn't free. We'd have to keep track of
910 * the memory range's owner.
911 * The kernel API is unsed yet, so we get away with
912 * freeing all.
913 */
914 AGP_FREE_MEMORY(sc, mem);
915 }
916 agp_release_helper(sc, AGP_ACQUIRE_USER);
917 }
918 sc->as_isopen = 0;
919
920 return 0;
921 }
922
923 static int
924 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
925 {
926 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
927
928 if (sc == NULL)
929 return ENODEV;
930
931 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
932 return EPERM;
933
934 switch (cmd) {
935 case AGPIOC_INFO:
936 return agp_info_user(sc, (agp_info *) data);
937
938 case AGPIOC_ACQUIRE:
939 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
940
941 case AGPIOC_RELEASE:
942 return agp_release_helper(sc, AGP_ACQUIRE_USER);
943
944 case AGPIOC_SETUP:
945 return agp_setup_user(sc, (agp_setup *)data);
946
947 case AGPIOC_ALLOCATE:
948 return agp_allocate_user(sc, (agp_allocate *)data);
949
950 case AGPIOC_DEALLOCATE:
951 return agp_deallocate_user(sc, *(int *) data);
952
953 case AGPIOC_BIND:
954 return agp_bind_user(sc, (agp_bind *)data);
955
956 case AGPIOC_UNBIND:
957 return agp_unbind_user(sc, (agp_unbind *)data);
958
959 }
960
961 return EINVAL;
962 }
963
964 static paddr_t
965 agpmmap(dev_t dev, off_t offset, int prot)
966 {
967 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
968
969 if (sc == NULL)
970 return ENODEV;
971
972 if (offset > AGP_GET_APERTURE(sc))
973 return -1;
974
975 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
976 BUS_SPACE_MAP_LINEAR));
977 }
978
979 const struct cdevsw agp_cdevsw = {
980 agpopen, agpclose, noread, nowrite, agpioctl,
981 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
982 };
983
984 /* Implementation of the kernel api */
985
986 void *
987 agp_find_device(int unit)
988 {
989 return device_lookup_private(&agp_cd, unit);
990 }
991
992 enum agp_acquire_state
993 agp_state(void *devcookie)
994 {
995 struct agp_softc *sc = devcookie;
996
997 return sc->as_state;
998 }
999
1000 void
1001 agp_get_info(void *devcookie, struct agp_info *info)
1002 {
1003 struct agp_softc *sc = devcookie;
1004
1005 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1006 sc->as_capoff + AGP_STATUS);
1007 info->ai_aperture_base = sc->as_apaddr;
1008 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
1009 info->ai_memory_allowed = sc->as_maxmem;
1010 info->ai_memory_used = sc->as_allocated;
1011 }
1012
1013 int
1014 agp_acquire(void *dev)
1015 {
1016 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1017 }
1018
1019 int
1020 agp_release(void *dev)
1021 {
1022 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1023 }
1024
1025 int
1026 agp_enable(void *dev, u_int32_t mode)
1027 {
1028 struct agp_softc *sc = dev;
1029
1030 return AGP_ENABLE(sc, mode);
1031 }
1032
1033 void *
1034 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1035 {
1036 struct agp_softc *sc = dev;
1037
1038 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1039 }
1040
1041 void
1042 agp_free_memory(void *dev, void *handle)
1043 {
1044 struct agp_softc *sc = dev;
1045 struct agp_memory *mem = handle;
1046
1047 AGP_FREE_MEMORY(sc, mem);
1048 }
1049
1050 int
1051 agp_bind_memory(void *dev, void *handle, off_t offset)
1052 {
1053 struct agp_softc *sc = dev;
1054 struct agp_memory *mem = handle;
1055
1056 return AGP_BIND_MEMORY(sc, mem, offset);
1057 }
1058
1059 int
1060 agp_unbind_memory(void *dev, void *handle)
1061 {
1062 struct agp_softc *sc = dev;
1063 struct agp_memory *mem = handle;
1064
1065 return AGP_UNBIND_MEMORY(sc, mem);
1066 }
1067
1068 void
1069 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1070 {
1071 struct agp_memory *mem = handle;
1072
1073 mi->ami_size = mem->am_size;
1074 mi->ami_physical = mem->am_physical;
1075 mi->ami_offset = mem->am_offset;
1076 mi->ami_is_bound = mem->am_is_bound;
1077 }
1078
1079 int
1080 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1081 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1082 bus_dma_segment_t *seg, int nseg, int *rseg)
1083
1084 {
1085 int error, level = 0;
1086
1087 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1088 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1089 goto out;
1090 level++;
1091
1092 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1093 BUS_DMA_NOWAIT | flags)) != 0)
1094 goto out;
1095 level++;
1096
1097 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1098 BUS_DMA_NOWAIT, mapp)) != 0)
1099 goto out;
1100 level++;
1101
1102 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1103 BUS_DMA_NOWAIT)) != 0)
1104 goto out;
1105
1106 *baddr = (*mapp)->dm_segs[0].ds_addr;
1107
1108 return 0;
1109 out:
1110 switch (level) {
1111 case 3:
1112 bus_dmamap_destroy(tag, *mapp);
1113 /* FALLTHROUGH */
1114 case 2:
1115 bus_dmamem_unmap(tag, *vaddr, size);
1116 /* FALLTHROUGH */
1117 case 1:
1118 bus_dmamem_free(tag, seg, *rseg);
1119 break;
1120 default:
1121 break;
1122 }
1123
1124 return error;
1125 }
1126
1127 void
1128 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1129 void *vaddr, bus_dma_segment_t *seg, int nseg)
1130 {
1131 bus_dmamap_unload(tag, map);
1132 bus_dmamap_destroy(tag, map);
1133 bus_dmamem_unmap(tag, vaddr, size);
1134 bus_dmamem_free(tag, seg, nseg);
1135 }
1136
1137 static bool
1138 agp_resume(device_t dv, const pmf_qual_t *qual)
1139 {
1140 agp_flush_cache();
1141
1142 return true;
1143 }
1144