agp.c revision 1.79 1 /* $NetBSD: agp.c,v 1.79 2011/04/04 20:37:56 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.79 2011/04/04 20:37:56 dyoung Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/agpvar.h>
85 #include <dev/pci/agpreg.h>
86 #include <dev/pci/pcidevs.h>
87
88 #include <sys/bus.h>
89
90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91
92 /* Helper functions for implementing chipset mini drivers. */
93 /* XXXfvdl get rid of this one. */
94
95 extern struct cfdriver agp_cd;
96
97 static int agp_info_user(struct agp_softc *, agp_info *);
98 static int agp_setup_user(struct agp_softc *, agp_setup *);
99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 static int agp_deallocate_user(struct agp_softc *, int);
101 static int agp_bind_user(struct agp_softc *, agp_bind *);
102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 static int agp_generic_enable_v2(struct agp_softc *,
104 const struct pci_attach_args *, int, u_int32_t);
105 static int agp_generic_enable_v3(struct agp_softc *,
106 const struct pci_attach_args *, int, u_int32_t);
107 static int agpdev_match(const struct pci_attach_args *);
108 static bool agp_resume(device_t, const pmf_qual_t *);
109
110 #include "agp_ali.h"
111 #include "agp_amd.h"
112 #include "agp_i810.h"
113 #include "agp_intel.h"
114 #include "agp_sis.h"
115 #include "agp_via.h"
116 #include "agp_amd64.h"
117
118 const struct agp_product {
119 uint32_t ap_vendor;
120 uint32_t ap_product;
121 int (*ap_match)(const struct pci_attach_args *);
122 int (*ap_attach)(device_t, device_t, void *);
123 } agp_products[] = {
124 #if NAGP_AMD64 > 0
125 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
126 agp_amd64_match, agp_amd64_attach },
127 #endif
128
129 #if NAGP_ALI > 0
130 { PCI_VENDOR_ALI, -1,
131 NULL, agp_ali_attach },
132 #endif
133
134 #if NAGP_AMD64 > 0
135 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
136 agp_amd64_match, agp_amd64_attach },
137 #endif
138
139 #if NAGP_AMD > 0
140 { PCI_VENDOR_AMD, -1,
141 agp_amd_match, agp_amd_attach },
142 #endif
143
144 #if NAGP_I810 > 0
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
186 NULL, agp_i810_attach },
187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
188 NULL, agp_i810_attach },
189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
190 NULL, agp_i810_attach },
191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB,
192 NULL, agp_i810_attach },
193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB,
194 NULL, agp_i810_attach },
195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB,
196 NULL, agp_i810_attach },
197 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB,
198 NULL, agp_i810_attach },
199 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB,
200 NULL, agp_i810_attach },
201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB,
202 NULL, agp_i810_attach },
203 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB,
204 NULL, agp_i810_attach },
205 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
206 NULL, agp_i810_attach },
207 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
208 NULL, agp_i810_attach },
209 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
210 NULL, agp_i810_attach },
211 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
212 NULL, agp_i810_attach },
213 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_HB,
214 NULL, agp_i810_attach },
215 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
216 NULL, agp_i810_attach },
217 #endif
218
219 #if NAGP_INTEL > 0
220 { PCI_VENDOR_INTEL, -1,
221 NULL, agp_intel_attach },
222 #endif
223
224 #if NAGP_AMD64 > 0
225 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
226 agp_amd64_match, agp_amd64_attach },
227 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
228 agp_amd64_match, agp_amd64_attach },
229 #endif
230
231 #if NAGP_AMD64 > 0
232 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
233 agp_amd64_match, agp_amd64_attach },
234 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
235 agp_amd64_match, agp_amd64_attach },
236 #endif
237
238 #if NAGP_SIS > 0
239 { PCI_VENDOR_SIS, -1,
240 NULL, agp_sis_attach },
241 #endif
242
243 #if NAGP_AMD64 > 0
244 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
245 agp_amd64_match, agp_amd64_attach },
246 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
247 agp_amd64_match, agp_amd64_attach },
248 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
249 agp_amd64_match, agp_amd64_attach },
250 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
251 agp_amd64_match, agp_amd64_attach },
252 #endif
253
254 #if NAGP_VIA > 0
255 { PCI_VENDOR_VIATECH, -1,
256 NULL, agp_via_attach },
257 #endif
258
259 { 0, 0,
260 NULL, NULL },
261 };
262
263 static const struct agp_product *
264 agp_lookup(const struct pci_attach_args *pa)
265 {
266 const struct agp_product *ap;
267
268 /* First find the vendor. */
269 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
270 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
271 break;
272 }
273
274 if (ap->ap_attach == NULL)
275 return (NULL);
276
277 /* Now find the product within the vendor's domain. */
278 for (; ap->ap_attach != NULL; ap++) {
279 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
280 /* Ran out of this vendor's section of the table. */
281 return (NULL);
282 }
283 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
284 /* Exact match. */
285 break;
286 }
287 if (ap->ap_product == (uint32_t) -1) {
288 /* Wildcard match. */
289 break;
290 }
291 }
292
293 if (ap->ap_attach == NULL)
294 return (NULL);
295
296 /* Now let the product-specific driver filter the match. */
297 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
298 return (NULL);
299
300 return (ap);
301 }
302
303 static int
304 agpmatch(device_t parent, cfdata_t match, void *aux)
305 {
306 struct agpbus_attach_args *apa = aux;
307 struct pci_attach_args *pa = &apa->apa_pci_args;
308
309 if (agp_lookup(pa) == NULL)
310 return (0);
311
312 return (1);
313 }
314
315 static const int agp_max[][2] = {
316 {0, 0},
317 {32, 4},
318 {64, 28},
319 {128, 96},
320 {256, 204},
321 {512, 440},
322 {1024, 942},
323 {2048, 1920},
324 {4096, 3932}
325 };
326 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
327
328 static void
329 agpattach(device_t parent, device_t self, void *aux)
330 {
331 struct agpbus_attach_args *apa = aux;
332 struct pci_attach_args *pa = &apa->apa_pci_args;
333 struct agp_softc *sc = device_private(self);
334 const struct agp_product *ap;
335 int memsize, i, ret;
336
337 ap = agp_lookup(pa);
338 KASSERT(ap != NULL);
339
340 aprint_naive(": AGP controller\n");
341
342 sc->as_dev = self;
343 sc->as_dmat = pa->pa_dmat;
344 sc->as_pc = pa->pa_pc;
345 sc->as_tag = pa->pa_tag;
346 sc->as_id = pa->pa_id;
347
348 /*
349 * Work out an upper bound for agp memory allocation. This
350 * uses a heuristic table from the Linux driver.
351 */
352 memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
353 for (i = 0; i < agp_max_size; i++) {
354 if (memsize <= agp_max[i][0])
355 break;
356 }
357 if (i == agp_max_size)
358 i = agp_max_size - 1;
359 sc->as_maxmem = agp_max[i][1] << 20U;
360
361 /*
362 * The mutex is used to prevent re-entry to
363 * agp_generic_bind_memory() since that function can sleep.
364 */
365 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
366
367 TAILQ_INIT(&sc->as_memory);
368
369 ret = (*ap->ap_attach)(parent, self, pa);
370 if (ret == 0)
371 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
372 (unsigned long)sc->as_apaddr,
373 (unsigned long)AGP_GET_APERTURE(sc));
374 else
375 sc->as_chipc = NULL;
376
377 if (!device_pmf_is_registered(self)) {
378 if (!pmf_device_register(self, NULL, agp_resume))
379 aprint_error_dev(self, "couldn't establish power "
380 "handler\n");
381 }
382 }
383
384 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
385 agpmatch, agpattach, NULL, NULL);
386
387 int
388 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
389 {
390 /*
391 * Find the aperture. Don't map it (yet), this would
392 * eat KVA.
393 */
394 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
395 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
396 &sc->as_apflags) != 0)
397 return ENXIO;
398
399 sc->as_apt = pa->pa_memt;
400
401 return 0;
402 }
403
404 struct agp_gatt *
405 agp_alloc_gatt(struct agp_softc *sc)
406 {
407 u_int32_t apsize = AGP_GET_APERTURE(sc);
408 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
409 struct agp_gatt *gatt;
410 void *virtual;
411 int dummyseg;
412
413 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
414 if (!gatt)
415 return NULL;
416 gatt->ag_entries = entries;
417
418 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
419 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
420 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
421 free(gatt, M_AGP);
422 return NULL;
423 }
424 gatt->ag_virtual = (uint32_t *)virtual;
425
426 gatt->ag_size = entries * sizeof(u_int32_t);
427 memset(gatt->ag_virtual, 0, gatt->ag_size);
428 agp_flush_cache();
429
430 return gatt;
431 }
432
433 void
434 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
435 {
436 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
437 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
438 free(gatt, M_AGP);
439 }
440
441
442 int
443 agp_generic_detach(struct agp_softc *sc)
444 {
445 mutex_destroy(&sc->as_mtx);
446 agp_flush_cache();
447 return 0;
448 }
449
450 static int
451 agpdev_match(const struct pci_attach_args *pa)
452 {
453 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
454 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
455 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
456 NULL, NULL))
457 return 1;
458
459 return 0;
460 }
461
462 int
463 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
464 {
465 struct pci_attach_args pa;
466 pcireg_t tstatus, mstatus;
467 int capoff;
468
469 if (pci_find_device(&pa, agpdev_match) == 0 ||
470 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
471 &capoff, NULL) == 0) {
472 aprint_error_dev(sc->as_dev, "can't find display\n");
473 return ENXIO;
474 }
475
476 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
477 sc->as_capoff + AGP_STATUS);
478 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
479 capoff + AGP_STATUS);
480
481 if (AGP_MODE_GET_MODE_3(mode) &&
482 AGP_MODE_GET_MODE_3(tstatus) &&
483 AGP_MODE_GET_MODE_3(mstatus))
484 return agp_generic_enable_v3(sc, &pa, capoff, mode);
485 else
486 return agp_generic_enable_v2(sc, &pa, capoff, mode);
487 }
488
489 static int
490 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
491 int capoff, u_int32_t mode)
492 {
493 pcireg_t tstatus, mstatus;
494 pcireg_t command;
495 int rq, sba, fw, rate;
496
497 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
498 sc->as_capoff + AGP_STATUS);
499 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
500 capoff + AGP_STATUS);
501
502 /* Set RQ to the min of mode, tstatus and mstatus */
503 rq = AGP_MODE_GET_RQ(mode);
504 if (AGP_MODE_GET_RQ(tstatus) < rq)
505 rq = AGP_MODE_GET_RQ(tstatus);
506 if (AGP_MODE_GET_RQ(mstatus) < rq)
507 rq = AGP_MODE_GET_RQ(mstatus);
508
509 /* Set SBA if all three can deal with SBA */
510 sba = (AGP_MODE_GET_SBA(tstatus)
511 & AGP_MODE_GET_SBA(mstatus)
512 & AGP_MODE_GET_SBA(mode));
513
514 /* Similar for FW */
515 fw = (AGP_MODE_GET_FW(tstatus)
516 & AGP_MODE_GET_FW(mstatus)
517 & AGP_MODE_GET_FW(mode));
518
519 /* Figure out the max rate */
520 rate = (AGP_MODE_GET_RATE(tstatus)
521 & AGP_MODE_GET_RATE(mstatus)
522 & AGP_MODE_GET_RATE(mode));
523 if (rate & AGP_MODE_V2_RATE_4x)
524 rate = AGP_MODE_V2_RATE_4x;
525 else if (rate & AGP_MODE_V2_RATE_2x)
526 rate = AGP_MODE_V2_RATE_2x;
527 else
528 rate = AGP_MODE_V2_RATE_1x;
529
530 /* Construct the new mode word and tell the hardware */
531 command = AGP_MODE_SET_RQ(0, rq);
532 command = AGP_MODE_SET_SBA(command, sba);
533 command = AGP_MODE_SET_FW(command, fw);
534 command = AGP_MODE_SET_RATE(command, rate);
535 command = AGP_MODE_SET_AGP(command, 1);
536 pci_conf_write(sc->as_pc, sc->as_tag,
537 sc->as_capoff + AGP_COMMAND, command);
538 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
539
540 return 0;
541 }
542
543 static int
544 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
545 int capoff, u_int32_t mode)
546 {
547 pcireg_t tstatus, mstatus;
548 pcireg_t command;
549 int rq, sba, fw, rate, arqsz, cal;
550
551 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
552 sc->as_capoff + AGP_STATUS);
553 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
554 capoff + AGP_STATUS);
555
556 /* Set RQ to the min of mode, tstatus and mstatus */
557 rq = AGP_MODE_GET_RQ(mode);
558 if (AGP_MODE_GET_RQ(tstatus) < rq)
559 rq = AGP_MODE_GET_RQ(tstatus);
560 if (AGP_MODE_GET_RQ(mstatus) < rq)
561 rq = AGP_MODE_GET_RQ(mstatus);
562
563 /*
564 * ARQSZ - Set the value to the maximum one.
565 * Don't allow the mode register to override values.
566 */
567 arqsz = AGP_MODE_GET_ARQSZ(mode);
568 if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
569 arqsz = AGP_MODE_GET_ARQSZ(tstatus);
570 if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
571 arqsz = AGP_MODE_GET_ARQSZ(mstatus);
572
573 /* Calibration cycle - don't allow override by mode register */
574 cal = AGP_MODE_GET_CAL(tstatus);
575 if (AGP_MODE_GET_CAL(mstatus) < cal)
576 cal = AGP_MODE_GET_CAL(mstatus);
577
578 /* SBA must be supported for AGP v3. */
579 sba = 1;
580
581 /* Set FW if all three support it. */
582 fw = (AGP_MODE_GET_FW(tstatus)
583 & AGP_MODE_GET_FW(mstatus)
584 & AGP_MODE_GET_FW(mode));
585
586 /* Figure out the max rate */
587 rate = (AGP_MODE_GET_RATE(tstatus)
588 & AGP_MODE_GET_RATE(mstatus)
589 & AGP_MODE_GET_RATE(mode));
590 if (rate & AGP_MODE_V3_RATE_8x)
591 rate = AGP_MODE_V3_RATE_8x;
592 else
593 rate = AGP_MODE_V3_RATE_4x;
594
595 /* Construct the new mode word and tell the hardware */
596 command = AGP_MODE_SET_RQ(0, rq);
597 command = AGP_MODE_SET_ARQSZ(command, arqsz);
598 command = AGP_MODE_SET_CAL(command, cal);
599 command = AGP_MODE_SET_SBA(command, sba);
600 command = AGP_MODE_SET_FW(command, fw);
601 command = AGP_MODE_SET_RATE(command, rate);
602 command = AGP_MODE_SET_AGP(command, 1);
603 pci_conf_write(sc->as_pc, sc->as_tag,
604 sc->as_capoff + AGP_COMMAND, command);
605 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
606
607 return 0;
608 }
609
610 struct agp_memory *
611 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
612 {
613 struct agp_memory *mem;
614
615 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
616 return 0;
617
618 if (sc->as_allocated + size > sc->as_maxmem)
619 return 0;
620
621 if (type != 0) {
622 printf("agp_generic_alloc_memory: unsupported type %d\n",
623 type);
624 return 0;
625 }
626
627 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
628 if (mem == NULL)
629 return NULL;
630
631 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
632 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
633 free(mem, M_AGP);
634 return NULL;
635 }
636
637 mem->am_id = sc->as_nextid++;
638 mem->am_size = size;
639 mem->am_type = 0;
640 mem->am_physical = 0;
641 mem->am_offset = 0;
642 mem->am_is_bound = 0;
643 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
644 sc->as_allocated += size;
645
646 return mem;
647 }
648
649 int
650 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
651 {
652 if (mem->am_is_bound)
653 return EBUSY;
654
655 sc->as_allocated -= mem->am_size;
656 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
657 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
658 free(mem, M_AGP);
659 return 0;
660 }
661
662 int
663 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
664 off_t offset)
665 {
666 off_t i, k;
667 bus_size_t done, j;
668 int error;
669 bus_dma_segment_t *segs, *seg;
670 bus_addr_t pa;
671 int contigpages, nseg;
672
673 mutex_enter(&sc->as_mtx);
674
675 if (mem->am_is_bound) {
676 aprint_error_dev(sc->as_dev, "memory already bound\n");
677 mutex_exit(&sc->as_mtx);
678 return EINVAL;
679 }
680
681 if (offset < 0
682 || (offset & (AGP_PAGE_SIZE - 1)) != 0
683 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
684 aprint_error_dev(sc->as_dev,
685 "binding memory at bad offset %#lx\n",
686 (unsigned long) offset);
687 mutex_exit(&sc->as_mtx);
688 return EINVAL;
689 }
690
691 /*
692 * XXXfvdl
693 * The memory here needs to be directly accessable from the
694 * AGP video card, so it should be allocated using bus_dma.
695 * However, it need not be contiguous, since individual pages
696 * are translated using the GATT.
697 *
698 * Using a large chunk of contiguous memory may get in the way
699 * of other subsystems that may need one, so we try to be friendly
700 * and ask for allocation in chunks of a minimum of 8 pages
701 * of contiguous memory on average, falling back to 4, 2 and 1
702 * if really needed. Larger chunks are preferred, since allocating
703 * a bus_dma_segment per page would be overkill.
704 */
705
706 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
707 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
708 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
709 if (segs == NULL) {
710 mutex_exit(&sc->as_mtx);
711 return ENOMEM;
712 }
713 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
714 segs, nseg, &mem->am_nseg,
715 contigpages > 1 ?
716 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
717 free(segs, M_AGP);
718 continue;
719 }
720 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
721 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
722 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
723 free(segs, M_AGP);
724 continue;
725 }
726 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
727 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
728 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
729 mem->am_size);
730 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
731 free(segs, M_AGP);
732 continue;
733 }
734 mem->am_dmaseg = segs;
735 break;
736 }
737
738 if (contigpages == 0) {
739 mutex_exit(&sc->as_mtx);
740 return ENOMEM;
741 }
742
743
744 /*
745 * Bind the individual pages and flush the chipset's
746 * TLB.
747 */
748 done = 0;
749 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
750 seg = &mem->am_dmamap->dm_segs[i];
751 /*
752 * Install entries in the GATT, making sure that if
753 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
754 * aligned to PAGE_SIZE, we don't modify too many GATT
755 * entries.
756 */
757 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
758 j += AGP_PAGE_SIZE) {
759 pa = seg->ds_addr + j;
760 AGP_DPF(("binding offset %#lx to pa %#lx\n",
761 (unsigned long)(offset + done + j),
762 (unsigned long)pa));
763 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
764 if (error) {
765 /*
766 * Bail out. Reverse all the mappings
767 * and unwire the pages.
768 */
769 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
770 AGP_UNBIND_PAGE(sc, offset + k);
771
772 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
773 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
774 mem->am_size);
775 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
776 mem->am_nseg);
777 free(mem->am_dmaseg, M_AGP);
778 mutex_exit(&sc->as_mtx);
779 return error;
780 }
781 }
782 done += seg->ds_len;
783 }
784
785 /*
786 * Flush the CPU cache since we are providing a new mapping
787 * for these pages.
788 */
789 agp_flush_cache();
790
791 /*
792 * Make sure the chipset gets the new mappings.
793 */
794 AGP_FLUSH_TLB(sc);
795
796 mem->am_offset = offset;
797 mem->am_is_bound = 1;
798
799 mutex_exit(&sc->as_mtx);
800
801 return 0;
802 }
803
804 int
805 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
806 {
807 int i;
808
809 mutex_enter(&sc->as_mtx);
810
811 if (!mem->am_is_bound) {
812 aprint_error_dev(sc->as_dev, "memory is not bound\n");
813 mutex_exit(&sc->as_mtx);
814 return EINVAL;
815 }
816
817
818 /*
819 * Unbind the individual pages and flush the chipset's
820 * TLB. Unwire the pages so they can be swapped.
821 */
822 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
823 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
824
825 agp_flush_cache();
826 AGP_FLUSH_TLB(sc);
827
828 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
829 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
830 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
831
832 free(mem->am_dmaseg, M_AGP);
833
834 mem->am_offset = 0;
835 mem->am_is_bound = 0;
836
837 mutex_exit(&sc->as_mtx);
838
839 return 0;
840 }
841
842 /* Helper functions for implementing user/kernel api */
843
844 static int
845 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
846 {
847 if (sc->as_state != AGP_ACQUIRE_FREE)
848 return EBUSY;
849 sc->as_state = state;
850
851 return 0;
852 }
853
854 static int
855 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
856 {
857
858 if (sc->as_state == AGP_ACQUIRE_FREE)
859 return 0;
860
861 if (sc->as_state != state)
862 return EBUSY;
863
864 sc->as_state = AGP_ACQUIRE_FREE;
865 return 0;
866 }
867
868 static struct agp_memory *
869 agp_find_memory(struct agp_softc *sc, int id)
870 {
871 struct agp_memory *mem;
872
873 AGP_DPF(("searching for memory block %d\n", id));
874 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
875 AGP_DPF(("considering memory block %d\n", mem->am_id));
876 if (mem->am_id == id)
877 return mem;
878 }
879 return 0;
880 }
881
882 /* Implementation of the userland ioctl api */
883
884 static int
885 agp_info_user(struct agp_softc *sc, agp_info *info)
886 {
887 memset(info, 0, sizeof *info);
888 info->bridge_id = sc->as_id;
889 if (sc->as_capoff != 0)
890 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
891 sc->as_capoff + AGP_STATUS);
892 else
893 info->agp_mode = 0; /* i810 doesn't have real AGP */
894 info->aper_base = sc->as_apaddr;
895 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
896 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
897 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
898
899 return 0;
900 }
901
902 static int
903 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
904 {
905 return AGP_ENABLE(sc, setup->agp_mode);
906 }
907
908 static int
909 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
910 {
911 struct agp_memory *mem;
912
913 mem = AGP_ALLOC_MEMORY(sc,
914 alloc->type,
915 alloc->pg_count << AGP_PAGE_SHIFT);
916 if (mem) {
917 alloc->key = mem->am_id;
918 alloc->physical = mem->am_physical;
919 return 0;
920 } else {
921 return ENOMEM;
922 }
923 }
924
925 static int
926 agp_deallocate_user(struct agp_softc *sc, int id)
927 {
928 struct agp_memory *mem = agp_find_memory(sc, id);
929
930 if (mem) {
931 AGP_FREE_MEMORY(sc, mem);
932 return 0;
933 } else {
934 return ENOENT;
935 }
936 }
937
938 static int
939 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
940 {
941 struct agp_memory *mem = agp_find_memory(sc, bind->key);
942
943 if (!mem)
944 return ENOENT;
945
946 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
947 }
948
949 static int
950 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
951 {
952 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
953
954 if (!mem)
955 return ENOENT;
956
957 return AGP_UNBIND_MEMORY(sc, mem);
958 }
959
960 static int
961 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
962 {
963 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
964
965 if (sc == NULL)
966 return ENXIO;
967
968 if (sc->as_chipc == NULL)
969 return ENXIO;
970
971 if (!sc->as_isopen)
972 sc->as_isopen = 1;
973 else
974 return EBUSY;
975
976 return 0;
977 }
978
979 static int
980 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
981 {
982 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
983 struct agp_memory *mem;
984
985 if (sc == NULL)
986 return ENODEV;
987
988 /*
989 * Clear the GATT and force release on last close
990 */
991 if (sc->as_state == AGP_ACQUIRE_USER) {
992 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
993 if (mem->am_is_bound) {
994 printf("agpclose: mem %d is bound\n",
995 mem->am_id);
996 AGP_UNBIND_MEMORY(sc, mem);
997 }
998 /*
999 * XXX it is not documented, but if the protocol allows
1000 * allocate->acquire->bind, it would be possible that
1001 * memory ranges are allocated by the kernel here,
1002 * which we shouldn't free. We'd have to keep track of
1003 * the memory range's owner.
1004 * The kernel API is unsed yet, so we get away with
1005 * freeing all.
1006 */
1007 AGP_FREE_MEMORY(sc, mem);
1008 }
1009 agp_release_helper(sc, AGP_ACQUIRE_USER);
1010 }
1011 sc->as_isopen = 0;
1012
1013 return 0;
1014 }
1015
1016 static int
1017 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
1018 {
1019 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1020
1021 if (sc == NULL)
1022 return ENODEV;
1023
1024 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
1025 return EPERM;
1026
1027 switch (cmd) {
1028 case AGPIOC_INFO:
1029 return agp_info_user(sc, (agp_info *) data);
1030
1031 case AGPIOC_ACQUIRE:
1032 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
1033
1034 case AGPIOC_RELEASE:
1035 return agp_release_helper(sc, AGP_ACQUIRE_USER);
1036
1037 case AGPIOC_SETUP:
1038 return agp_setup_user(sc, (agp_setup *)data);
1039
1040 #ifdef __x86_64__
1041 {
1042 /*
1043 * Handle paddr_t change from 32 bit for non PAE kernels
1044 * to 64 bit.
1045 */
1046 #define AGPIOC_OALLOCATE _IOWR(AGPIOC_BASE, 6, agp_oallocate)
1047
1048 typedef struct _agp_oallocate {
1049 int key; /* tag of allocation */
1050 size_t pg_count; /* number of pages */
1051 uint32_t type; /* 0 == normal, other devspec */
1052 u_long physical; /* device specific (some devices
1053 * need a phys address of the
1054 * actual page behind the gatt
1055 * table) */
1056 } agp_oallocate;
1057
1058 case AGPIOC_OALLOCATE: {
1059 int ret;
1060 agp_allocate aga;
1061 agp_oallocate *oaga = data;
1062
1063 aga.type = oaga->type;
1064 aga.pg_count = oaga->pg_count;
1065
1066 if ((ret = agp_allocate_user(sc, &aga)) == 0) {
1067 oaga->key = aga.key;
1068 oaga->physical = (u_long)aga.physical;
1069 }
1070
1071 return ret;
1072 }
1073 }
1074 #endif
1075 case AGPIOC_ALLOCATE:
1076 return agp_allocate_user(sc, (agp_allocate *)data);
1077
1078 case AGPIOC_DEALLOCATE:
1079 return agp_deallocate_user(sc, *(int *) data);
1080
1081 case AGPIOC_BIND:
1082 return agp_bind_user(sc, (agp_bind *)data);
1083
1084 case AGPIOC_UNBIND:
1085 return agp_unbind_user(sc, (agp_unbind *)data);
1086
1087 }
1088
1089 return EINVAL;
1090 }
1091
1092 static paddr_t
1093 agpmmap(dev_t dev, off_t offset, int prot)
1094 {
1095 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1096
1097 if (sc == NULL)
1098 return ENODEV;
1099
1100 if (offset > AGP_GET_APERTURE(sc))
1101 return -1;
1102
1103 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1104 BUS_SPACE_MAP_LINEAR));
1105 }
1106
1107 const struct cdevsw agp_cdevsw = {
1108 agpopen, agpclose, noread, nowrite, agpioctl,
1109 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
1110 };
1111
1112 /* Implementation of the kernel api */
1113
1114 void *
1115 agp_find_device(int unit)
1116 {
1117 return device_lookup_private(&agp_cd, unit);
1118 }
1119
1120 enum agp_acquire_state
1121 agp_state(void *devcookie)
1122 {
1123 struct agp_softc *sc = devcookie;
1124
1125 return sc->as_state;
1126 }
1127
1128 void
1129 agp_get_info(void *devcookie, struct agp_info *info)
1130 {
1131 struct agp_softc *sc = devcookie;
1132
1133 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1134 sc->as_capoff + AGP_STATUS);
1135 info->ai_aperture_base = sc->as_apaddr;
1136 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
1137 info->ai_memory_allowed = sc->as_maxmem;
1138 info->ai_memory_used = sc->as_allocated;
1139 }
1140
1141 int
1142 agp_acquire(void *dev)
1143 {
1144 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1145 }
1146
1147 int
1148 agp_release(void *dev)
1149 {
1150 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1151 }
1152
1153 int
1154 agp_enable(void *dev, u_int32_t mode)
1155 {
1156 struct agp_softc *sc = dev;
1157
1158 return AGP_ENABLE(sc, mode);
1159 }
1160
1161 void *
1162 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1163 {
1164 struct agp_softc *sc = dev;
1165
1166 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1167 }
1168
1169 void
1170 agp_free_memory(void *dev, void *handle)
1171 {
1172 struct agp_softc *sc = dev;
1173 struct agp_memory *mem = handle;
1174
1175 AGP_FREE_MEMORY(sc, mem);
1176 }
1177
1178 int
1179 agp_bind_memory(void *dev, void *handle, off_t offset)
1180 {
1181 struct agp_softc *sc = dev;
1182 struct agp_memory *mem = handle;
1183
1184 return AGP_BIND_MEMORY(sc, mem, offset);
1185 }
1186
1187 int
1188 agp_unbind_memory(void *dev, void *handle)
1189 {
1190 struct agp_softc *sc = dev;
1191 struct agp_memory *mem = handle;
1192
1193 return AGP_UNBIND_MEMORY(sc, mem);
1194 }
1195
1196 void
1197 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1198 {
1199 struct agp_memory *mem = handle;
1200
1201 mi->ami_size = mem->am_size;
1202 mi->ami_physical = mem->am_physical;
1203 mi->ami_offset = mem->am_offset;
1204 mi->ami_is_bound = mem->am_is_bound;
1205 }
1206
1207 int
1208 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1209 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1210 bus_dma_segment_t *seg, int nseg, int *rseg)
1211
1212 {
1213 int error, level = 0;
1214
1215 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1216 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1217 goto out;
1218 level++;
1219
1220 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1221 BUS_DMA_NOWAIT | flags)) != 0)
1222 goto out;
1223 level++;
1224
1225 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1226 BUS_DMA_NOWAIT, mapp)) != 0)
1227 goto out;
1228 level++;
1229
1230 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1231 BUS_DMA_NOWAIT)) != 0)
1232 goto out;
1233
1234 *baddr = (*mapp)->dm_segs[0].ds_addr;
1235
1236 return 0;
1237 out:
1238 switch (level) {
1239 case 3:
1240 bus_dmamap_destroy(tag, *mapp);
1241 /* FALLTHROUGH */
1242 case 2:
1243 bus_dmamem_unmap(tag, *vaddr, size);
1244 /* FALLTHROUGH */
1245 case 1:
1246 bus_dmamem_free(tag, seg, *rseg);
1247 break;
1248 default:
1249 break;
1250 }
1251
1252 return error;
1253 }
1254
1255 void
1256 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1257 void *vaddr, bus_dma_segment_t *seg, int nseg)
1258 {
1259 bus_dmamap_unload(tag, map);
1260 bus_dmamap_destroy(tag, map);
1261 bus_dmamem_unmap(tag, vaddr, size);
1262 bus_dmamem_free(tag, seg, nseg);
1263 }
1264
1265 static bool
1266 agp_resume(device_t dv, const pmf_qual_t *qual)
1267 {
1268 agp_flush_cache();
1269
1270 return true;
1271 }
1272