Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.79
      1 /*	$NetBSD: agp.c,v 1.79 2011/04/04 20:37:56 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.79 2011/04/04 20:37:56 dyoung Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <dev/pci/pcireg.h>
     83 #include <dev/pci/pcivar.h>
     84 #include <dev/pci/agpvar.h>
     85 #include <dev/pci/agpreg.h>
     86 #include <dev/pci/pcidevs.h>
     87 
     88 #include <sys/bus.h>
     89 
     90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     91 
     92 /* Helper functions for implementing chipset mini drivers. */
     93 /* XXXfvdl get rid of this one. */
     94 
     95 extern struct cfdriver agp_cd;
     96 
     97 static int agp_info_user(struct agp_softc *, agp_info *);
     98 static int agp_setup_user(struct agp_softc *, agp_setup *);
     99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    100 static int agp_deallocate_user(struct agp_softc *, int);
    101 static int agp_bind_user(struct agp_softc *, agp_bind *);
    102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    103 static int agp_generic_enable_v2(struct agp_softc *,
    104     const struct pci_attach_args *, int, u_int32_t);
    105 static int agp_generic_enable_v3(struct agp_softc *,
    106     const struct pci_attach_args *, int, u_int32_t);
    107 static int agpdev_match(const struct pci_attach_args *);
    108 static bool agp_resume(device_t, const pmf_qual_t *);
    109 
    110 #include "agp_ali.h"
    111 #include "agp_amd.h"
    112 #include "agp_i810.h"
    113 #include "agp_intel.h"
    114 #include "agp_sis.h"
    115 #include "agp_via.h"
    116 #include "agp_amd64.h"
    117 
    118 const struct agp_product {
    119 	uint32_t	ap_vendor;
    120 	uint32_t	ap_product;
    121 	int		(*ap_match)(const struct pci_attach_args *);
    122 	int		(*ap_attach)(device_t, device_t, void *);
    123 } agp_products[] = {
    124 #if NAGP_AMD64 > 0
    125 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
    126 	  agp_amd64_match,	agp_amd64_attach },
    127 #endif
    128 
    129 #if NAGP_ALI > 0
    130 	{ PCI_VENDOR_ALI,	-1,
    131 	  NULL,			agp_ali_attach },
    132 #endif
    133 
    134 #if NAGP_AMD64 > 0
    135 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    136 	  agp_amd64_match,	agp_amd64_attach },
    137 #endif
    138 
    139 #if NAGP_AMD > 0
    140 	{ PCI_VENDOR_AMD,	-1,
    141 	  agp_amd_match,	agp_amd_attach },
    142 #endif
    143 
    144 #if NAGP_I810 > 0
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    166 	  NULL,			agp_i810_attach },
    167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    168 	  NULL,			agp_i810_attach },
    169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    170 	  NULL,			agp_i810_attach },
    171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
    172 	  NULL,			agp_i810_attach },
    173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    174 	  NULL,			agp_i810_attach },
    175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    176 	  NULL,			agp_i810_attach },
    177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    178 	  NULL,			agp_i810_attach },
    179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    180 	  NULL,			agp_i810_attach },
    181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    182 	  NULL,			agp_i810_attach },
    183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    184 	  NULL,			agp_i810_attach },
    185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
    186 	  NULL,			agp_i810_attach },
    187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
    188 	  NULL,			agp_i810_attach },
    189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
    190 	  NULL, 		agp_i810_attach },
    191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
    192 	  NULL, 		agp_i810_attach },
    193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
    194 	  NULL, 		agp_i810_attach },
    195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
    196 	  NULL, 		agp_i810_attach },
    197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
    198 	  NULL, 		agp_i810_attach },
    199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
    200 	  NULL, 		agp_i810_attach },
    201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
    202 	  NULL, 		agp_i810_attach },
    203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
    204 	  NULL, 		agp_i810_attach },
    205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
    206 	  NULL, 		agp_i810_attach },
    207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
    208 	  NULL, 		agp_i810_attach },
    209 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
    210 	  NULL, 		agp_i810_attach },
    211 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
    212 	  NULL, 		agp_i810_attach },
    213 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_HB,
    214 	  NULL, 		agp_i810_attach },
    215 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
    216 	  NULL, 		agp_i810_attach },
    217 #endif
    218 
    219 #if NAGP_INTEL > 0
    220 	{ PCI_VENDOR_INTEL,	-1,
    221 	  NULL,			agp_intel_attach },
    222 #endif
    223 
    224 #if NAGP_AMD64 > 0
    225 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    226 	  agp_amd64_match,	agp_amd64_attach },
    227 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    228 	  agp_amd64_match,	agp_amd64_attach },
    229 #endif
    230 
    231 #if NAGP_AMD64 > 0
    232 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    233 	  agp_amd64_match,	agp_amd64_attach },
    234 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    235 	  agp_amd64_match,	agp_amd64_attach },
    236 #endif
    237 
    238 #if NAGP_SIS > 0
    239 	{ PCI_VENDOR_SIS,	-1,
    240 	  NULL,			agp_sis_attach },
    241 #endif
    242 
    243 #if NAGP_AMD64 > 0
    244 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    245 	  agp_amd64_match,	agp_amd64_attach },
    246 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    247 	  agp_amd64_match,	agp_amd64_attach },
    248 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    249 	  agp_amd64_match,	agp_amd64_attach },
    250 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    251 	  agp_amd64_match,	agp_amd64_attach },
    252 #endif
    253 
    254 #if NAGP_VIA > 0
    255 	{ PCI_VENDOR_VIATECH,	-1,
    256 	  NULL,			agp_via_attach },
    257 #endif
    258 
    259 	{ 0,			0,
    260 	  NULL,			NULL },
    261 };
    262 
    263 static const struct agp_product *
    264 agp_lookup(const struct pci_attach_args *pa)
    265 {
    266 	const struct agp_product *ap;
    267 
    268 	/* First find the vendor. */
    269 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    270 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    271 			break;
    272 	}
    273 
    274 	if (ap->ap_attach == NULL)
    275 		return (NULL);
    276 
    277 	/* Now find the product within the vendor's domain. */
    278 	for (; ap->ap_attach != NULL; ap++) {
    279 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    280 			/* Ran out of this vendor's section of the table. */
    281 			return (NULL);
    282 		}
    283 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    284 			/* Exact match. */
    285 			break;
    286 		}
    287 		if (ap->ap_product == (uint32_t) -1) {
    288 			/* Wildcard match. */
    289 			break;
    290 		}
    291 	}
    292 
    293 	if (ap->ap_attach == NULL)
    294 		return (NULL);
    295 
    296 	/* Now let the product-specific driver filter the match. */
    297 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    298 		return (NULL);
    299 
    300 	return (ap);
    301 }
    302 
    303 static int
    304 agpmatch(device_t parent, cfdata_t match, void *aux)
    305 {
    306 	struct agpbus_attach_args *apa = aux;
    307 	struct pci_attach_args *pa = &apa->apa_pci_args;
    308 
    309 	if (agp_lookup(pa) == NULL)
    310 		return (0);
    311 
    312 	return (1);
    313 }
    314 
    315 static const int agp_max[][2] = {
    316 	{0,	0},
    317 	{32,	4},
    318 	{64,	28},
    319 	{128,	96},
    320 	{256,	204},
    321 	{512,	440},
    322 	{1024,	942},
    323 	{2048,	1920},
    324 	{4096,	3932}
    325 };
    326 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    327 
    328 static void
    329 agpattach(device_t parent, device_t self, void *aux)
    330 {
    331 	struct agpbus_attach_args *apa = aux;
    332 	struct pci_attach_args *pa = &apa->apa_pci_args;
    333 	struct agp_softc *sc = device_private(self);
    334 	const struct agp_product *ap;
    335 	int memsize, i, ret;
    336 
    337 	ap = agp_lookup(pa);
    338 	KASSERT(ap != NULL);
    339 
    340 	aprint_naive(": AGP controller\n");
    341 
    342 	sc->as_dev = self;
    343 	sc->as_dmat = pa->pa_dmat;
    344 	sc->as_pc = pa->pa_pc;
    345 	sc->as_tag = pa->pa_tag;
    346 	sc->as_id = pa->pa_id;
    347 
    348 	/*
    349 	 * Work out an upper bound for agp memory allocation. This
    350 	 * uses a heuristic table from the Linux driver.
    351 	 */
    352 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
    353 	for (i = 0; i < agp_max_size; i++) {
    354 		if (memsize <= agp_max[i][0])
    355 			break;
    356 	}
    357 	if (i == agp_max_size)
    358 		i = agp_max_size - 1;
    359 	sc->as_maxmem = agp_max[i][1] << 20U;
    360 
    361 	/*
    362 	 * The mutex is used to prevent re-entry to
    363 	 * agp_generic_bind_memory() since that function can sleep.
    364 	 */
    365 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    366 
    367 	TAILQ_INIT(&sc->as_memory);
    368 
    369 	ret = (*ap->ap_attach)(parent, self, pa);
    370 	if (ret == 0)
    371 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    372 		    (unsigned long)sc->as_apaddr,
    373 		    (unsigned long)AGP_GET_APERTURE(sc));
    374 	else
    375 		sc->as_chipc = NULL;
    376 
    377 	if (!device_pmf_is_registered(self)) {
    378 		if (!pmf_device_register(self, NULL, agp_resume))
    379 			aprint_error_dev(self, "couldn't establish power "
    380 			    "handler\n");
    381 	}
    382 }
    383 
    384 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
    385     agpmatch, agpattach, NULL, NULL);
    386 
    387 int
    388 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    389 {
    390 	/*
    391 	 * Find the aperture. Don't map it (yet), this would
    392 	 * eat KVA.
    393 	 */
    394 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    395 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    396 	    &sc->as_apflags) != 0)
    397 		return ENXIO;
    398 
    399 	sc->as_apt = pa->pa_memt;
    400 
    401 	return 0;
    402 }
    403 
    404 struct agp_gatt *
    405 agp_alloc_gatt(struct agp_softc *sc)
    406 {
    407 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    408 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    409 	struct agp_gatt *gatt;
    410 	void *virtual;
    411 	int dummyseg;
    412 
    413 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    414 	if (!gatt)
    415 		return NULL;
    416 	gatt->ag_entries = entries;
    417 
    418 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    419 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    420 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
    421 		free(gatt, M_AGP);
    422 		return NULL;
    423 	}
    424 	gatt->ag_virtual = (uint32_t *)virtual;
    425 
    426 	gatt->ag_size = entries * sizeof(u_int32_t);
    427 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    428 	agp_flush_cache();
    429 
    430 	return gatt;
    431 }
    432 
    433 void
    434 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    435 {
    436 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    437 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    438 	free(gatt, M_AGP);
    439 }
    440 
    441 
    442 int
    443 agp_generic_detach(struct agp_softc *sc)
    444 {
    445 	mutex_destroy(&sc->as_mtx);
    446 	agp_flush_cache();
    447 	return 0;
    448 }
    449 
    450 static int
    451 agpdev_match(const struct pci_attach_args *pa)
    452 {
    453 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    454 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    455 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    456 		    NULL, NULL))
    457 		return 1;
    458 
    459 	return 0;
    460 }
    461 
    462 int
    463 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    464 {
    465 	struct pci_attach_args pa;
    466 	pcireg_t tstatus, mstatus;
    467 	int capoff;
    468 
    469 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    470 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    471 	     &capoff, NULL) == 0) {
    472 		aprint_error_dev(sc->as_dev, "can't find display\n");
    473 		return ENXIO;
    474 	}
    475 
    476 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    477 	    sc->as_capoff + AGP_STATUS);
    478 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    479 	    capoff + AGP_STATUS);
    480 
    481 	if (AGP_MODE_GET_MODE_3(mode) &&
    482 	    AGP_MODE_GET_MODE_3(tstatus) &&
    483 	    AGP_MODE_GET_MODE_3(mstatus))
    484 		return agp_generic_enable_v3(sc, &pa, capoff, mode);
    485 	else
    486 		return agp_generic_enable_v2(sc, &pa, capoff, mode);
    487 }
    488 
    489 static int
    490 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
    491     int capoff, u_int32_t mode)
    492 {
    493 	pcireg_t tstatus, mstatus;
    494 	pcireg_t command;
    495 	int rq, sba, fw, rate;
    496 
    497 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    498 	    sc->as_capoff + AGP_STATUS);
    499 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
    500 	    capoff + AGP_STATUS);
    501 
    502 	/* Set RQ to the min of mode, tstatus and mstatus */
    503 	rq = AGP_MODE_GET_RQ(mode);
    504 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    505 		rq = AGP_MODE_GET_RQ(tstatus);
    506 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    507 		rq = AGP_MODE_GET_RQ(mstatus);
    508 
    509 	/* Set SBA if all three can deal with SBA */
    510 	sba = (AGP_MODE_GET_SBA(tstatus)
    511 	       & AGP_MODE_GET_SBA(mstatus)
    512 	       & AGP_MODE_GET_SBA(mode));
    513 
    514 	/* Similar for FW */
    515 	fw = (AGP_MODE_GET_FW(tstatus)
    516 	       & AGP_MODE_GET_FW(mstatus)
    517 	       & AGP_MODE_GET_FW(mode));
    518 
    519 	/* Figure out the max rate */
    520 	rate = (AGP_MODE_GET_RATE(tstatus)
    521 		& AGP_MODE_GET_RATE(mstatus)
    522 		& AGP_MODE_GET_RATE(mode));
    523 	if (rate & AGP_MODE_V2_RATE_4x)
    524 		rate = AGP_MODE_V2_RATE_4x;
    525 	else if (rate & AGP_MODE_V2_RATE_2x)
    526 		rate = AGP_MODE_V2_RATE_2x;
    527 	else
    528 		rate = AGP_MODE_V2_RATE_1x;
    529 
    530 	/* Construct the new mode word and tell the hardware */
    531 	command = AGP_MODE_SET_RQ(0, rq);
    532 	command = AGP_MODE_SET_SBA(command, sba);
    533 	command = AGP_MODE_SET_FW(command, fw);
    534 	command = AGP_MODE_SET_RATE(command, rate);
    535 	command = AGP_MODE_SET_AGP(command, 1);
    536 	pci_conf_write(sc->as_pc, sc->as_tag,
    537 	    sc->as_capoff + AGP_COMMAND, command);
    538 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
    539 
    540 	return 0;
    541 }
    542 
    543 static int
    544 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
    545     int capoff, u_int32_t mode)
    546 {
    547 	pcireg_t tstatus, mstatus;
    548 	pcireg_t command;
    549 	int rq, sba, fw, rate, arqsz, cal;
    550 
    551 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    552 	    sc->as_capoff + AGP_STATUS);
    553 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
    554 	    capoff + AGP_STATUS);
    555 
    556 	/* Set RQ to the min of mode, tstatus and mstatus */
    557 	rq = AGP_MODE_GET_RQ(mode);
    558 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    559 		rq = AGP_MODE_GET_RQ(tstatus);
    560 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    561 		rq = AGP_MODE_GET_RQ(mstatus);
    562 
    563 	/*
    564 	 * ARQSZ - Set the value to the maximum one.
    565 	 * Don't allow the mode register to override values.
    566 	 */
    567 	arqsz = AGP_MODE_GET_ARQSZ(mode);
    568 	if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
    569 		arqsz = AGP_MODE_GET_ARQSZ(tstatus);
    570 	if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
    571 		arqsz = AGP_MODE_GET_ARQSZ(mstatus);
    572 
    573 	/* Calibration cycle - don't allow override by mode register */
    574 	cal = AGP_MODE_GET_CAL(tstatus);
    575 	if (AGP_MODE_GET_CAL(mstatus) < cal)
    576 		cal = AGP_MODE_GET_CAL(mstatus);
    577 
    578 	/* SBA must be supported for AGP v3. */
    579 	sba = 1;
    580 
    581 	/* Set FW if all three support it. */
    582 	fw = (AGP_MODE_GET_FW(tstatus)
    583 	       & AGP_MODE_GET_FW(mstatus)
    584 	       & AGP_MODE_GET_FW(mode));
    585 
    586 	/* Figure out the max rate */
    587 	rate = (AGP_MODE_GET_RATE(tstatus)
    588 		& AGP_MODE_GET_RATE(mstatus)
    589 		& AGP_MODE_GET_RATE(mode));
    590 	if (rate & AGP_MODE_V3_RATE_8x)
    591 		rate = AGP_MODE_V3_RATE_8x;
    592 	else
    593 		rate = AGP_MODE_V3_RATE_4x;
    594 
    595 	/* Construct the new mode word and tell the hardware */
    596 	command = AGP_MODE_SET_RQ(0, rq);
    597 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
    598 	command = AGP_MODE_SET_CAL(command, cal);
    599 	command = AGP_MODE_SET_SBA(command, sba);
    600 	command = AGP_MODE_SET_FW(command, fw);
    601 	command = AGP_MODE_SET_RATE(command, rate);
    602 	command = AGP_MODE_SET_AGP(command, 1);
    603 	pci_conf_write(sc->as_pc, sc->as_tag,
    604 	    sc->as_capoff + AGP_COMMAND, command);
    605 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
    606 
    607 	return 0;
    608 }
    609 
    610 struct agp_memory *
    611 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    612 {
    613 	struct agp_memory *mem;
    614 
    615 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    616 		return 0;
    617 
    618 	if (sc->as_allocated + size > sc->as_maxmem)
    619 		return 0;
    620 
    621 	if (type != 0) {
    622 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    623 		       type);
    624 		return 0;
    625 	}
    626 
    627 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    628 	if (mem == NULL)
    629 		return NULL;
    630 
    631 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    632 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    633 		free(mem, M_AGP);
    634 		return NULL;
    635 	}
    636 
    637 	mem->am_id = sc->as_nextid++;
    638 	mem->am_size = size;
    639 	mem->am_type = 0;
    640 	mem->am_physical = 0;
    641 	mem->am_offset = 0;
    642 	mem->am_is_bound = 0;
    643 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    644 	sc->as_allocated += size;
    645 
    646 	return mem;
    647 }
    648 
    649 int
    650 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    651 {
    652 	if (mem->am_is_bound)
    653 		return EBUSY;
    654 
    655 	sc->as_allocated -= mem->am_size;
    656 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    657 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    658 	free(mem, M_AGP);
    659 	return 0;
    660 }
    661 
    662 int
    663 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    664 			off_t offset)
    665 {
    666 	off_t i, k;
    667 	bus_size_t done, j;
    668 	int error;
    669 	bus_dma_segment_t *segs, *seg;
    670 	bus_addr_t pa;
    671 	int contigpages, nseg;
    672 
    673 	mutex_enter(&sc->as_mtx);
    674 
    675 	if (mem->am_is_bound) {
    676 		aprint_error_dev(sc->as_dev, "memory already bound\n");
    677 		mutex_exit(&sc->as_mtx);
    678 		return EINVAL;
    679 	}
    680 
    681 	if (offset < 0
    682 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    683 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
    684 		aprint_error_dev(sc->as_dev,
    685 			      "binding memory at bad offset %#lx\n",
    686 			      (unsigned long) offset);
    687 		mutex_exit(&sc->as_mtx);
    688 		return EINVAL;
    689 	}
    690 
    691 	/*
    692 	 * XXXfvdl
    693 	 * The memory here needs to be directly accessable from the
    694 	 * AGP video card, so it should be allocated using bus_dma.
    695 	 * However, it need not be contiguous, since individual pages
    696 	 * are translated using the GATT.
    697 	 *
    698 	 * Using a large chunk of contiguous memory may get in the way
    699 	 * of other subsystems that may need one, so we try to be friendly
    700 	 * and ask for allocation in chunks of a minimum of 8 pages
    701 	 * of contiguous memory on average, falling back to 4, 2 and 1
    702 	 * if really needed. Larger chunks are preferred, since allocating
    703 	 * a bus_dma_segment per page would be overkill.
    704 	 */
    705 
    706 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    707 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    708 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    709 		if (segs == NULL) {
    710 			mutex_exit(&sc->as_mtx);
    711 			return ENOMEM;
    712 		}
    713 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    714 				     segs, nseg, &mem->am_nseg,
    715 				     contigpages > 1 ?
    716 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    717 			free(segs, M_AGP);
    718 			continue;
    719 		}
    720 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    721 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    722 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    723 			free(segs, M_AGP);
    724 			continue;
    725 		}
    726 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    727 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    728 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    729 			    mem->am_size);
    730 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    731 			free(segs, M_AGP);
    732 			continue;
    733 		}
    734 		mem->am_dmaseg = segs;
    735 		break;
    736 	}
    737 
    738 	if (contigpages == 0) {
    739 		mutex_exit(&sc->as_mtx);
    740 		return ENOMEM;
    741 	}
    742 
    743 
    744 	/*
    745 	 * Bind the individual pages and flush the chipset's
    746 	 * TLB.
    747 	 */
    748 	done = 0;
    749 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    750 		seg = &mem->am_dmamap->dm_segs[i];
    751 		/*
    752 		 * Install entries in the GATT, making sure that if
    753 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    754 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    755 		 * entries.
    756 		 */
    757 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    758 		     j += AGP_PAGE_SIZE) {
    759 			pa = seg->ds_addr + j;
    760 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    761 				(unsigned long)(offset + done + j),
    762 				(unsigned long)pa));
    763 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    764 			if (error) {
    765 				/*
    766 				 * Bail out. Reverse all the mappings
    767 				 * and unwire the pages.
    768 				 */
    769 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    770 					AGP_UNBIND_PAGE(sc, offset + k);
    771 
    772 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    773 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    774 						 mem->am_size);
    775 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    776 						mem->am_nseg);
    777 				free(mem->am_dmaseg, M_AGP);
    778 				mutex_exit(&sc->as_mtx);
    779 				return error;
    780 			}
    781 		}
    782 		done += seg->ds_len;
    783 	}
    784 
    785 	/*
    786 	 * Flush the CPU cache since we are providing a new mapping
    787 	 * for these pages.
    788 	 */
    789 	agp_flush_cache();
    790 
    791 	/*
    792 	 * Make sure the chipset gets the new mappings.
    793 	 */
    794 	AGP_FLUSH_TLB(sc);
    795 
    796 	mem->am_offset = offset;
    797 	mem->am_is_bound = 1;
    798 
    799 	mutex_exit(&sc->as_mtx);
    800 
    801 	return 0;
    802 }
    803 
    804 int
    805 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    806 {
    807 	int i;
    808 
    809 	mutex_enter(&sc->as_mtx);
    810 
    811 	if (!mem->am_is_bound) {
    812 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
    813 		mutex_exit(&sc->as_mtx);
    814 		return EINVAL;
    815 	}
    816 
    817 
    818 	/*
    819 	 * Unbind the individual pages and flush the chipset's
    820 	 * TLB. Unwire the pages so they can be swapped.
    821 	 */
    822 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    823 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    824 
    825 	agp_flush_cache();
    826 	AGP_FLUSH_TLB(sc);
    827 
    828 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    829 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    830 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    831 
    832 	free(mem->am_dmaseg, M_AGP);
    833 
    834 	mem->am_offset = 0;
    835 	mem->am_is_bound = 0;
    836 
    837 	mutex_exit(&sc->as_mtx);
    838 
    839 	return 0;
    840 }
    841 
    842 /* Helper functions for implementing user/kernel api */
    843 
    844 static int
    845 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    846 {
    847 	if (sc->as_state != AGP_ACQUIRE_FREE)
    848 		return EBUSY;
    849 	sc->as_state = state;
    850 
    851 	return 0;
    852 }
    853 
    854 static int
    855 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    856 {
    857 
    858 	if (sc->as_state == AGP_ACQUIRE_FREE)
    859 		return 0;
    860 
    861 	if (sc->as_state != state)
    862 		return EBUSY;
    863 
    864 	sc->as_state = AGP_ACQUIRE_FREE;
    865 	return 0;
    866 }
    867 
    868 static struct agp_memory *
    869 agp_find_memory(struct agp_softc *sc, int id)
    870 {
    871 	struct agp_memory *mem;
    872 
    873 	AGP_DPF(("searching for memory block %d\n", id));
    874 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    875 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    876 		if (mem->am_id == id)
    877 			return mem;
    878 	}
    879 	return 0;
    880 }
    881 
    882 /* Implementation of the userland ioctl api */
    883 
    884 static int
    885 agp_info_user(struct agp_softc *sc, agp_info *info)
    886 {
    887 	memset(info, 0, sizeof *info);
    888 	info->bridge_id = sc->as_id;
    889 	if (sc->as_capoff != 0)
    890 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    891 					       sc->as_capoff + AGP_STATUS);
    892 	else
    893 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    894 	info->aper_base = sc->as_apaddr;
    895 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    896 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    897 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    898 
    899 	return 0;
    900 }
    901 
    902 static int
    903 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    904 {
    905 	return AGP_ENABLE(sc, setup->agp_mode);
    906 }
    907 
    908 static int
    909 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    910 {
    911 	struct agp_memory *mem;
    912 
    913 	mem = AGP_ALLOC_MEMORY(sc,
    914 			       alloc->type,
    915 			       alloc->pg_count << AGP_PAGE_SHIFT);
    916 	if (mem) {
    917 		alloc->key = mem->am_id;
    918 		alloc->physical = mem->am_physical;
    919 		return 0;
    920 	} else {
    921 		return ENOMEM;
    922 	}
    923 }
    924 
    925 static int
    926 agp_deallocate_user(struct agp_softc *sc, int id)
    927 {
    928 	struct agp_memory *mem = agp_find_memory(sc, id);
    929 
    930 	if (mem) {
    931 		AGP_FREE_MEMORY(sc, mem);
    932 		return 0;
    933 	} else {
    934 		return ENOENT;
    935 	}
    936 }
    937 
    938 static int
    939 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    940 {
    941 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    942 
    943 	if (!mem)
    944 		return ENOENT;
    945 
    946 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    947 }
    948 
    949 static int
    950 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    951 {
    952 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    953 
    954 	if (!mem)
    955 		return ENOENT;
    956 
    957 	return AGP_UNBIND_MEMORY(sc, mem);
    958 }
    959 
    960 static int
    961 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
    962 {
    963 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    964 
    965 	if (sc == NULL)
    966 		return ENXIO;
    967 
    968 	if (sc->as_chipc == NULL)
    969 		return ENXIO;
    970 
    971 	if (!sc->as_isopen)
    972 		sc->as_isopen = 1;
    973 	else
    974 		return EBUSY;
    975 
    976 	return 0;
    977 }
    978 
    979 static int
    980 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
    981 {
    982 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    983 	struct agp_memory *mem;
    984 
    985 	if (sc == NULL)
    986 		return ENODEV;
    987 
    988 	/*
    989 	 * Clear the GATT and force release on last close
    990 	 */
    991 	if (sc->as_state == AGP_ACQUIRE_USER) {
    992 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
    993 			if (mem->am_is_bound) {
    994 				printf("agpclose: mem %d is bound\n",
    995 				       mem->am_id);
    996 				AGP_UNBIND_MEMORY(sc, mem);
    997 			}
    998 			/*
    999 			 * XXX it is not documented, but if the protocol allows
   1000 			 * allocate->acquire->bind, it would be possible that
   1001 			 * memory ranges are allocated by the kernel here,
   1002 			 * which we shouldn't free. We'd have to keep track of
   1003 			 * the memory range's owner.
   1004 			 * The kernel API is unsed yet, so we get away with
   1005 			 * freeing all.
   1006 			 */
   1007 			AGP_FREE_MEMORY(sc, mem);
   1008 		}
   1009 		agp_release_helper(sc, AGP_ACQUIRE_USER);
   1010 	}
   1011 	sc->as_isopen = 0;
   1012 
   1013 	return 0;
   1014 }
   1015 
   1016 static int
   1017 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
   1018 {
   1019 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
   1020 
   1021 	if (sc == NULL)
   1022 		return ENODEV;
   1023 
   1024 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
   1025 		return EPERM;
   1026 
   1027 	switch (cmd) {
   1028 	case AGPIOC_INFO:
   1029 		return agp_info_user(sc, (agp_info *) data);
   1030 
   1031 	case AGPIOC_ACQUIRE:
   1032 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
   1033 
   1034 	case AGPIOC_RELEASE:
   1035 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
   1036 
   1037 	case AGPIOC_SETUP:
   1038 		return agp_setup_user(sc, (agp_setup *)data);
   1039 
   1040 #ifdef __x86_64__
   1041 {
   1042 	/*
   1043 	 * Handle paddr_t change from 32 bit for non PAE kernels
   1044 	 * to 64 bit.
   1045 	 */
   1046 #define AGPIOC_OALLOCATE  _IOWR(AGPIOC_BASE, 6, agp_oallocate)
   1047 
   1048 	typedef struct _agp_oallocate {
   1049 		int key;		/* tag of allocation            */
   1050 		size_t pg_count;	/* number of pages              */
   1051 		uint32_t type;		/* 0 == normal, other devspec   */
   1052 		u_long physical;	/* device specific (some devices
   1053 					 * need a phys address of the
   1054 					 * actual page behind the gatt
   1055 					 * table)                        */
   1056 	} agp_oallocate;
   1057 
   1058 	case AGPIOC_OALLOCATE: {
   1059 		int ret;
   1060 		agp_allocate aga;
   1061 		agp_oallocate *oaga = data;
   1062 
   1063 		aga.type = oaga->type;
   1064 		aga.pg_count = oaga->pg_count;
   1065 
   1066 		if ((ret = agp_allocate_user(sc, &aga)) == 0) {
   1067 			oaga->key = aga.key;
   1068 			oaga->physical = (u_long)aga.physical;
   1069 		}
   1070 
   1071 		return ret;
   1072 	}
   1073 }
   1074 #endif
   1075 	case AGPIOC_ALLOCATE:
   1076 		return agp_allocate_user(sc, (agp_allocate *)data);
   1077 
   1078 	case AGPIOC_DEALLOCATE:
   1079 		return agp_deallocate_user(sc, *(int *) data);
   1080 
   1081 	case AGPIOC_BIND:
   1082 		return agp_bind_user(sc, (agp_bind *)data);
   1083 
   1084 	case AGPIOC_UNBIND:
   1085 		return agp_unbind_user(sc, (agp_unbind *)data);
   1086 
   1087 	}
   1088 
   1089 	return EINVAL;
   1090 }
   1091 
   1092 static paddr_t
   1093 agpmmap(dev_t dev, off_t offset, int prot)
   1094 {
   1095 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
   1096 
   1097 	if (sc == NULL)
   1098 		return ENODEV;
   1099 
   1100 	if (offset > AGP_GET_APERTURE(sc))
   1101 		return -1;
   1102 
   1103 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
   1104 	    BUS_SPACE_MAP_LINEAR));
   1105 }
   1106 
   1107 const struct cdevsw agp_cdevsw = {
   1108 	agpopen, agpclose, noread, nowrite, agpioctl,
   1109 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
   1110 };
   1111 
   1112 /* Implementation of the kernel api */
   1113 
   1114 void *
   1115 agp_find_device(int unit)
   1116 {
   1117 	return device_lookup_private(&agp_cd, unit);
   1118 }
   1119 
   1120 enum agp_acquire_state
   1121 agp_state(void *devcookie)
   1122 {
   1123 	struct agp_softc *sc = devcookie;
   1124 
   1125 	return sc->as_state;
   1126 }
   1127 
   1128 void
   1129 agp_get_info(void *devcookie, struct agp_info *info)
   1130 {
   1131 	struct agp_softc *sc = devcookie;
   1132 
   1133 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
   1134 	    sc->as_capoff + AGP_STATUS);
   1135 	info->ai_aperture_base = sc->as_apaddr;
   1136 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
   1137 	info->ai_memory_allowed = sc->as_maxmem;
   1138 	info->ai_memory_used = sc->as_allocated;
   1139 }
   1140 
   1141 int
   1142 agp_acquire(void *dev)
   1143 {
   1144 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
   1145 }
   1146 
   1147 int
   1148 agp_release(void *dev)
   1149 {
   1150 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
   1151 }
   1152 
   1153 int
   1154 agp_enable(void *dev, u_int32_t mode)
   1155 {
   1156 	struct agp_softc *sc = dev;
   1157 
   1158 	return AGP_ENABLE(sc, mode);
   1159 }
   1160 
   1161 void *
   1162 agp_alloc_memory(void *dev, int type, vsize_t bytes)
   1163 {
   1164 	struct agp_softc *sc = dev;
   1165 
   1166 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
   1167 }
   1168 
   1169 void
   1170 agp_free_memory(void *dev, void *handle)
   1171 {
   1172 	struct agp_softc *sc = dev;
   1173 	struct agp_memory *mem = handle;
   1174 
   1175 	AGP_FREE_MEMORY(sc, mem);
   1176 }
   1177 
   1178 int
   1179 agp_bind_memory(void *dev, void *handle, off_t offset)
   1180 {
   1181 	struct agp_softc *sc = dev;
   1182 	struct agp_memory *mem = handle;
   1183 
   1184 	return AGP_BIND_MEMORY(sc, mem, offset);
   1185 }
   1186 
   1187 int
   1188 agp_unbind_memory(void *dev, void *handle)
   1189 {
   1190 	struct agp_softc *sc = dev;
   1191 	struct agp_memory *mem = handle;
   1192 
   1193 	return AGP_UNBIND_MEMORY(sc, mem);
   1194 }
   1195 
   1196 void
   1197 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
   1198 {
   1199 	struct agp_memory *mem = handle;
   1200 
   1201 	mi->ami_size = mem->am_size;
   1202 	mi->ami_physical = mem->am_physical;
   1203 	mi->ami_offset = mem->am_offset;
   1204 	mi->ami_is_bound = mem->am_is_bound;
   1205 }
   1206 
   1207 int
   1208 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1209 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1210 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1211 
   1212 {
   1213 	int error, level = 0;
   1214 
   1215 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1216 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1217 		goto out;
   1218 	level++;
   1219 
   1220 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1221 			BUS_DMA_NOWAIT | flags)) != 0)
   1222 		goto out;
   1223 	level++;
   1224 
   1225 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1226 			BUS_DMA_NOWAIT, mapp)) != 0)
   1227 		goto out;
   1228 	level++;
   1229 
   1230 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1231 			BUS_DMA_NOWAIT)) != 0)
   1232 		goto out;
   1233 
   1234 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1235 
   1236 	return 0;
   1237 out:
   1238 	switch (level) {
   1239 	case 3:
   1240 		bus_dmamap_destroy(tag, *mapp);
   1241 		/* FALLTHROUGH */
   1242 	case 2:
   1243 		bus_dmamem_unmap(tag, *vaddr, size);
   1244 		/* FALLTHROUGH */
   1245 	case 1:
   1246 		bus_dmamem_free(tag, seg, *rseg);
   1247 		break;
   1248 	default:
   1249 		break;
   1250 	}
   1251 
   1252 	return error;
   1253 }
   1254 
   1255 void
   1256 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1257 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1258 {
   1259 	bus_dmamap_unload(tag, map);
   1260 	bus_dmamap_destroy(tag, map);
   1261 	bus_dmamem_unmap(tag, vaddr, size);
   1262 	bus_dmamem_free(tag, seg, nseg);
   1263 }
   1264 
   1265 static bool
   1266 agp_resume(device_t dv, const pmf_qual_t *qual)
   1267 {
   1268 	agp_flush_cache();
   1269 
   1270 	return true;
   1271 }
   1272