agp.c revision 1.81 1 /* $NetBSD: agp.c,v 1.81 2014/03/16 05:20:28 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.81 2014/03/16 05:20:28 dholland Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/agpvar.h>
85 #include <dev/pci/agpreg.h>
86 #include <dev/pci/pcidevs.h>
87
88 #include <sys/bus.h>
89
90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91
92 /* Helper functions for implementing chipset mini drivers. */
93 /* XXXfvdl get rid of this one. */
94
95 extern struct cfdriver agp_cd;
96
97 static int agp_info_user(struct agp_softc *, agp_info *);
98 static int agp_setup_user(struct agp_softc *, agp_setup *);
99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 static int agp_deallocate_user(struct agp_softc *, int);
101 static int agp_bind_user(struct agp_softc *, agp_bind *);
102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 static int agp_generic_enable_v2(struct agp_softc *,
104 const struct pci_attach_args *, int, u_int32_t);
105 static int agp_generic_enable_v3(struct agp_softc *,
106 const struct pci_attach_args *, int, u_int32_t);
107 static int agpdev_match(const struct pci_attach_args *);
108 static bool agp_resume(device_t, const pmf_qual_t *);
109
110 #include "agp_ali.h"
111 #include "agp_amd.h"
112 #include "agp_i810.h"
113 #include "agp_intel.h"
114 #include "agp_sis.h"
115 #include "agp_via.h"
116 #include "agp_amd64.h"
117
118 const struct agp_product {
119 uint32_t ap_vendor;
120 uint32_t ap_product;
121 int (*ap_match)(const struct pci_attach_args *);
122 int (*ap_attach)(device_t, device_t, void *);
123 } agp_products[] = {
124 #if NAGP_AMD64 > 0
125 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
126 agp_amd64_match, agp_amd64_attach },
127 #endif
128
129 #if NAGP_ALI > 0
130 { PCI_VENDOR_ALI, -1,
131 NULL, agp_ali_attach },
132 #endif
133
134 #if NAGP_AMD64 > 0
135 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
136 agp_amd64_match, agp_amd64_attach },
137 #endif
138
139 #if NAGP_AMD > 0
140 { PCI_VENDOR_AMD, -1,
141 agp_amd_match, agp_amd_attach },
142 #endif
143
144 #if NAGP_I810 > 0
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
186 NULL, agp_i810_attach },
187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
188 NULL, agp_i810_attach },
189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
190 NULL, agp_i810_attach },
191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB,
192 NULL, agp_i810_attach },
193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB,
194 NULL, agp_i810_attach },
195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB,
196 NULL, agp_i810_attach },
197 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB,
198 NULL, agp_i810_attach },
199 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB,
200 NULL, agp_i810_attach },
201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB,
202 NULL, agp_i810_attach },
203 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB,
204 NULL, agp_i810_attach },
205 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
206 NULL, agp_i810_attach },
207 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
208 NULL, agp_i810_attach },
209 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
210 NULL, agp_i810_attach },
211 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
212 NULL, agp_i810_attach },
213 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_HB,
214 NULL, agp_i810_attach },
215 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
216 NULL, agp_i810_attach },
217 #endif
218
219 #if NAGP_INTEL > 0
220 { PCI_VENDOR_INTEL, -1,
221 NULL, agp_intel_attach },
222 #endif
223
224 #if NAGP_AMD64 > 0
225 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
226 agp_amd64_match, agp_amd64_attach },
227 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
228 agp_amd64_match, agp_amd64_attach },
229 #endif
230
231 #if NAGP_AMD64 > 0
232 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
233 agp_amd64_match, agp_amd64_attach },
234 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
235 agp_amd64_match, agp_amd64_attach },
236 #endif
237
238 #if NAGP_SIS > 0
239 { PCI_VENDOR_SIS, -1,
240 NULL, agp_sis_attach },
241 #endif
242
243 #if NAGP_AMD64 > 0
244 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
245 agp_amd64_match, agp_amd64_attach },
246 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
247 agp_amd64_match, agp_amd64_attach },
248 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
249 agp_amd64_match, agp_amd64_attach },
250 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
251 agp_amd64_match, agp_amd64_attach },
252 #endif
253
254 #if NAGP_VIA > 0
255 { PCI_VENDOR_VIATECH, -1,
256 NULL, agp_via_attach },
257 #endif
258
259 { 0, 0,
260 NULL, NULL },
261 };
262
263 static const struct agp_product *
264 agp_lookup(const struct pci_attach_args *pa)
265 {
266 const struct agp_product *ap;
267
268 /* First find the vendor. */
269 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
270 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
271 break;
272 }
273
274 if (ap->ap_attach == NULL)
275 return (NULL);
276
277 /* Now find the product within the vendor's domain. */
278 for (; ap->ap_attach != NULL; ap++) {
279 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
280 /* Ran out of this vendor's section of the table. */
281 return (NULL);
282 }
283 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
284 /* Exact match. */
285 break;
286 }
287 if (ap->ap_product == (uint32_t) -1) {
288 /* Wildcard match. */
289 break;
290 }
291 }
292
293 if (ap->ap_attach == NULL)
294 return (NULL);
295
296 /* Now let the product-specific driver filter the match. */
297 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
298 return (NULL);
299
300 return (ap);
301 }
302
303 static int
304 agpmatch(device_t parent, cfdata_t match, void *aux)
305 {
306 struct agpbus_attach_args *apa = aux;
307 struct pci_attach_args *pa = &apa->apa_pci_args;
308
309 if (agp_lookup(pa) == NULL)
310 return (0);
311
312 return (1);
313 }
314
315 static const int agp_max[][2] = {
316 {0, 0},
317 {32, 4},
318 {64, 28},
319 {128, 96},
320 {256, 204},
321 {512, 440},
322 {1024, 942},
323 {2048, 1920},
324 {4096, 3932}
325 };
326 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
327
328 static void
329 agpattach(device_t parent, device_t self, void *aux)
330 {
331 struct agpbus_attach_args *apa = aux;
332 struct pci_attach_args *pa = &apa->apa_pci_args;
333 struct agp_softc *sc = device_private(self);
334 const struct agp_product *ap;
335 int memsize, i, ret;
336
337 ap = agp_lookup(pa);
338 KASSERT(ap != NULL);
339
340 aprint_naive(": AGP controller\n");
341
342 sc->as_dev = self;
343 sc->as_dmat = pa->pa_dmat;
344 sc->as_pc = pa->pa_pc;
345 sc->as_tag = pa->pa_tag;
346 sc->as_id = pa->pa_id;
347
348 /*
349 * Work out an upper bound for agp memory allocation. This
350 * uses a heuristic table from the Linux driver.
351 */
352 memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
353 for (i = 0; i < agp_max_size; i++) {
354 if (memsize <= agp_max[i][0])
355 break;
356 }
357 if (i == agp_max_size)
358 i = agp_max_size - 1;
359 sc->as_maxmem = agp_max[i][1] << 20U;
360
361 /*
362 * The mutex is used to prevent re-entry to
363 * agp_generic_bind_memory() since that function can sleep.
364 */
365 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
366
367 TAILQ_INIT(&sc->as_memory);
368
369 ret = (*ap->ap_attach)(parent, self, pa);
370 if (ret == 0)
371 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
372 (unsigned long)sc->as_apaddr,
373 (unsigned long)AGP_GET_APERTURE(sc));
374 else
375 sc->as_chipc = NULL;
376
377 if (!pmf_device_register(self, NULL, agp_resume))
378 aprint_error_dev(self, "couldn't establish power handler\n");
379 }
380
381 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
382 agpmatch, agpattach, NULL, NULL);
383
384 int
385 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
386 {
387 /*
388 * Find the aperture. Don't map it (yet), this would
389 * eat KVA.
390 */
391 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
392 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
393 &sc->as_apflags) != 0)
394 return ENXIO;
395
396 sc->as_apt = pa->pa_memt;
397
398 return 0;
399 }
400
401 struct agp_gatt *
402 agp_alloc_gatt(struct agp_softc *sc)
403 {
404 u_int32_t apsize = AGP_GET_APERTURE(sc);
405 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
406 struct agp_gatt *gatt;
407 void *virtual;
408 int dummyseg;
409
410 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
411 if (!gatt)
412 return NULL;
413 gatt->ag_entries = entries;
414
415 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
416 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
417 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
418 free(gatt, M_AGP);
419 return NULL;
420 }
421 gatt->ag_virtual = (uint32_t *)virtual;
422
423 gatt->ag_size = entries * sizeof(u_int32_t);
424 memset(gatt->ag_virtual, 0, gatt->ag_size);
425 agp_flush_cache();
426
427 return gatt;
428 }
429
430 void
431 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
432 {
433 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
434 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
435 free(gatt, M_AGP);
436 }
437
438
439 int
440 agp_generic_detach(struct agp_softc *sc)
441 {
442 mutex_destroy(&sc->as_mtx);
443 agp_flush_cache();
444 return 0;
445 }
446
447 static int
448 agpdev_match(const struct pci_attach_args *pa)
449 {
450 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
451 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
452 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
453 NULL, NULL))
454 return 1;
455
456 return 0;
457 }
458
459 int
460 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
461 {
462 struct pci_attach_args pa;
463 pcireg_t tstatus, mstatus;
464 int capoff;
465
466 if (pci_find_device(&pa, agpdev_match) == 0 ||
467 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
468 &capoff, NULL) == 0) {
469 aprint_error_dev(sc->as_dev, "can't find display\n");
470 return ENXIO;
471 }
472
473 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
474 sc->as_capoff + AGP_STATUS);
475 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
476 capoff + AGP_STATUS);
477
478 if (AGP_MODE_GET_MODE_3(mode) &&
479 AGP_MODE_GET_MODE_3(tstatus) &&
480 AGP_MODE_GET_MODE_3(mstatus))
481 return agp_generic_enable_v3(sc, &pa, capoff, mode);
482 else
483 return agp_generic_enable_v2(sc, &pa, capoff, mode);
484 }
485
486 static int
487 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
488 int capoff, u_int32_t mode)
489 {
490 pcireg_t tstatus, mstatus;
491 pcireg_t command;
492 int rq, sba, fw, rate;
493
494 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
495 sc->as_capoff + AGP_STATUS);
496 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
497 capoff + AGP_STATUS);
498
499 /* Set RQ to the min of mode, tstatus and mstatus */
500 rq = AGP_MODE_GET_RQ(mode);
501 if (AGP_MODE_GET_RQ(tstatus) < rq)
502 rq = AGP_MODE_GET_RQ(tstatus);
503 if (AGP_MODE_GET_RQ(mstatus) < rq)
504 rq = AGP_MODE_GET_RQ(mstatus);
505
506 /* Set SBA if all three can deal with SBA */
507 sba = (AGP_MODE_GET_SBA(tstatus)
508 & AGP_MODE_GET_SBA(mstatus)
509 & AGP_MODE_GET_SBA(mode));
510
511 /* Similar for FW */
512 fw = (AGP_MODE_GET_FW(tstatus)
513 & AGP_MODE_GET_FW(mstatus)
514 & AGP_MODE_GET_FW(mode));
515
516 /* Figure out the max rate */
517 rate = (AGP_MODE_GET_RATE(tstatus)
518 & AGP_MODE_GET_RATE(mstatus)
519 & AGP_MODE_GET_RATE(mode));
520 if (rate & AGP_MODE_V2_RATE_4x)
521 rate = AGP_MODE_V2_RATE_4x;
522 else if (rate & AGP_MODE_V2_RATE_2x)
523 rate = AGP_MODE_V2_RATE_2x;
524 else
525 rate = AGP_MODE_V2_RATE_1x;
526
527 /* Construct the new mode word and tell the hardware */
528 command = AGP_MODE_SET_RQ(0, rq);
529 command = AGP_MODE_SET_SBA(command, sba);
530 command = AGP_MODE_SET_FW(command, fw);
531 command = AGP_MODE_SET_RATE(command, rate);
532 command = AGP_MODE_SET_AGP(command, 1);
533 pci_conf_write(sc->as_pc, sc->as_tag,
534 sc->as_capoff + AGP_COMMAND, command);
535 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
536
537 return 0;
538 }
539
540 static int
541 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
542 int capoff, u_int32_t mode)
543 {
544 pcireg_t tstatus, mstatus;
545 pcireg_t command;
546 int rq, sba, fw, rate, arqsz, cal;
547
548 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
549 sc->as_capoff + AGP_STATUS);
550 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
551 capoff + AGP_STATUS);
552
553 /* Set RQ to the min of mode, tstatus and mstatus */
554 rq = AGP_MODE_GET_RQ(mode);
555 if (AGP_MODE_GET_RQ(tstatus) < rq)
556 rq = AGP_MODE_GET_RQ(tstatus);
557 if (AGP_MODE_GET_RQ(mstatus) < rq)
558 rq = AGP_MODE_GET_RQ(mstatus);
559
560 /*
561 * ARQSZ - Set the value to the maximum one.
562 * Don't allow the mode register to override values.
563 */
564 arqsz = AGP_MODE_GET_ARQSZ(mode);
565 if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
566 arqsz = AGP_MODE_GET_ARQSZ(tstatus);
567 if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
568 arqsz = AGP_MODE_GET_ARQSZ(mstatus);
569
570 /* Calibration cycle - don't allow override by mode register */
571 cal = AGP_MODE_GET_CAL(tstatus);
572 if (AGP_MODE_GET_CAL(mstatus) < cal)
573 cal = AGP_MODE_GET_CAL(mstatus);
574
575 /* SBA must be supported for AGP v3. */
576 sba = 1;
577
578 /* Set FW if all three support it. */
579 fw = (AGP_MODE_GET_FW(tstatus)
580 & AGP_MODE_GET_FW(mstatus)
581 & AGP_MODE_GET_FW(mode));
582
583 /* Figure out the max rate */
584 rate = (AGP_MODE_GET_RATE(tstatus)
585 & AGP_MODE_GET_RATE(mstatus)
586 & AGP_MODE_GET_RATE(mode));
587 if (rate & AGP_MODE_V3_RATE_8x)
588 rate = AGP_MODE_V3_RATE_8x;
589 else
590 rate = AGP_MODE_V3_RATE_4x;
591
592 /* Construct the new mode word and tell the hardware */
593 command = AGP_MODE_SET_RQ(0, rq);
594 command = AGP_MODE_SET_ARQSZ(command, arqsz);
595 command = AGP_MODE_SET_CAL(command, cal);
596 command = AGP_MODE_SET_SBA(command, sba);
597 command = AGP_MODE_SET_FW(command, fw);
598 command = AGP_MODE_SET_RATE(command, rate);
599 command = AGP_MODE_SET_AGP(command, 1);
600 pci_conf_write(sc->as_pc, sc->as_tag,
601 sc->as_capoff + AGP_COMMAND, command);
602 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
603
604 return 0;
605 }
606
607 struct agp_memory *
608 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
609 {
610 struct agp_memory *mem;
611
612 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
613 return 0;
614
615 if (sc->as_allocated + size > sc->as_maxmem)
616 return 0;
617
618 if (type != 0) {
619 printf("agp_generic_alloc_memory: unsupported type %d\n",
620 type);
621 return 0;
622 }
623
624 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
625 if (mem == NULL)
626 return NULL;
627
628 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
629 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
630 free(mem, M_AGP);
631 return NULL;
632 }
633
634 mem->am_id = sc->as_nextid++;
635 mem->am_size = size;
636 mem->am_type = 0;
637 mem->am_physical = 0;
638 mem->am_offset = 0;
639 mem->am_is_bound = 0;
640 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
641 sc->as_allocated += size;
642
643 return mem;
644 }
645
646 int
647 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
648 {
649 if (mem->am_is_bound)
650 return EBUSY;
651
652 sc->as_allocated -= mem->am_size;
653 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
654 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
655 free(mem, M_AGP);
656 return 0;
657 }
658
659 int
660 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
661 off_t offset)
662 {
663 off_t i, k;
664 bus_size_t done, j;
665 int error;
666 bus_dma_segment_t *segs, *seg;
667 bus_addr_t pa;
668 int contigpages, nseg;
669
670 mutex_enter(&sc->as_mtx);
671
672 if (mem->am_is_bound) {
673 aprint_error_dev(sc->as_dev, "memory already bound\n");
674 mutex_exit(&sc->as_mtx);
675 return EINVAL;
676 }
677
678 if (offset < 0
679 || (offset & (AGP_PAGE_SIZE - 1)) != 0
680 || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
681 aprint_error_dev(sc->as_dev,
682 "binding memory at bad offset %#lx\n",
683 (unsigned long) offset);
684 mutex_exit(&sc->as_mtx);
685 return EINVAL;
686 }
687
688 /*
689 * XXXfvdl
690 * The memory here needs to be directly accessable from the
691 * AGP video card, so it should be allocated using bus_dma.
692 * However, it need not be contiguous, since individual pages
693 * are translated using the GATT.
694 *
695 * Using a large chunk of contiguous memory may get in the way
696 * of other subsystems that may need one, so we try to be friendly
697 * and ask for allocation in chunks of a minimum of 8 pages
698 * of contiguous memory on average, falling back to 4, 2 and 1
699 * if really needed. Larger chunks are preferred, since allocating
700 * a bus_dma_segment per page would be overkill.
701 */
702
703 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
704 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
705 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
706 if (segs == NULL) {
707 mutex_exit(&sc->as_mtx);
708 return ENOMEM;
709 }
710 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
711 segs, nseg, &mem->am_nseg,
712 contigpages > 1 ?
713 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
714 free(segs, M_AGP);
715 continue;
716 }
717 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
718 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
719 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
720 free(segs, M_AGP);
721 continue;
722 }
723 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
724 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
725 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
726 mem->am_size);
727 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
728 free(segs, M_AGP);
729 continue;
730 }
731 mem->am_dmaseg = segs;
732 break;
733 }
734
735 if (contigpages == 0) {
736 mutex_exit(&sc->as_mtx);
737 return ENOMEM;
738 }
739
740
741 /*
742 * Bind the individual pages and flush the chipset's
743 * TLB.
744 */
745 done = 0;
746 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
747 seg = &mem->am_dmamap->dm_segs[i];
748 /*
749 * Install entries in the GATT, making sure that if
750 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
751 * aligned to PAGE_SIZE, we don't modify too many GATT
752 * entries.
753 */
754 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
755 j += AGP_PAGE_SIZE) {
756 pa = seg->ds_addr + j;
757 AGP_DPF(("binding offset %#lx to pa %#lx\n",
758 (unsigned long)(offset + done + j),
759 (unsigned long)pa));
760 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
761 if (error) {
762 /*
763 * Bail out. Reverse all the mappings
764 * and unwire the pages.
765 */
766 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
767 AGP_UNBIND_PAGE(sc, offset + k);
768
769 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
770 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
771 mem->am_size);
772 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
773 mem->am_nseg);
774 free(mem->am_dmaseg, M_AGP);
775 mutex_exit(&sc->as_mtx);
776 return error;
777 }
778 }
779 done += seg->ds_len;
780 }
781
782 /*
783 * Flush the CPU cache since we are providing a new mapping
784 * for these pages.
785 */
786 agp_flush_cache();
787
788 /*
789 * Make sure the chipset gets the new mappings.
790 */
791 AGP_FLUSH_TLB(sc);
792
793 mem->am_offset = offset;
794 mem->am_is_bound = 1;
795
796 mutex_exit(&sc->as_mtx);
797
798 return 0;
799 }
800
801 int
802 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
803 {
804 int i;
805
806 mutex_enter(&sc->as_mtx);
807
808 if (!mem->am_is_bound) {
809 aprint_error_dev(sc->as_dev, "memory is not bound\n");
810 mutex_exit(&sc->as_mtx);
811 return EINVAL;
812 }
813
814
815 /*
816 * Unbind the individual pages and flush the chipset's
817 * TLB. Unwire the pages so they can be swapped.
818 */
819 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
820 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
821
822 agp_flush_cache();
823 AGP_FLUSH_TLB(sc);
824
825 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
826 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
827 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
828
829 free(mem->am_dmaseg, M_AGP);
830
831 mem->am_offset = 0;
832 mem->am_is_bound = 0;
833
834 mutex_exit(&sc->as_mtx);
835
836 return 0;
837 }
838
839 /* Helper functions for implementing user/kernel api */
840
841 static int
842 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
843 {
844 if (sc->as_state != AGP_ACQUIRE_FREE)
845 return EBUSY;
846 sc->as_state = state;
847
848 return 0;
849 }
850
851 static int
852 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
853 {
854
855 if (sc->as_state == AGP_ACQUIRE_FREE)
856 return 0;
857
858 if (sc->as_state != state)
859 return EBUSY;
860
861 sc->as_state = AGP_ACQUIRE_FREE;
862 return 0;
863 }
864
865 static struct agp_memory *
866 agp_find_memory(struct agp_softc *sc, int id)
867 {
868 struct agp_memory *mem;
869
870 AGP_DPF(("searching for memory block %d\n", id));
871 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
872 AGP_DPF(("considering memory block %d\n", mem->am_id));
873 if (mem->am_id == id)
874 return mem;
875 }
876 return 0;
877 }
878
879 /* Implementation of the userland ioctl api */
880
881 static int
882 agp_info_user(struct agp_softc *sc, agp_info *info)
883 {
884 memset(info, 0, sizeof *info);
885 info->bridge_id = sc->as_id;
886 if (sc->as_capoff != 0)
887 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
888 sc->as_capoff + AGP_STATUS);
889 else
890 info->agp_mode = 0; /* i810 doesn't have real AGP */
891 info->aper_base = sc->as_apaddr;
892 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
893 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
894 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
895
896 return 0;
897 }
898
899 static int
900 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
901 {
902 return AGP_ENABLE(sc, setup->agp_mode);
903 }
904
905 static int
906 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
907 {
908 struct agp_memory *mem;
909
910 mem = AGP_ALLOC_MEMORY(sc,
911 alloc->type,
912 alloc->pg_count << AGP_PAGE_SHIFT);
913 if (mem) {
914 alloc->key = mem->am_id;
915 alloc->physical = mem->am_physical;
916 return 0;
917 } else {
918 return ENOMEM;
919 }
920 }
921
922 static int
923 agp_deallocate_user(struct agp_softc *sc, int id)
924 {
925 struct agp_memory *mem = agp_find_memory(sc, id);
926
927 if (mem) {
928 AGP_FREE_MEMORY(sc, mem);
929 return 0;
930 } else {
931 return ENOENT;
932 }
933 }
934
935 static int
936 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
937 {
938 struct agp_memory *mem = agp_find_memory(sc, bind->key);
939
940 if (!mem)
941 return ENOENT;
942
943 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
944 }
945
946 static int
947 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
948 {
949 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
950
951 if (!mem)
952 return ENOENT;
953
954 return AGP_UNBIND_MEMORY(sc, mem);
955 }
956
957 static int
958 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
959 {
960 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
961
962 if (sc == NULL)
963 return ENXIO;
964
965 if (sc->as_chipc == NULL)
966 return ENXIO;
967
968 if (!sc->as_isopen)
969 sc->as_isopen = 1;
970 else
971 return EBUSY;
972
973 return 0;
974 }
975
976 static int
977 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
978 {
979 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
980 struct agp_memory *mem;
981
982 if (sc == NULL)
983 return ENODEV;
984
985 /*
986 * Clear the GATT and force release on last close
987 */
988 if (sc->as_state == AGP_ACQUIRE_USER) {
989 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
990 if (mem->am_is_bound) {
991 printf("agpclose: mem %d is bound\n",
992 mem->am_id);
993 AGP_UNBIND_MEMORY(sc, mem);
994 }
995 /*
996 * XXX it is not documented, but if the protocol allows
997 * allocate->acquire->bind, it would be possible that
998 * memory ranges are allocated by the kernel here,
999 * which we shouldn't free. We'd have to keep track of
1000 * the memory range's owner.
1001 * The kernel API is unsed yet, so we get away with
1002 * freeing all.
1003 */
1004 AGP_FREE_MEMORY(sc, mem);
1005 }
1006 agp_release_helper(sc, AGP_ACQUIRE_USER);
1007 }
1008 sc->as_isopen = 0;
1009
1010 return 0;
1011 }
1012
1013 static int
1014 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
1015 {
1016 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1017
1018 if (sc == NULL)
1019 return ENODEV;
1020
1021 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
1022 return EPERM;
1023
1024 switch (cmd) {
1025 case AGPIOC_INFO:
1026 return agp_info_user(sc, (agp_info *) data);
1027
1028 case AGPIOC_ACQUIRE:
1029 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
1030
1031 case AGPIOC_RELEASE:
1032 return agp_release_helper(sc, AGP_ACQUIRE_USER);
1033
1034 case AGPIOC_SETUP:
1035 return agp_setup_user(sc, (agp_setup *)data);
1036
1037 #ifdef __x86_64__
1038 {
1039 /*
1040 * Handle paddr_t change from 32 bit for non PAE kernels
1041 * to 64 bit.
1042 */
1043 #define AGPIOC_OALLOCATE _IOWR(AGPIOC_BASE, 6, agp_oallocate)
1044
1045 typedef struct _agp_oallocate {
1046 int key; /* tag of allocation */
1047 size_t pg_count; /* number of pages */
1048 uint32_t type; /* 0 == normal, other devspec */
1049 u_long physical; /* device specific (some devices
1050 * need a phys address of the
1051 * actual page behind the gatt
1052 * table) */
1053 } agp_oallocate;
1054
1055 case AGPIOC_OALLOCATE: {
1056 int ret;
1057 agp_allocate aga;
1058 agp_oallocate *oaga = data;
1059
1060 aga.type = oaga->type;
1061 aga.pg_count = oaga->pg_count;
1062
1063 if ((ret = agp_allocate_user(sc, &aga)) == 0) {
1064 oaga->key = aga.key;
1065 oaga->physical = (u_long)aga.physical;
1066 }
1067
1068 return ret;
1069 }
1070 }
1071 #endif
1072 case AGPIOC_ALLOCATE:
1073 return agp_allocate_user(sc, (agp_allocate *)data);
1074
1075 case AGPIOC_DEALLOCATE:
1076 return agp_deallocate_user(sc, *(int *) data);
1077
1078 case AGPIOC_BIND:
1079 return agp_bind_user(sc, (agp_bind *)data);
1080
1081 case AGPIOC_UNBIND:
1082 return agp_unbind_user(sc, (agp_unbind *)data);
1083
1084 }
1085
1086 return EINVAL;
1087 }
1088
1089 static paddr_t
1090 agpmmap(dev_t dev, off_t offset, int prot)
1091 {
1092 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1093
1094 if (sc == NULL)
1095 return ENODEV;
1096
1097 if (offset > AGP_GET_APERTURE(sc))
1098 return -1;
1099
1100 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1101 BUS_SPACE_MAP_LINEAR));
1102 }
1103
1104 const struct cdevsw agp_cdevsw = {
1105 .d_open = agpopen,
1106 .d_close = agpclose,
1107 .d_read = noread,
1108 .d_write = nowrite,
1109 .d_ioctl = agpioctl,
1110 .d_stop = nostop,
1111 .d_tty = notty,
1112 .d_poll = nopoll,
1113 .d_mmap = agpmmap,
1114 .d_kqfilter = nokqfilter,
1115 .d_flag = D_OTHER
1116 };
1117
1118 /* Implementation of the kernel api */
1119
1120 void *
1121 agp_find_device(int unit)
1122 {
1123 return device_lookup_private(&agp_cd, unit);
1124 }
1125
1126 enum agp_acquire_state
1127 agp_state(void *devcookie)
1128 {
1129 struct agp_softc *sc = devcookie;
1130
1131 return sc->as_state;
1132 }
1133
1134 void
1135 agp_get_info(void *devcookie, struct agp_info *info)
1136 {
1137 struct agp_softc *sc = devcookie;
1138
1139 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1140 sc->as_capoff + AGP_STATUS);
1141 info->ai_aperture_base = sc->as_apaddr;
1142 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
1143 info->ai_memory_allowed = sc->as_maxmem;
1144 info->ai_memory_used = sc->as_allocated;
1145 }
1146
1147 int
1148 agp_acquire(void *dev)
1149 {
1150 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1151 }
1152
1153 int
1154 agp_release(void *dev)
1155 {
1156 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1157 }
1158
1159 int
1160 agp_enable(void *dev, u_int32_t mode)
1161 {
1162 struct agp_softc *sc = dev;
1163
1164 return AGP_ENABLE(sc, mode);
1165 }
1166
1167 void *
1168 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1169 {
1170 struct agp_softc *sc = dev;
1171
1172 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1173 }
1174
1175 void
1176 agp_free_memory(void *dev, void *handle)
1177 {
1178 struct agp_softc *sc = dev;
1179 struct agp_memory *mem = handle;
1180
1181 AGP_FREE_MEMORY(sc, mem);
1182 }
1183
1184 int
1185 agp_bind_memory(void *dev, void *handle, off_t offset)
1186 {
1187 struct agp_softc *sc = dev;
1188 struct agp_memory *mem = handle;
1189
1190 return AGP_BIND_MEMORY(sc, mem, offset);
1191 }
1192
1193 int
1194 agp_unbind_memory(void *dev, void *handle)
1195 {
1196 struct agp_softc *sc = dev;
1197 struct agp_memory *mem = handle;
1198
1199 return AGP_UNBIND_MEMORY(sc, mem);
1200 }
1201
1202 void
1203 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1204 {
1205 struct agp_memory *mem = handle;
1206
1207 mi->ami_size = mem->am_size;
1208 mi->ami_physical = mem->am_physical;
1209 mi->ami_offset = mem->am_offset;
1210 mi->ami_is_bound = mem->am_is_bound;
1211 }
1212
1213 int
1214 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1215 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1216 bus_dma_segment_t *seg, int nseg, int *rseg)
1217
1218 {
1219 int error, level = 0;
1220
1221 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1222 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1223 goto out;
1224 level++;
1225
1226 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1227 BUS_DMA_NOWAIT | flags)) != 0)
1228 goto out;
1229 level++;
1230
1231 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1232 BUS_DMA_NOWAIT, mapp)) != 0)
1233 goto out;
1234 level++;
1235
1236 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1237 BUS_DMA_NOWAIT)) != 0)
1238 goto out;
1239
1240 *baddr = (*mapp)->dm_segs[0].ds_addr;
1241
1242 return 0;
1243 out:
1244 switch (level) {
1245 case 3:
1246 bus_dmamap_destroy(tag, *mapp);
1247 /* FALLTHROUGH */
1248 case 2:
1249 bus_dmamem_unmap(tag, *vaddr, size);
1250 /* FALLTHROUGH */
1251 case 1:
1252 bus_dmamem_free(tag, seg, *rseg);
1253 break;
1254 default:
1255 break;
1256 }
1257
1258 return error;
1259 }
1260
1261 void
1262 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1263 void *vaddr, bus_dma_segment_t *seg, int nseg)
1264 {
1265 bus_dmamap_unload(tag, map);
1266 bus_dmamap_destroy(tag, map);
1267 bus_dmamem_unmap(tag, vaddr, size);
1268 bus_dmamem_free(tag, seg, nseg);
1269 }
1270
1271 static bool
1272 agp_resume(device_t dv, const pmf_qual_t *qual)
1273 {
1274 agp_flush_cache();
1275
1276 return true;
1277 }
1278