Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.85
      1 /*	$NetBSD: agp.c,v 1.85 2018/08/27 07:34:54 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.85 2018/08/27 07:34:54 riastradh Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <dev/pci/pcireg.h>
     83 #include <dev/pci/pcivar.h>
     84 #include <dev/pci/agpvar.h>
     85 #include <dev/pci/agpreg.h>
     86 #include <dev/pci/pcidevs.h>
     87 
     88 #include <sys/bus.h>
     89 
     90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     91 
     92 /* Helper functions for implementing chipset mini drivers. */
     93 /* XXXfvdl get rid of this one. */
     94 
     95 extern struct cfdriver agp_cd;
     96 
     97 static int agp_info_user(struct agp_softc *, agp_info *);
     98 static int agp_setup_user(struct agp_softc *, agp_setup *);
     99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    100 static int agp_deallocate_user(struct agp_softc *, int);
    101 static int agp_bind_user(struct agp_softc *, agp_bind *);
    102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    103 static int agp_generic_enable_v2(struct agp_softc *,
    104     const struct pci_attach_args *, int, u_int32_t);
    105 static int agp_generic_enable_v3(struct agp_softc *,
    106     const struct pci_attach_args *, int, u_int32_t);
    107 static int agpdev_match(const struct pci_attach_args *);
    108 static bool agp_resume(device_t, const pmf_qual_t *);
    109 
    110 #include "agp_ali.h"
    111 #include "agp_amd.h"
    112 #include "agp_i810.h"
    113 #include "agp_intel.h"
    114 #include "agp_sis.h"
    115 #include "agp_via.h"
    116 #include "agp_amd64.h"
    117 
    118 const struct agp_product {
    119 	uint32_t	ap_vendor;
    120 	uint32_t	ap_product;
    121 	int		(*ap_match)(const struct pci_attach_args *);
    122 	int		(*ap_attach)(device_t, device_t, void *);
    123 } agp_products[] = {
    124 #if NAGP_AMD64 > 0
    125 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
    126 	  agp_amd64_match,	agp_amd64_attach },
    127 #endif
    128 
    129 #if NAGP_ALI > 0
    130 	{ PCI_VENDOR_ALI,	-1,
    131 	  NULL,			agp_ali_attach },
    132 #endif
    133 
    134 #if NAGP_AMD64 > 0
    135 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    136 	  agp_amd64_match,	agp_amd64_attach },
    137 #endif
    138 
    139 #if NAGP_AMD > 0
    140 	{ PCI_VENDOR_AMD,	-1,
    141 	  agp_amd_match,	agp_amd_attach },
    142 #endif
    143 
    144 #if NAGP_I810 > 0
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    166 	  NULL,			agp_i810_attach },
    167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    168 	  NULL,			agp_i810_attach },
    169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    170 	  NULL,			agp_i810_attach },
    171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
    172 	  NULL,			agp_i810_attach },
    173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    174 	  NULL,			agp_i810_attach },
    175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    176 	  NULL,			agp_i810_attach },
    177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    178 	  NULL,			agp_i810_attach },
    179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    180 	  NULL,			agp_i810_attach },
    181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    182 	  NULL,			agp_i810_attach },
    183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    184 	  NULL,			agp_i810_attach },
    185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
    186 	  NULL,			agp_i810_attach },
    187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
    188 	  NULL,			agp_i810_attach },
    189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
    190 	  NULL, 		agp_i810_attach },
    191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
    192 	  NULL, 		agp_i810_attach },
    193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
    194 	  NULL, 		agp_i810_attach },
    195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
    196 	  NULL, 		agp_i810_attach },
    197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
    198 	  NULL, 		agp_i810_attach },
    199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
    200 	  NULL, 		agp_i810_attach },
    201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
    202 	  NULL, 		agp_i810_attach },
    203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
    204 	  NULL, 		agp_i810_attach },
    205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
    206 	  NULL, 		agp_i810_attach },
    207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
    208 	  NULL, 		agp_i810_attach },
    209 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
    210 	  NULL, 		agp_i810_attach },
    211 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
    212 	  NULL, 		agp_i810_attach },
    213 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_HB,
    214 	  NULL, 		agp_i810_attach },
    215 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
    216 	  NULL, 		agp_i810_attach },
    217 #endif
    218 
    219 #if NAGP_INTEL > 0
    220 	{ PCI_VENDOR_INTEL,	-1,
    221 	  NULL,			agp_intel_attach },
    222 #endif
    223 
    224 #if NAGP_AMD64 > 0
    225 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    226 	  agp_amd64_match,	agp_amd64_attach },
    227 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    228 	  agp_amd64_match,	agp_amd64_attach },
    229 #endif
    230 
    231 #if NAGP_AMD64 > 0
    232 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    233 	  agp_amd64_match,	agp_amd64_attach },
    234 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    235 	  agp_amd64_match,	agp_amd64_attach },
    236 #endif
    237 
    238 #if NAGP_SIS > 0
    239 	{ PCI_VENDOR_SIS,	-1,
    240 	  NULL,			agp_sis_attach },
    241 #endif
    242 
    243 #if NAGP_AMD64 > 0
    244 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    245 	  agp_amd64_match,	agp_amd64_attach },
    246 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    247 	  agp_amd64_match,	agp_amd64_attach },
    248 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    249 	  agp_amd64_match,	agp_amd64_attach },
    250 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    251 	  agp_amd64_match,	agp_amd64_attach },
    252 #endif
    253 
    254 #if NAGP_VIA > 0
    255 	{ PCI_VENDOR_VIATECH,	-1,
    256 	  NULL,			agp_via_attach },
    257 #endif
    258 
    259 	{ 0,			0,
    260 	  NULL,			NULL },
    261 };
    262 
    263 static const struct agp_product *
    264 agp_lookup(const struct pci_attach_args *pa)
    265 {
    266 	const struct agp_product *ap;
    267 
    268 	/* First find the vendor. */
    269 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    270 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    271 			break;
    272 	}
    273 
    274 	if (ap->ap_attach == NULL)
    275 		return (NULL);
    276 
    277 	/* Now find the product within the vendor's domain. */
    278 	for (; ap->ap_attach != NULL; ap++) {
    279 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    280 			/* Ran out of this vendor's section of the table. */
    281 			return (NULL);
    282 		}
    283 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    284 			/* Exact match. */
    285 			break;
    286 		}
    287 		if (ap->ap_product == (uint32_t) -1) {
    288 			/* Wildcard match. */
    289 			break;
    290 		}
    291 	}
    292 
    293 	if (ap->ap_attach == NULL)
    294 		return (NULL);
    295 
    296 	/* Now let the product-specific driver filter the match. */
    297 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    298 		return (NULL);
    299 
    300 	return (ap);
    301 }
    302 
    303 static int
    304 agpmatch(device_t parent, cfdata_t match, void *aux)
    305 {
    306 	struct agpbus_attach_args *apa = aux;
    307 	struct pci_attach_args *pa = &apa->apa_pci_args;
    308 
    309 	if (agp_lookup(pa) == NULL)
    310 		return (0);
    311 
    312 	return (1);
    313 }
    314 
    315 static const int agp_max[][2] = {
    316 	{0,	0},
    317 	{32,	4},
    318 	{64,	28},
    319 	{128,	96},
    320 	{256,	204},
    321 	{512,	440},
    322 	{1024,	942},
    323 	{2048,	1920},
    324 	{4096,	3932}
    325 };
    326 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    327 
    328 static void
    329 agpattach(device_t parent, device_t self, void *aux)
    330 {
    331 	struct agpbus_attach_args *apa = aux;
    332 	struct pci_attach_args *pa = &apa->apa_pci_args;
    333 	struct agp_softc *sc = device_private(self);
    334 	const struct agp_product *ap;
    335 	int memsize, i, ret;
    336 
    337 	ap = agp_lookup(pa);
    338 	KASSERT(ap != NULL);
    339 
    340 	aprint_naive(": AGP controller\n");
    341 
    342 	sc->as_dev = self;
    343 	sc->as_dmat = pa->pa_dmat;
    344 	sc->as_pc = pa->pa_pc;
    345 	sc->as_tag = pa->pa_tag;
    346 	sc->as_id = pa->pa_id;
    347 
    348 	/*
    349 	 * Work out an upper bound for agp memory allocation. This
    350 	 * uses a heuristic table from the Linux driver.
    351 	 */
    352 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
    353 	for (i = 0; i < agp_max_size; i++) {
    354 		if (memsize <= agp_max[i][0])
    355 			break;
    356 	}
    357 	if (i == agp_max_size)
    358 		i = agp_max_size - 1;
    359 	sc->as_maxmem = agp_max[i][1] << 20U;
    360 
    361 	/*
    362 	 * The mutex is used to prevent re-entry to
    363 	 * agp_generic_bind_memory() since that function can sleep.
    364 	 */
    365 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    366 
    367 	TAILQ_INIT(&sc->as_memory);
    368 
    369 	ret = (*ap->ap_attach)(parent, self, pa);
    370 	if (ret == 0)
    371 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    372 		    (unsigned long)sc->as_apaddr,
    373 		    (unsigned long)AGP_GET_APERTURE(sc));
    374 	else
    375 		sc->as_chipc = NULL;
    376 
    377 	if (!pmf_device_register(self, NULL, agp_resume))
    378 		aprint_error_dev(self, "couldn't establish power handler\n");
    379 }
    380 
    381 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
    382     agpmatch, agpattach, NULL, NULL);
    383 
    384 int
    385 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    386 {
    387 	/*
    388 	 * Find the aperture. Don't map it (yet), this would
    389 	 * eat KVA.
    390 	 */
    391 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    392 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    393 	    &sc->as_apflags) != 0)
    394 		return ENXIO;
    395 
    396 	sc->as_apt = pa->pa_memt;
    397 
    398 	return 0;
    399 }
    400 
    401 struct agp_gatt *
    402 agp_alloc_gatt(struct agp_softc *sc)
    403 {
    404 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    405 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    406 	struct agp_gatt *gatt;
    407 	void *virtual;
    408 	int dummyseg;
    409 
    410 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    411 	if (!gatt)
    412 		return NULL;
    413 	gatt->ag_entries = entries;
    414 
    415 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    416 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    417 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
    418 		free(gatt, M_AGP);
    419 		return NULL;
    420 	}
    421 	gatt->ag_virtual = (uint32_t *)virtual;
    422 
    423 	gatt->ag_size = entries * sizeof(u_int32_t);
    424 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    425 	agp_flush_cache();
    426 
    427 	return gatt;
    428 }
    429 
    430 void
    431 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    432 {
    433 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    434 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    435 	free(gatt, M_AGP);
    436 }
    437 
    438 
    439 int
    440 agp_generic_detach(struct agp_softc *sc)
    441 {
    442 	mutex_destroy(&sc->as_mtx);
    443 	agp_flush_cache();
    444 	return 0;
    445 }
    446 
    447 static int
    448 agpdev_match(const struct pci_attach_args *pa)
    449 {
    450 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    451 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    452 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    453 		    NULL, NULL))
    454 		return 1;
    455 
    456 	return 0;
    457 }
    458 
    459 int
    460 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    461 {
    462 	struct pci_attach_args pa;
    463 	pcireg_t tstatus, mstatus;
    464 	int capoff;
    465 
    466 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    467 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    468 	     &capoff, NULL) == 0) {
    469 		aprint_error_dev(sc->as_dev, "can't find display\n");
    470 		return ENXIO;
    471 	}
    472 
    473 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    474 	    sc->as_capoff + PCI_AGP_STATUS);
    475 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    476 	    capoff + PCI_AGP_STATUS);
    477 
    478 	if (AGP_MODE_GET_MODE_3(mode) &&
    479 	    AGP_MODE_GET_MODE_3(tstatus) &&
    480 	    AGP_MODE_GET_MODE_3(mstatus))
    481 		return agp_generic_enable_v3(sc, &pa, capoff, mode);
    482 	else
    483 		return agp_generic_enable_v2(sc, &pa, capoff, mode);
    484 }
    485 
    486 static int
    487 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
    488     int capoff, u_int32_t mode)
    489 {
    490 	pcireg_t tstatus, mstatus;
    491 	pcireg_t command;
    492 	int rq, sba, fw, rate;
    493 
    494 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    495 	    sc->as_capoff + PCI_AGP_STATUS);
    496 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
    497 	    capoff + PCI_AGP_STATUS);
    498 
    499 	/* Set RQ to the min of mode, tstatus and mstatus */
    500 	rq = AGP_MODE_GET_RQ(mode);
    501 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    502 		rq = AGP_MODE_GET_RQ(tstatus);
    503 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    504 		rq = AGP_MODE_GET_RQ(mstatus);
    505 
    506 	/* Set SBA if all three can deal with SBA */
    507 	sba = (AGP_MODE_GET_SBA(tstatus)
    508 	       & AGP_MODE_GET_SBA(mstatus)
    509 	       & AGP_MODE_GET_SBA(mode));
    510 
    511 	/* Similar for FW */
    512 	fw = (AGP_MODE_GET_FW(tstatus)
    513 	       & AGP_MODE_GET_FW(mstatus)
    514 	       & AGP_MODE_GET_FW(mode));
    515 
    516 	/* Figure out the max rate */
    517 	rate = (AGP_MODE_GET_RATE(tstatus)
    518 		& AGP_MODE_GET_RATE(mstatus)
    519 		& AGP_MODE_GET_RATE(mode));
    520 	if (rate & AGP_MODE_V2_RATE_4x)
    521 		rate = AGP_MODE_V2_RATE_4x;
    522 	else if (rate & AGP_MODE_V2_RATE_2x)
    523 		rate = AGP_MODE_V2_RATE_2x;
    524 	else
    525 		rate = AGP_MODE_V2_RATE_1x;
    526 
    527 	/* Construct the new mode word and tell the hardware */
    528 	command = AGP_MODE_SET_RQ(0, rq);
    529 	command = AGP_MODE_SET_SBA(command, sba);
    530 	command = AGP_MODE_SET_FW(command, fw);
    531 	command = AGP_MODE_SET_RATE(command, rate);
    532 	command = AGP_MODE_SET_AGP(command, 1);
    533 	pci_conf_write(sc->as_pc, sc->as_tag,
    534 	    sc->as_capoff + PCI_AGP_COMMAND, command);
    535 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
    536 		       command);
    537 
    538 	return 0;
    539 }
    540 
    541 static int
    542 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
    543     int capoff, u_int32_t mode)
    544 {
    545 	pcireg_t tstatus, mstatus;
    546 	pcireg_t command;
    547 	int rq, sba, fw, rate, arqsz, cal;
    548 
    549 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    550 	    sc->as_capoff + PCI_AGP_STATUS);
    551 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
    552 	    capoff + PCI_AGP_STATUS);
    553 
    554 	/* Set RQ to the min of mode, tstatus and mstatus */
    555 	rq = AGP_MODE_GET_RQ(mode);
    556 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    557 		rq = AGP_MODE_GET_RQ(tstatus);
    558 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    559 		rq = AGP_MODE_GET_RQ(mstatus);
    560 
    561 	/*
    562 	 * ARQSZ - Set the value to the maximum one.
    563 	 * Don't allow the mode register to override values.
    564 	 */
    565 	arqsz = AGP_MODE_GET_ARQSZ(mode);
    566 	if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
    567 		arqsz = AGP_MODE_GET_ARQSZ(tstatus);
    568 	if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
    569 		arqsz = AGP_MODE_GET_ARQSZ(mstatus);
    570 
    571 	/* Calibration cycle - don't allow override by mode register */
    572 	cal = AGP_MODE_GET_CAL(tstatus);
    573 	if (AGP_MODE_GET_CAL(mstatus) < cal)
    574 		cal = AGP_MODE_GET_CAL(mstatus);
    575 
    576 	/* SBA must be supported for AGP v3. */
    577 	sba = 1;
    578 
    579 	/* Set FW if all three support it. */
    580 	fw = (AGP_MODE_GET_FW(tstatus)
    581 	       & AGP_MODE_GET_FW(mstatus)
    582 	       & AGP_MODE_GET_FW(mode));
    583 
    584 	/* Figure out the max rate */
    585 	rate = (AGP_MODE_GET_RATE(tstatus)
    586 		& AGP_MODE_GET_RATE(mstatus)
    587 		& AGP_MODE_GET_RATE(mode));
    588 	if (rate & AGP_MODE_V3_RATE_8x)
    589 		rate = AGP_MODE_V3_RATE_8x;
    590 	else
    591 		rate = AGP_MODE_V3_RATE_4x;
    592 
    593 	/* Construct the new mode word and tell the hardware */
    594 	command = AGP_MODE_SET_RQ(0, rq);
    595 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
    596 	command = AGP_MODE_SET_CAL(command, cal);
    597 	command = AGP_MODE_SET_SBA(command, sba);
    598 	command = AGP_MODE_SET_FW(command, fw);
    599 	command = AGP_MODE_SET_RATE(command, rate);
    600 	command = AGP_MODE_SET_AGP(command, 1);
    601 	pci_conf_write(sc->as_pc, sc->as_tag,
    602 	    sc->as_capoff + PCI_AGP_COMMAND, command);
    603 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
    604 		       command);
    605 
    606 	return 0;
    607 }
    608 
    609 struct agp_memory *
    610 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    611 {
    612 	struct agp_memory *mem;
    613 
    614 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    615 		return 0;
    616 
    617 	if (sc->as_allocated + size > sc->as_maxmem)
    618 		return 0;
    619 
    620 	if (type != 0) {
    621 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    622 		       type);
    623 		return 0;
    624 	}
    625 
    626 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    627 	if (mem == NULL)
    628 		return NULL;
    629 
    630 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    631 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    632 		free(mem, M_AGP);
    633 		return NULL;
    634 	}
    635 
    636 	mem->am_id = sc->as_nextid++;
    637 	mem->am_size = size;
    638 	mem->am_type = 0;
    639 	mem->am_physical = 0;
    640 	mem->am_offset = 0;
    641 	mem->am_is_bound = 0;
    642 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    643 	sc->as_allocated += size;
    644 
    645 	return mem;
    646 }
    647 
    648 int
    649 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    650 {
    651 	if (mem->am_is_bound)
    652 		return EBUSY;
    653 
    654 	sc->as_allocated -= mem->am_size;
    655 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    656 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    657 	free(mem, M_AGP);
    658 	return 0;
    659 }
    660 
    661 int
    662 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    663     off_t offset)
    664 {
    665 
    666 	return agp_generic_bind_memory_bounded(sc, mem, offset,
    667 	    0, AGP_GET_APERTURE(sc));
    668 }
    669 
    670 int
    671 agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem,
    672     off_t offset, off_t start, off_t end)
    673 {
    674 	off_t i, k;
    675 	bus_size_t done, j;
    676 	int error;
    677 	bus_dma_segment_t *segs, *seg;
    678 	bus_addr_t pa;
    679 	int contigpages, nseg;
    680 
    681 	mutex_enter(&sc->as_mtx);
    682 
    683 	if (mem->am_is_bound) {
    684 		aprint_error_dev(sc->as_dev, "memory already bound\n");
    685 		mutex_exit(&sc->as_mtx);
    686 		return EINVAL;
    687 	}
    688 
    689 	if (offset < start
    690 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    691 	    || offset > end
    692 	    || mem->am_size > (end - offset)) {
    693 		aprint_error_dev(sc->as_dev,
    694 			      "binding memory at bad offset %#lx\n",
    695 			      (unsigned long) offset);
    696 		mutex_exit(&sc->as_mtx);
    697 		return EINVAL;
    698 	}
    699 
    700 	/*
    701 	 * XXXfvdl
    702 	 * The memory here needs to be directly accessable from the
    703 	 * AGP video card, so it should be allocated using bus_dma.
    704 	 * However, it need not be contiguous, since individual pages
    705 	 * are translated using the GATT.
    706 	 *
    707 	 * Using a large chunk of contiguous memory may get in the way
    708 	 * of other subsystems that may need one, so we try to be friendly
    709 	 * and ask for allocation in chunks of a minimum of 8 pages
    710 	 * of contiguous memory on average, falling back to 4, 2 and 1
    711 	 * if really needed. Larger chunks are preferred, since allocating
    712 	 * a bus_dma_segment per page would be overkill.
    713 	 */
    714 
    715 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    716 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    717 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    718 		if (segs == NULL) {
    719 			mutex_exit(&sc->as_mtx);
    720 			return ENOMEM;
    721 		}
    722 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    723 				     segs, nseg, &mem->am_nseg,
    724 				     contigpages > 1 ?
    725 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    726 			free(segs, M_AGP);
    727 			continue;
    728 		}
    729 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    730 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    731 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    732 			free(segs, M_AGP);
    733 			continue;
    734 		}
    735 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    736 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    737 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    738 			    mem->am_size);
    739 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    740 			free(segs, M_AGP);
    741 			continue;
    742 		}
    743 		mem->am_dmaseg = segs;
    744 		break;
    745 	}
    746 
    747 	if (contigpages == 0) {
    748 		mutex_exit(&sc->as_mtx);
    749 		return ENOMEM;
    750 	}
    751 
    752 
    753 	/*
    754 	 * Bind the individual pages and flush the chipset's
    755 	 * TLB.
    756 	 */
    757 	done = 0;
    758 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    759 		seg = &mem->am_dmamap->dm_segs[i];
    760 		/*
    761 		 * Install entries in the GATT, making sure that if
    762 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    763 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    764 		 * entries.
    765 		 */
    766 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    767 		     j += AGP_PAGE_SIZE) {
    768 			pa = seg->ds_addr + j;
    769 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    770 				(unsigned long)(offset + done + j),
    771 				(unsigned long)pa));
    772 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    773 			if (error) {
    774 				/*
    775 				 * Bail out. Reverse all the mappings
    776 				 * and unwire the pages.
    777 				 */
    778 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    779 					AGP_UNBIND_PAGE(sc, offset + k);
    780 
    781 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    782 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    783 						 mem->am_size);
    784 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    785 						mem->am_nseg);
    786 				free(mem->am_dmaseg, M_AGP);
    787 				mutex_exit(&sc->as_mtx);
    788 				return error;
    789 			}
    790 		}
    791 		done += seg->ds_len;
    792 	}
    793 
    794 	/*
    795 	 * Flush the CPU cache since we are providing a new mapping
    796 	 * for these pages.
    797 	 */
    798 	agp_flush_cache();
    799 
    800 	/*
    801 	 * Make sure the chipset gets the new mappings.
    802 	 */
    803 	AGP_FLUSH_TLB(sc);
    804 
    805 	mem->am_offset = offset;
    806 	mem->am_is_bound = 1;
    807 
    808 	mutex_exit(&sc->as_mtx);
    809 
    810 	return 0;
    811 }
    812 
    813 int
    814 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    815 {
    816 	int i;
    817 
    818 	mutex_enter(&sc->as_mtx);
    819 
    820 	if (!mem->am_is_bound) {
    821 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
    822 		mutex_exit(&sc->as_mtx);
    823 		return EINVAL;
    824 	}
    825 
    826 
    827 	/*
    828 	 * Unbind the individual pages and flush the chipset's
    829 	 * TLB. Unwire the pages so they can be swapped.
    830 	 */
    831 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    832 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    833 
    834 	agp_flush_cache();
    835 	AGP_FLUSH_TLB(sc);
    836 
    837 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    838 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    839 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    840 
    841 	free(mem->am_dmaseg, M_AGP);
    842 
    843 	mem->am_offset = 0;
    844 	mem->am_is_bound = 0;
    845 
    846 	mutex_exit(&sc->as_mtx);
    847 
    848 	return 0;
    849 }
    850 
    851 /* Helper functions for implementing user/kernel api */
    852 
    853 static int
    854 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    855 {
    856 	if (sc->as_state != AGP_ACQUIRE_FREE)
    857 		return EBUSY;
    858 	sc->as_state = state;
    859 
    860 	return 0;
    861 }
    862 
    863 static int
    864 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    865 {
    866 
    867 	if (sc->as_state == AGP_ACQUIRE_FREE)
    868 		return 0;
    869 
    870 	if (sc->as_state != state)
    871 		return EBUSY;
    872 
    873 	sc->as_state = AGP_ACQUIRE_FREE;
    874 	return 0;
    875 }
    876 
    877 static struct agp_memory *
    878 agp_find_memory(struct agp_softc *sc, int id)
    879 {
    880 	struct agp_memory *mem;
    881 
    882 	AGP_DPF(("searching for memory block %d\n", id));
    883 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    884 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    885 		if (mem->am_id == id)
    886 			return mem;
    887 	}
    888 	return 0;
    889 }
    890 
    891 /* Implementation of the userland ioctl api */
    892 
    893 static int
    894 agp_info_user(struct agp_softc *sc, agp_info *info)
    895 {
    896 	memset(info, 0, sizeof *info);
    897 	info->bridge_id = sc->as_id;
    898 	if (sc->as_capoff != 0)
    899 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    900 					       sc->as_capoff + PCI_AGP_STATUS);
    901 	else
    902 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    903 	info->aper_base = sc->as_apaddr;
    904 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    905 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    906 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    907 
    908 	return 0;
    909 }
    910 
    911 static int
    912 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    913 {
    914 	return AGP_ENABLE(sc, setup->agp_mode);
    915 }
    916 
    917 static int
    918 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    919 {
    920 	struct agp_memory *mem;
    921 
    922 	mem = AGP_ALLOC_MEMORY(sc,
    923 			       alloc->type,
    924 			       alloc->pg_count << AGP_PAGE_SHIFT);
    925 	if (mem) {
    926 		alloc->key = mem->am_id;
    927 		alloc->physical = mem->am_physical;
    928 		return 0;
    929 	} else {
    930 		return ENOMEM;
    931 	}
    932 }
    933 
    934 static int
    935 agp_deallocate_user(struct agp_softc *sc, int id)
    936 {
    937 	struct agp_memory *mem = agp_find_memory(sc, id);
    938 
    939 	if (mem) {
    940 		AGP_FREE_MEMORY(sc, mem);
    941 		return 0;
    942 	} else {
    943 		return ENOENT;
    944 	}
    945 }
    946 
    947 static int
    948 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    949 {
    950 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    951 
    952 	if (!mem)
    953 		return ENOENT;
    954 
    955 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    956 }
    957 
    958 static int
    959 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    960 {
    961 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    962 
    963 	if (!mem)
    964 		return ENOENT;
    965 
    966 	return AGP_UNBIND_MEMORY(sc, mem);
    967 }
    968 
    969 static int
    970 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
    971 {
    972 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    973 
    974 	if (sc == NULL)
    975 		return ENXIO;
    976 
    977 	if (sc->as_chipc == NULL)
    978 		return ENXIO;
    979 
    980 	if (!sc->as_isopen)
    981 		sc->as_isopen = 1;
    982 	else
    983 		return EBUSY;
    984 
    985 	return 0;
    986 }
    987 
    988 static int
    989 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
    990 {
    991 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    992 	struct agp_memory *mem;
    993 
    994 	if (sc == NULL)
    995 		return ENODEV;
    996 
    997 	/*
    998 	 * Clear the GATT and force release on last close
    999 	 */
   1000 	if (sc->as_state == AGP_ACQUIRE_USER) {
   1001 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
   1002 			if (mem->am_is_bound) {
   1003 				printf("agpclose: mem %d is bound\n",
   1004 				       mem->am_id);
   1005 				AGP_UNBIND_MEMORY(sc, mem);
   1006 			}
   1007 			/*
   1008 			 * XXX it is not documented, but if the protocol allows
   1009 			 * allocate->acquire->bind, it would be possible that
   1010 			 * memory ranges are allocated by the kernel here,
   1011 			 * which we shouldn't free. We'd have to keep track of
   1012 			 * the memory range's owner.
   1013 			 * The kernel API is unsed yet, so we get away with
   1014 			 * freeing all.
   1015 			 */
   1016 			AGP_FREE_MEMORY(sc, mem);
   1017 		}
   1018 		agp_release_helper(sc, AGP_ACQUIRE_USER);
   1019 	}
   1020 	sc->as_isopen = 0;
   1021 
   1022 	return 0;
   1023 }
   1024 
   1025 static int
   1026 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
   1027 {
   1028 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
   1029 
   1030 	if (sc == NULL)
   1031 		return ENODEV;
   1032 
   1033 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
   1034 		return EPERM;
   1035 
   1036 	switch (cmd) {
   1037 	case AGPIOC_INFO:
   1038 		return agp_info_user(sc, (agp_info *) data);
   1039 
   1040 	case AGPIOC_ACQUIRE:
   1041 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
   1042 
   1043 	case AGPIOC_RELEASE:
   1044 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
   1045 
   1046 	case AGPIOC_SETUP:
   1047 		return agp_setup_user(sc, (agp_setup *)data);
   1048 
   1049 #ifdef __x86_64__
   1050 {
   1051 	/*
   1052 	 * Handle paddr_t change from 32 bit for non PAE kernels
   1053 	 * to 64 bit.
   1054 	 */
   1055 #define AGPIOC_OALLOCATE  _IOWR(AGPIOC_BASE, 6, agp_oallocate)
   1056 
   1057 	typedef struct _agp_oallocate {
   1058 		int key;		/* tag of allocation            */
   1059 		size_t pg_count;	/* number of pages              */
   1060 		uint32_t type;		/* 0 == normal, other devspec   */
   1061 		u_long physical;	/* device specific (some devices
   1062 					 * need a phys address of the
   1063 					 * actual page behind the gatt
   1064 					 * table)                        */
   1065 	} agp_oallocate;
   1066 
   1067 	case AGPIOC_OALLOCATE: {
   1068 		int ret;
   1069 		agp_allocate aga;
   1070 		agp_oallocate *oaga = data;
   1071 
   1072 		aga.type = oaga->type;
   1073 		aga.pg_count = oaga->pg_count;
   1074 
   1075 		if ((ret = agp_allocate_user(sc, &aga)) == 0) {
   1076 			oaga->key = aga.key;
   1077 			oaga->physical = (u_long)aga.physical;
   1078 		}
   1079 
   1080 		return ret;
   1081 	}
   1082 }
   1083 #endif
   1084 	case AGPIOC_ALLOCATE:
   1085 		return agp_allocate_user(sc, (agp_allocate *)data);
   1086 
   1087 	case AGPIOC_DEALLOCATE:
   1088 		return agp_deallocate_user(sc, *(int *) data);
   1089 
   1090 	case AGPIOC_BIND:
   1091 		return agp_bind_user(sc, (agp_bind *)data);
   1092 
   1093 	case AGPIOC_UNBIND:
   1094 		return agp_unbind_user(sc, (agp_unbind *)data);
   1095 
   1096 	}
   1097 
   1098 	return EINVAL;
   1099 }
   1100 
   1101 static paddr_t
   1102 agpmmap(dev_t dev, off_t offset, int prot)
   1103 {
   1104 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
   1105 
   1106 	if (sc == NULL)
   1107 		return ENODEV;
   1108 
   1109 	if (offset > AGP_GET_APERTURE(sc))
   1110 		return -1;
   1111 
   1112 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
   1113 	    BUS_SPACE_MAP_LINEAR));
   1114 }
   1115 
   1116 const struct cdevsw agp_cdevsw = {
   1117 	.d_open = agpopen,
   1118 	.d_close = agpclose,
   1119 	.d_read = noread,
   1120 	.d_write = nowrite,
   1121 	.d_ioctl = agpioctl,
   1122 	.d_stop = nostop,
   1123 	.d_tty = notty,
   1124 	.d_poll = nopoll,
   1125 	.d_mmap = agpmmap,
   1126 	.d_kqfilter = nokqfilter,
   1127 	.d_discard = nodiscard,
   1128 	.d_flag = D_OTHER
   1129 };
   1130 
   1131 /* Implementation of the kernel api */
   1132 
   1133 void *
   1134 agp_find_device(int unit)
   1135 {
   1136 	return device_lookup_private(&agp_cd, unit);
   1137 }
   1138 
   1139 enum agp_acquire_state
   1140 agp_state(void *devcookie)
   1141 {
   1142 	struct agp_softc *sc = devcookie;
   1143 
   1144 	return sc->as_state;
   1145 }
   1146 
   1147 void
   1148 agp_get_info(void *devcookie, struct agp_info *info)
   1149 {
   1150 	struct agp_softc *sc = devcookie;
   1151 
   1152 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
   1153 	    sc->as_capoff + PCI_AGP_STATUS);
   1154 	info->ai_aperture_base = sc->as_apaddr;
   1155 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
   1156 	info->ai_memory_allowed = sc->as_maxmem;
   1157 	info->ai_memory_used = sc->as_allocated;
   1158 	info->ai_devid = sc->as_id;
   1159 }
   1160 
   1161 int
   1162 agp_acquire(void *dev)
   1163 {
   1164 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
   1165 }
   1166 
   1167 int
   1168 agp_release(void *dev)
   1169 {
   1170 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
   1171 }
   1172 
   1173 int
   1174 agp_enable(void *dev, u_int32_t mode)
   1175 {
   1176 	struct agp_softc *sc = dev;
   1177 
   1178 	return AGP_ENABLE(sc, mode);
   1179 }
   1180 
   1181 void *
   1182 agp_alloc_memory(void *dev, int type, vsize_t bytes)
   1183 {
   1184 	struct agp_softc *sc = dev;
   1185 
   1186 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
   1187 }
   1188 
   1189 void
   1190 agp_free_memory(void *dev, void *handle)
   1191 {
   1192 	struct agp_softc *sc = dev;
   1193 	struct agp_memory *mem = handle;
   1194 
   1195 	AGP_FREE_MEMORY(sc, mem);
   1196 }
   1197 
   1198 int
   1199 agp_bind_memory(void *dev, void *handle, off_t offset)
   1200 {
   1201 	struct agp_softc *sc = dev;
   1202 	struct agp_memory *mem = handle;
   1203 
   1204 	return AGP_BIND_MEMORY(sc, mem, offset);
   1205 }
   1206 
   1207 int
   1208 agp_unbind_memory(void *dev, void *handle)
   1209 {
   1210 	struct agp_softc *sc = dev;
   1211 	struct agp_memory *mem = handle;
   1212 
   1213 	return AGP_UNBIND_MEMORY(sc, mem);
   1214 }
   1215 
   1216 void
   1217 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
   1218 {
   1219 	struct agp_memory *mem = handle;
   1220 
   1221 	mi->ami_size = mem->am_size;
   1222 	mi->ami_physical = mem->am_physical;
   1223 	mi->ami_offset = mem->am_offset;
   1224 	mi->ami_is_bound = mem->am_is_bound;
   1225 }
   1226 
   1227 int
   1228 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1229 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1230 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1231 
   1232 {
   1233 	int error, level = 0;
   1234 
   1235 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1236 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1237 		goto out;
   1238 	level++;
   1239 
   1240 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1241 			BUS_DMA_NOWAIT | flags)) != 0)
   1242 		goto out;
   1243 	level++;
   1244 
   1245 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1246 			BUS_DMA_NOWAIT, mapp)) != 0)
   1247 		goto out;
   1248 	level++;
   1249 
   1250 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1251 			BUS_DMA_NOWAIT)) != 0)
   1252 		goto out;
   1253 
   1254 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1255 
   1256 	return 0;
   1257 out:
   1258 	switch (level) {
   1259 	case 3:
   1260 		bus_dmamap_destroy(tag, *mapp);
   1261 		/* FALLTHROUGH */
   1262 	case 2:
   1263 		bus_dmamem_unmap(tag, *vaddr, size);
   1264 		/* FALLTHROUGH */
   1265 	case 1:
   1266 		bus_dmamem_free(tag, seg, *rseg);
   1267 		break;
   1268 	default:
   1269 		break;
   1270 	}
   1271 
   1272 	return error;
   1273 }
   1274 
   1275 void
   1276 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1277 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1278 {
   1279 	bus_dmamap_unload(tag, map);
   1280 	bus_dmamap_destroy(tag, map);
   1281 	bus_dmamem_unmap(tag, vaddr, size);
   1282 	bus_dmamem_free(tag, seg, nseg);
   1283 }
   1284 
   1285 static bool
   1286 agp_resume(device_t dv, const pmf_qual_t *qual)
   1287 {
   1288 	agp_flush_cache();
   1289 
   1290 	return true;
   1291 }
   1292