agp.c revision 1.76 1 /* $NetBSD: agp.c,v 1.76 2010/11/13 13:52:04 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.76 2010/11/13 13:52:04 uebayasi Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/agpvar.h>
85 #include <dev/pci/agpreg.h>
86 #include <dev/pci/pcidevs.h>
87
88 #include <sys/bus.h>
89
90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91
92 /* Helper functions for implementing chipset mini drivers. */
93 /* XXXfvdl get rid of this one. */
94
95 extern struct cfdriver agp_cd;
96
97 static int agp_info_user(struct agp_softc *, agp_info *);
98 static int agp_setup_user(struct agp_softc *, agp_setup *);
99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 static int agp_deallocate_user(struct agp_softc *, int);
101 static int agp_bind_user(struct agp_softc *, agp_bind *);
102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 static int agpdev_match(struct pci_attach_args *);
104 static bool agp_resume(device_t, const pmf_qual_t *);
105
106 #include "agp_ali.h"
107 #include "agp_amd.h"
108 #include "agp_i810.h"
109 #include "agp_intel.h"
110 #include "agp_sis.h"
111 #include "agp_via.h"
112 #include "agp_amd64.h"
113
114 const struct agp_product {
115 uint32_t ap_vendor;
116 uint32_t ap_product;
117 int (*ap_match)(const struct pci_attach_args *);
118 int (*ap_attach)(device_t, device_t, void *);
119 } agp_products[] = {
120 #if NAGP_AMD64 > 0
121 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
122 agp_amd64_match, agp_amd64_attach },
123 #endif
124
125 #if NAGP_ALI > 0
126 { PCI_VENDOR_ALI, -1,
127 NULL, agp_ali_attach },
128 #endif
129
130 #if NAGP_AMD64 > 0
131 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
132 agp_amd64_match, agp_amd64_attach },
133 #endif
134
135 #if NAGP_AMD > 0
136 { PCI_VENDOR_AMD, -1,
137 agp_amd_match, agp_amd_attach },
138 #endif
139
140 #if NAGP_I810 > 0
141 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
142 NULL, agp_i810_attach },
143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
144 NULL, agp_i810_attach },
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
186 NULL, agp_i810_attach },
187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB,
188 NULL, agp_i810_attach },
189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB,
190 NULL, agp_i810_attach },
191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB,
192 NULL, agp_i810_attach },
193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB,
194 NULL, agp_i810_attach },
195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB,
196 NULL, agp_i810_attach },
197 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB,
198 NULL, agp_i810_attach },
199 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB,
200 NULL, agp_i810_attach },
201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
202 NULL, agp_i810_attach },
203 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
204 NULL, agp_i810_attach },
205 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
206 NULL, agp_i810_attach },
207 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
208 NULL, agp_i810_attach },
209 #endif
210
211 #if NAGP_INTEL > 0
212 { PCI_VENDOR_INTEL, -1,
213 NULL, agp_intel_attach },
214 #endif
215
216 #if NAGP_AMD64 > 0
217 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
218 agp_amd64_match, agp_amd64_attach },
219 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
220 agp_amd64_match, agp_amd64_attach },
221 #endif
222
223 #if NAGP_AMD64 > 0
224 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
225 agp_amd64_match, agp_amd64_attach },
226 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
227 agp_amd64_match, agp_amd64_attach },
228 #endif
229
230 #if NAGP_SIS > 0
231 { PCI_VENDOR_SIS, -1,
232 NULL, agp_sis_attach },
233 #endif
234
235 #if NAGP_AMD64 > 0
236 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
237 agp_amd64_match, agp_amd64_attach },
238 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
239 agp_amd64_match, agp_amd64_attach },
240 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
241 agp_amd64_match, agp_amd64_attach },
242 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
243 agp_amd64_match, agp_amd64_attach },
244 #endif
245
246 #if NAGP_VIA > 0
247 { PCI_VENDOR_VIATECH, -1,
248 NULL, agp_via_attach },
249 #endif
250
251 { 0, 0,
252 NULL, NULL },
253 };
254
255 static const struct agp_product *
256 agp_lookup(const struct pci_attach_args *pa)
257 {
258 const struct agp_product *ap;
259
260 /* First find the vendor. */
261 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
262 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
263 break;
264 }
265
266 if (ap->ap_attach == NULL)
267 return (NULL);
268
269 /* Now find the product within the vendor's domain. */
270 for (; ap->ap_attach != NULL; ap++) {
271 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
272 /* Ran out of this vendor's section of the table. */
273 return (NULL);
274 }
275 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
276 /* Exact match. */
277 break;
278 }
279 if (ap->ap_product == (uint32_t) -1) {
280 /* Wildcard match. */
281 break;
282 }
283 }
284
285 if (ap->ap_attach == NULL)
286 return (NULL);
287
288 /* Now let the product-specific driver filter the match. */
289 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
290 return (NULL);
291
292 return (ap);
293 }
294
295 static int
296 agpmatch(device_t parent, cfdata_t match, void *aux)
297 {
298 struct agpbus_attach_args *apa = aux;
299 struct pci_attach_args *pa = &apa->apa_pci_args;
300
301 if (agp_lookup(pa) == NULL)
302 return (0);
303
304 return (1);
305 }
306
307 static const int agp_max[][2] = {
308 {0, 0},
309 {32, 4},
310 {64, 28},
311 {128, 96},
312 {256, 204},
313 {512, 440},
314 {1024, 942},
315 {2048, 1920},
316 {4096, 3932}
317 };
318 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
319
320 static void
321 agpattach(device_t parent, device_t self, void *aux)
322 {
323 struct agpbus_attach_args *apa = aux;
324 struct pci_attach_args *pa = &apa->apa_pci_args;
325 struct agp_softc *sc = device_private(self);
326 const struct agp_product *ap;
327 int memsize, i, ret;
328
329 ap = agp_lookup(pa);
330 KASSERT(ap != NULL);
331
332 aprint_naive(": AGP controller\n");
333
334 sc->as_dev = self;
335 sc->as_dmat = pa->pa_dmat;
336 sc->as_pc = pa->pa_pc;
337 sc->as_tag = pa->pa_tag;
338 sc->as_id = pa->pa_id;
339
340 /*
341 * Work out an upper bound for agp memory allocation. This
342 * uses a heuristic table from the Linux driver.
343 */
344 memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
345 for (i = 0; i < agp_max_size; i++) {
346 if (memsize <= agp_max[i][0])
347 break;
348 }
349 if (i == agp_max_size)
350 i = agp_max_size - 1;
351 sc->as_maxmem = agp_max[i][1] << 20U;
352
353 /*
354 * The mutex is used to prevent re-entry to
355 * agp_generic_bind_memory() since that function can sleep.
356 */
357 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
358
359 TAILQ_INIT(&sc->as_memory);
360
361 ret = (*ap->ap_attach)(parent, self, pa);
362 if (ret == 0)
363 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
364 (unsigned long)sc->as_apaddr,
365 (unsigned long)AGP_GET_APERTURE(sc));
366 else
367 sc->as_chipc = NULL;
368
369 if (!device_pmf_is_registered(self)) {
370 if (!pmf_device_register(self, NULL, agp_resume))
371 aprint_error_dev(self, "couldn't establish power "
372 "handler\n");
373 }
374 }
375
376 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
377 agpmatch, agpattach, NULL, NULL);
378
379 int
380 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
381 {
382 /*
383 * Find the aperture. Don't map it (yet), this would
384 * eat KVA.
385 */
386 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
387 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
388 &sc->as_apflags) != 0)
389 return ENXIO;
390
391 sc->as_apt = pa->pa_memt;
392
393 return 0;
394 }
395
396 struct agp_gatt *
397 agp_alloc_gatt(struct agp_softc *sc)
398 {
399 u_int32_t apsize = AGP_GET_APERTURE(sc);
400 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
401 struct agp_gatt *gatt;
402 void *virtual;
403 int dummyseg;
404
405 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
406 if (!gatt)
407 return NULL;
408 gatt->ag_entries = entries;
409
410 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
411 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
412 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
413 free(gatt, M_AGP);
414 return NULL;
415 }
416 gatt->ag_virtual = (uint32_t *)virtual;
417
418 gatt->ag_size = entries * sizeof(u_int32_t);
419 memset(gatt->ag_virtual, 0, gatt->ag_size);
420 agp_flush_cache();
421
422 return gatt;
423 }
424
425 void
426 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
427 {
428 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
429 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
430 free(gatt, M_AGP);
431 }
432
433
434 int
435 agp_generic_detach(struct agp_softc *sc)
436 {
437 mutex_destroy(&sc->as_mtx);
438 agp_flush_cache();
439 return 0;
440 }
441
442 static int
443 agpdev_match(struct pci_attach_args *pa)
444 {
445 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
446 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
447 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
448 NULL, NULL))
449 return 1;
450
451 return 0;
452 }
453
454 int
455 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
456 {
457 struct pci_attach_args pa;
458 pcireg_t tstatus, mstatus;
459 pcireg_t command;
460 int rq, sba, fw, rate, capoff;
461
462 if (pci_find_device(&pa, agpdev_match) == 0 ||
463 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
464 &capoff, NULL) == 0) {
465 aprint_error_dev(sc->as_dev, "can't find display\n");
466 return ENXIO;
467 }
468
469 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
470 sc->as_capoff + AGP_STATUS);
471 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
472 capoff + AGP_STATUS);
473
474 /* Set RQ to the min of mode, tstatus and mstatus */
475 rq = AGP_MODE_GET_RQ(mode);
476 if (AGP_MODE_GET_RQ(tstatus) < rq)
477 rq = AGP_MODE_GET_RQ(tstatus);
478 if (AGP_MODE_GET_RQ(mstatus) < rq)
479 rq = AGP_MODE_GET_RQ(mstatus);
480
481 /* Set SBA if all three can deal with SBA */
482 sba = (AGP_MODE_GET_SBA(tstatus)
483 & AGP_MODE_GET_SBA(mstatus)
484 & AGP_MODE_GET_SBA(mode));
485
486 /* Similar for FW */
487 fw = (AGP_MODE_GET_FW(tstatus)
488 & AGP_MODE_GET_FW(mstatus)
489 & AGP_MODE_GET_FW(mode));
490
491 /* Figure out the max rate */
492 rate = (AGP_MODE_GET_RATE(tstatus)
493 & AGP_MODE_GET_RATE(mstatus)
494 & AGP_MODE_GET_RATE(mode));
495 if (rate & AGP_MODE_RATE_4x)
496 rate = AGP_MODE_RATE_4x;
497 else if (rate & AGP_MODE_RATE_2x)
498 rate = AGP_MODE_RATE_2x;
499 else
500 rate = AGP_MODE_RATE_1x;
501
502 /* Construct the new mode word and tell the hardware */
503 command = AGP_MODE_SET_RQ(0, rq);
504 command = AGP_MODE_SET_SBA(command, sba);
505 command = AGP_MODE_SET_FW(command, fw);
506 command = AGP_MODE_SET_RATE(command, rate);
507 command = AGP_MODE_SET_AGP(command, 1);
508 pci_conf_write(sc->as_pc, sc->as_tag,
509 sc->as_capoff + AGP_COMMAND, command);
510 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
511
512 return 0;
513 }
514
515 struct agp_memory *
516 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
517 {
518 struct agp_memory *mem;
519
520 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
521 return 0;
522
523 if (sc->as_allocated + size > sc->as_maxmem)
524 return 0;
525
526 if (type != 0) {
527 printf("agp_generic_alloc_memory: unsupported type %d\n",
528 type);
529 return 0;
530 }
531
532 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
533 if (mem == NULL)
534 return NULL;
535
536 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
537 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
538 free(mem, M_AGP);
539 return NULL;
540 }
541
542 mem->am_id = sc->as_nextid++;
543 mem->am_size = size;
544 mem->am_type = 0;
545 mem->am_physical = 0;
546 mem->am_offset = 0;
547 mem->am_is_bound = 0;
548 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
549 sc->as_allocated += size;
550
551 return mem;
552 }
553
554 int
555 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
556 {
557 if (mem->am_is_bound)
558 return EBUSY;
559
560 sc->as_allocated -= mem->am_size;
561 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
562 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
563 free(mem, M_AGP);
564 return 0;
565 }
566
567 int
568 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
569 off_t offset)
570 {
571 off_t i, k;
572 bus_size_t done, j;
573 int error;
574 bus_dma_segment_t *segs, *seg;
575 bus_addr_t pa;
576 int contigpages, nseg;
577
578 mutex_enter(&sc->as_mtx);
579
580 if (mem->am_is_bound) {
581 aprint_error_dev(sc->as_dev, "memory already bound\n");
582 mutex_exit(&sc->as_mtx);
583 return EINVAL;
584 }
585
586 if (offset < 0
587 || (offset & (AGP_PAGE_SIZE - 1)) != 0
588 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
589 aprint_error_dev(sc->as_dev,
590 "binding memory at bad offset %#lx\n",
591 (unsigned long) offset);
592 mutex_exit(&sc->as_mtx);
593 return EINVAL;
594 }
595
596 /*
597 * XXXfvdl
598 * The memory here needs to be directly accessable from the
599 * AGP video card, so it should be allocated using bus_dma.
600 * However, it need not be contiguous, since individual pages
601 * are translated using the GATT.
602 *
603 * Using a large chunk of contiguous memory may get in the way
604 * of other subsystems that may need one, so we try to be friendly
605 * and ask for allocation in chunks of a minimum of 8 pages
606 * of contiguous memory on average, falling back to 4, 2 and 1
607 * if really needed. Larger chunks are preferred, since allocating
608 * a bus_dma_segment per page would be overkill.
609 */
610
611 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
612 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
613 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
614 if (segs == NULL) {
615 mutex_exit(&sc->as_mtx);
616 return ENOMEM;
617 }
618 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
619 segs, nseg, &mem->am_nseg,
620 contigpages > 1 ?
621 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
622 free(segs, M_AGP);
623 continue;
624 }
625 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
626 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
627 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
628 free(segs, M_AGP);
629 continue;
630 }
631 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
632 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
633 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
634 mem->am_size);
635 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
636 free(segs, M_AGP);
637 continue;
638 }
639 mem->am_dmaseg = segs;
640 break;
641 }
642
643 if (contigpages == 0) {
644 mutex_exit(&sc->as_mtx);
645 return ENOMEM;
646 }
647
648
649 /*
650 * Bind the individual pages and flush the chipset's
651 * TLB.
652 */
653 done = 0;
654 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
655 seg = &mem->am_dmamap->dm_segs[i];
656 /*
657 * Install entries in the GATT, making sure that if
658 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
659 * aligned to PAGE_SIZE, we don't modify too many GATT
660 * entries.
661 */
662 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
663 j += AGP_PAGE_SIZE) {
664 pa = seg->ds_addr + j;
665 AGP_DPF(("binding offset %#lx to pa %#lx\n",
666 (unsigned long)(offset + done + j),
667 (unsigned long)pa));
668 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
669 if (error) {
670 /*
671 * Bail out. Reverse all the mappings
672 * and unwire the pages.
673 */
674 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
675 AGP_UNBIND_PAGE(sc, offset + k);
676
677 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
678 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
679 mem->am_size);
680 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
681 mem->am_nseg);
682 free(mem->am_dmaseg, M_AGP);
683 mutex_exit(&sc->as_mtx);
684 return error;
685 }
686 }
687 done += seg->ds_len;
688 }
689
690 /*
691 * Flush the CPU cache since we are providing a new mapping
692 * for these pages.
693 */
694 agp_flush_cache();
695
696 /*
697 * Make sure the chipset gets the new mappings.
698 */
699 AGP_FLUSH_TLB(sc);
700
701 mem->am_offset = offset;
702 mem->am_is_bound = 1;
703
704 mutex_exit(&sc->as_mtx);
705
706 return 0;
707 }
708
709 int
710 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
711 {
712 int i;
713
714 mutex_enter(&sc->as_mtx);
715
716 if (!mem->am_is_bound) {
717 aprint_error_dev(sc->as_dev, "memory is not bound\n");
718 mutex_exit(&sc->as_mtx);
719 return EINVAL;
720 }
721
722
723 /*
724 * Unbind the individual pages and flush the chipset's
725 * TLB. Unwire the pages so they can be swapped.
726 */
727 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
728 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
729
730 agp_flush_cache();
731 AGP_FLUSH_TLB(sc);
732
733 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
734 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
735 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
736
737 free(mem->am_dmaseg, M_AGP);
738
739 mem->am_offset = 0;
740 mem->am_is_bound = 0;
741
742 mutex_exit(&sc->as_mtx);
743
744 return 0;
745 }
746
747 /* Helper functions for implementing user/kernel api */
748
749 static int
750 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
751 {
752 if (sc->as_state != AGP_ACQUIRE_FREE)
753 return EBUSY;
754 sc->as_state = state;
755
756 return 0;
757 }
758
759 static int
760 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
761 {
762
763 if (sc->as_state == AGP_ACQUIRE_FREE)
764 return 0;
765
766 if (sc->as_state != state)
767 return EBUSY;
768
769 sc->as_state = AGP_ACQUIRE_FREE;
770 return 0;
771 }
772
773 static struct agp_memory *
774 agp_find_memory(struct agp_softc *sc, int id)
775 {
776 struct agp_memory *mem;
777
778 AGP_DPF(("searching for memory block %d\n", id));
779 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
780 AGP_DPF(("considering memory block %d\n", mem->am_id));
781 if (mem->am_id == id)
782 return mem;
783 }
784 return 0;
785 }
786
787 /* Implementation of the userland ioctl api */
788
789 static int
790 agp_info_user(struct agp_softc *sc, agp_info *info)
791 {
792 memset(info, 0, sizeof *info);
793 info->bridge_id = sc->as_id;
794 if (sc->as_capoff != 0)
795 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
796 sc->as_capoff + AGP_STATUS);
797 else
798 info->agp_mode = 0; /* i810 doesn't have real AGP */
799 info->aper_base = sc->as_apaddr;
800 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
801 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
802 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
803
804 return 0;
805 }
806
807 static int
808 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
809 {
810 return AGP_ENABLE(sc, setup->agp_mode);
811 }
812
813 static int
814 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
815 {
816 struct agp_memory *mem;
817
818 mem = AGP_ALLOC_MEMORY(sc,
819 alloc->type,
820 alloc->pg_count << AGP_PAGE_SHIFT);
821 if (mem) {
822 alloc->key = mem->am_id;
823 alloc->physical = mem->am_physical;
824 return 0;
825 } else {
826 return ENOMEM;
827 }
828 }
829
830 static int
831 agp_deallocate_user(struct agp_softc *sc, int id)
832 {
833 struct agp_memory *mem = agp_find_memory(sc, id);
834
835 if (mem) {
836 AGP_FREE_MEMORY(sc, mem);
837 return 0;
838 } else {
839 return ENOENT;
840 }
841 }
842
843 static int
844 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
845 {
846 struct agp_memory *mem = agp_find_memory(sc, bind->key);
847
848 if (!mem)
849 return ENOENT;
850
851 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
852 }
853
854 static int
855 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
856 {
857 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
858
859 if (!mem)
860 return ENOENT;
861
862 return AGP_UNBIND_MEMORY(sc, mem);
863 }
864
865 static int
866 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
867 {
868 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
869
870 if (sc == NULL)
871 return ENXIO;
872
873 if (sc->as_chipc == NULL)
874 return ENXIO;
875
876 if (!sc->as_isopen)
877 sc->as_isopen = 1;
878 else
879 return EBUSY;
880
881 return 0;
882 }
883
884 static int
885 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
886 {
887 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
888 struct agp_memory *mem;
889
890 if (sc == NULL)
891 return ENODEV;
892
893 /*
894 * Clear the GATT and force release on last close
895 */
896 if (sc->as_state == AGP_ACQUIRE_USER) {
897 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
898 if (mem->am_is_bound) {
899 printf("agpclose: mem %d is bound\n",
900 mem->am_id);
901 AGP_UNBIND_MEMORY(sc, mem);
902 }
903 /*
904 * XXX it is not documented, but if the protocol allows
905 * allocate->acquire->bind, it would be possible that
906 * memory ranges are allocated by the kernel here,
907 * which we shouldn't free. We'd have to keep track of
908 * the memory range's owner.
909 * The kernel API is unsed yet, so we get away with
910 * freeing all.
911 */
912 AGP_FREE_MEMORY(sc, mem);
913 }
914 agp_release_helper(sc, AGP_ACQUIRE_USER);
915 }
916 sc->as_isopen = 0;
917
918 return 0;
919 }
920
921 static int
922 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
923 {
924 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
925
926 if (sc == NULL)
927 return ENODEV;
928
929 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
930 return EPERM;
931
932 switch (cmd) {
933 case AGPIOC_INFO:
934 return agp_info_user(sc, (agp_info *) data);
935
936 case AGPIOC_ACQUIRE:
937 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
938
939 case AGPIOC_RELEASE:
940 return agp_release_helper(sc, AGP_ACQUIRE_USER);
941
942 case AGPIOC_SETUP:
943 return agp_setup_user(sc, (agp_setup *)data);
944
945 #ifdef __x86_64__
946 {
947 /*
948 * Handle paddr_t change from 32 bit for non PAE kernels
949 * to 64 bit.
950 */
951 #define AGPIOC_OALLOCATE _IOWR(AGPIOC_BASE, 6, agp_oallocate)
952
953 typedef struct _agp_oallocate {
954 int key; /* tag of allocation */
955 size_t pg_count; /* number of pages */
956 uint32_t type; /* 0 == normal, other devspec */
957 u_long physical; /* device specific (some devices
958 * need a phys address of the
959 * actual page behind the gatt
960 * table) */
961 } agp_oallocate;
962
963 case AGPIOC_OALLOCATE: {
964 int ret;
965 agp_allocate aga;
966 agp_oallocate *oaga = data;
967
968 aga.type = oaga->type;
969 aga.pg_count = oaga->pg_count;
970
971 if ((ret = agp_allocate_user(sc, &aga)) == 0) {
972 oaga->key = aga.key;
973 oaga->physical = (u_long)aga.physical;
974 }
975
976 return ret;
977 }
978 }
979 #endif
980 case AGPIOC_ALLOCATE:
981 return agp_allocate_user(sc, (agp_allocate *)data);
982
983 case AGPIOC_DEALLOCATE:
984 return agp_deallocate_user(sc, *(int *) data);
985
986 case AGPIOC_BIND:
987 return agp_bind_user(sc, (agp_bind *)data);
988
989 case AGPIOC_UNBIND:
990 return agp_unbind_user(sc, (agp_unbind *)data);
991
992 }
993
994 return EINVAL;
995 }
996
997 static paddr_t
998 agpmmap(dev_t dev, off_t offset, int prot)
999 {
1000 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1001
1002 if (sc == NULL)
1003 return ENODEV;
1004
1005 if (offset > AGP_GET_APERTURE(sc))
1006 return -1;
1007
1008 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1009 BUS_SPACE_MAP_LINEAR));
1010 }
1011
1012 const struct cdevsw agp_cdevsw = {
1013 agpopen, agpclose, noread, nowrite, agpioctl,
1014 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
1015 };
1016
1017 /* Implementation of the kernel api */
1018
1019 void *
1020 agp_find_device(int unit)
1021 {
1022 return device_lookup_private(&agp_cd, unit);
1023 }
1024
1025 enum agp_acquire_state
1026 agp_state(void *devcookie)
1027 {
1028 struct agp_softc *sc = devcookie;
1029
1030 return sc->as_state;
1031 }
1032
1033 void
1034 agp_get_info(void *devcookie, struct agp_info *info)
1035 {
1036 struct agp_softc *sc = devcookie;
1037
1038 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1039 sc->as_capoff + AGP_STATUS);
1040 info->ai_aperture_base = sc->as_apaddr;
1041 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
1042 info->ai_memory_allowed = sc->as_maxmem;
1043 info->ai_memory_used = sc->as_allocated;
1044 }
1045
1046 int
1047 agp_acquire(void *dev)
1048 {
1049 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1050 }
1051
1052 int
1053 agp_release(void *dev)
1054 {
1055 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1056 }
1057
1058 int
1059 agp_enable(void *dev, u_int32_t mode)
1060 {
1061 struct agp_softc *sc = dev;
1062
1063 return AGP_ENABLE(sc, mode);
1064 }
1065
1066 void *
1067 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1068 {
1069 struct agp_softc *sc = dev;
1070
1071 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1072 }
1073
1074 void
1075 agp_free_memory(void *dev, void *handle)
1076 {
1077 struct agp_softc *sc = dev;
1078 struct agp_memory *mem = handle;
1079
1080 AGP_FREE_MEMORY(sc, mem);
1081 }
1082
1083 int
1084 agp_bind_memory(void *dev, void *handle, off_t offset)
1085 {
1086 struct agp_softc *sc = dev;
1087 struct agp_memory *mem = handle;
1088
1089 return AGP_BIND_MEMORY(sc, mem, offset);
1090 }
1091
1092 int
1093 agp_unbind_memory(void *dev, void *handle)
1094 {
1095 struct agp_softc *sc = dev;
1096 struct agp_memory *mem = handle;
1097
1098 return AGP_UNBIND_MEMORY(sc, mem);
1099 }
1100
1101 void
1102 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1103 {
1104 struct agp_memory *mem = handle;
1105
1106 mi->ami_size = mem->am_size;
1107 mi->ami_physical = mem->am_physical;
1108 mi->ami_offset = mem->am_offset;
1109 mi->ami_is_bound = mem->am_is_bound;
1110 }
1111
1112 int
1113 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1114 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1115 bus_dma_segment_t *seg, int nseg, int *rseg)
1116
1117 {
1118 int error, level = 0;
1119
1120 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1121 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1122 goto out;
1123 level++;
1124
1125 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1126 BUS_DMA_NOWAIT | flags)) != 0)
1127 goto out;
1128 level++;
1129
1130 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1131 BUS_DMA_NOWAIT, mapp)) != 0)
1132 goto out;
1133 level++;
1134
1135 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1136 BUS_DMA_NOWAIT)) != 0)
1137 goto out;
1138
1139 *baddr = (*mapp)->dm_segs[0].ds_addr;
1140
1141 return 0;
1142 out:
1143 switch (level) {
1144 case 3:
1145 bus_dmamap_destroy(tag, *mapp);
1146 /* FALLTHROUGH */
1147 case 2:
1148 bus_dmamem_unmap(tag, *vaddr, size);
1149 /* FALLTHROUGH */
1150 case 1:
1151 bus_dmamem_free(tag, seg, *rseg);
1152 break;
1153 default:
1154 break;
1155 }
1156
1157 return error;
1158 }
1159
1160 void
1161 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1162 void *vaddr, bus_dma_segment_t *seg, int nseg)
1163 {
1164 bus_dmamap_unload(tag, map);
1165 bus_dmamap_destroy(tag, map);
1166 bus_dmamem_unmap(tag, vaddr, size);
1167 bus_dmamem_free(tag, seg, nseg);
1168 }
1169
1170 static bool
1171 agp_resume(device_t dv, const pmf_qual_t *qual)
1172 {
1173 agp_flush_cache();
1174
1175 return true;
1176 }
1177