agp.c revision 1.85 1 /* $NetBSD: agp.c,v 1.85 2018/08/27 07:34:54 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.85 2018/08/27 07:34:54 riastradh Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/agpvar.h>
85 #include <dev/pci/agpreg.h>
86 #include <dev/pci/pcidevs.h>
87
88 #include <sys/bus.h>
89
90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91
92 /* Helper functions for implementing chipset mini drivers. */
93 /* XXXfvdl get rid of this one. */
94
95 extern struct cfdriver agp_cd;
96
97 static int agp_info_user(struct agp_softc *, agp_info *);
98 static int agp_setup_user(struct agp_softc *, agp_setup *);
99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 static int agp_deallocate_user(struct agp_softc *, int);
101 static int agp_bind_user(struct agp_softc *, agp_bind *);
102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 static int agp_generic_enable_v2(struct agp_softc *,
104 const struct pci_attach_args *, int, u_int32_t);
105 static int agp_generic_enable_v3(struct agp_softc *,
106 const struct pci_attach_args *, int, u_int32_t);
107 static int agpdev_match(const struct pci_attach_args *);
108 static bool agp_resume(device_t, const pmf_qual_t *);
109
110 #include "agp_ali.h"
111 #include "agp_amd.h"
112 #include "agp_i810.h"
113 #include "agp_intel.h"
114 #include "agp_sis.h"
115 #include "agp_via.h"
116 #include "agp_amd64.h"
117
118 const struct agp_product {
119 uint32_t ap_vendor;
120 uint32_t ap_product;
121 int (*ap_match)(const struct pci_attach_args *);
122 int (*ap_attach)(device_t, device_t, void *);
123 } agp_products[] = {
124 #if NAGP_AMD64 > 0
125 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
126 agp_amd64_match, agp_amd64_attach },
127 #endif
128
129 #if NAGP_ALI > 0
130 { PCI_VENDOR_ALI, -1,
131 NULL, agp_ali_attach },
132 #endif
133
134 #if NAGP_AMD64 > 0
135 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
136 agp_amd64_match, agp_amd64_attach },
137 #endif
138
139 #if NAGP_AMD > 0
140 { PCI_VENDOR_AMD, -1,
141 agp_amd_match, agp_amd_attach },
142 #endif
143
144 #if NAGP_I810 > 0
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
186 NULL, agp_i810_attach },
187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
188 NULL, agp_i810_attach },
189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
190 NULL, agp_i810_attach },
191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB,
192 NULL, agp_i810_attach },
193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB,
194 NULL, agp_i810_attach },
195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB,
196 NULL, agp_i810_attach },
197 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB,
198 NULL, agp_i810_attach },
199 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB,
200 NULL, agp_i810_attach },
201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB,
202 NULL, agp_i810_attach },
203 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB,
204 NULL, agp_i810_attach },
205 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
206 NULL, agp_i810_attach },
207 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
208 NULL, agp_i810_attach },
209 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
210 NULL, agp_i810_attach },
211 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
212 NULL, agp_i810_attach },
213 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_HB,
214 NULL, agp_i810_attach },
215 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
216 NULL, agp_i810_attach },
217 #endif
218
219 #if NAGP_INTEL > 0
220 { PCI_VENDOR_INTEL, -1,
221 NULL, agp_intel_attach },
222 #endif
223
224 #if NAGP_AMD64 > 0
225 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
226 agp_amd64_match, agp_amd64_attach },
227 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
228 agp_amd64_match, agp_amd64_attach },
229 #endif
230
231 #if NAGP_AMD64 > 0
232 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
233 agp_amd64_match, agp_amd64_attach },
234 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
235 agp_amd64_match, agp_amd64_attach },
236 #endif
237
238 #if NAGP_SIS > 0
239 { PCI_VENDOR_SIS, -1,
240 NULL, agp_sis_attach },
241 #endif
242
243 #if NAGP_AMD64 > 0
244 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
245 agp_amd64_match, agp_amd64_attach },
246 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
247 agp_amd64_match, agp_amd64_attach },
248 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
249 agp_amd64_match, agp_amd64_attach },
250 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
251 agp_amd64_match, agp_amd64_attach },
252 #endif
253
254 #if NAGP_VIA > 0
255 { PCI_VENDOR_VIATECH, -1,
256 NULL, agp_via_attach },
257 #endif
258
259 { 0, 0,
260 NULL, NULL },
261 };
262
263 static const struct agp_product *
264 agp_lookup(const struct pci_attach_args *pa)
265 {
266 const struct agp_product *ap;
267
268 /* First find the vendor. */
269 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
270 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
271 break;
272 }
273
274 if (ap->ap_attach == NULL)
275 return (NULL);
276
277 /* Now find the product within the vendor's domain. */
278 for (; ap->ap_attach != NULL; ap++) {
279 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
280 /* Ran out of this vendor's section of the table. */
281 return (NULL);
282 }
283 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
284 /* Exact match. */
285 break;
286 }
287 if (ap->ap_product == (uint32_t) -1) {
288 /* Wildcard match. */
289 break;
290 }
291 }
292
293 if (ap->ap_attach == NULL)
294 return (NULL);
295
296 /* Now let the product-specific driver filter the match. */
297 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
298 return (NULL);
299
300 return (ap);
301 }
302
303 static int
304 agpmatch(device_t parent, cfdata_t match, void *aux)
305 {
306 struct agpbus_attach_args *apa = aux;
307 struct pci_attach_args *pa = &apa->apa_pci_args;
308
309 if (agp_lookup(pa) == NULL)
310 return (0);
311
312 return (1);
313 }
314
315 static const int agp_max[][2] = {
316 {0, 0},
317 {32, 4},
318 {64, 28},
319 {128, 96},
320 {256, 204},
321 {512, 440},
322 {1024, 942},
323 {2048, 1920},
324 {4096, 3932}
325 };
326 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
327
328 static void
329 agpattach(device_t parent, device_t self, void *aux)
330 {
331 struct agpbus_attach_args *apa = aux;
332 struct pci_attach_args *pa = &apa->apa_pci_args;
333 struct agp_softc *sc = device_private(self);
334 const struct agp_product *ap;
335 int memsize, i, ret;
336
337 ap = agp_lookup(pa);
338 KASSERT(ap != NULL);
339
340 aprint_naive(": AGP controller\n");
341
342 sc->as_dev = self;
343 sc->as_dmat = pa->pa_dmat;
344 sc->as_pc = pa->pa_pc;
345 sc->as_tag = pa->pa_tag;
346 sc->as_id = pa->pa_id;
347
348 /*
349 * Work out an upper bound for agp memory allocation. This
350 * uses a heuristic table from the Linux driver.
351 */
352 memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
353 for (i = 0; i < agp_max_size; i++) {
354 if (memsize <= agp_max[i][0])
355 break;
356 }
357 if (i == agp_max_size)
358 i = agp_max_size - 1;
359 sc->as_maxmem = agp_max[i][1] << 20U;
360
361 /*
362 * The mutex is used to prevent re-entry to
363 * agp_generic_bind_memory() since that function can sleep.
364 */
365 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
366
367 TAILQ_INIT(&sc->as_memory);
368
369 ret = (*ap->ap_attach)(parent, self, pa);
370 if (ret == 0)
371 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
372 (unsigned long)sc->as_apaddr,
373 (unsigned long)AGP_GET_APERTURE(sc));
374 else
375 sc->as_chipc = NULL;
376
377 if (!pmf_device_register(self, NULL, agp_resume))
378 aprint_error_dev(self, "couldn't establish power handler\n");
379 }
380
381 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
382 agpmatch, agpattach, NULL, NULL);
383
384 int
385 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
386 {
387 /*
388 * Find the aperture. Don't map it (yet), this would
389 * eat KVA.
390 */
391 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
392 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
393 &sc->as_apflags) != 0)
394 return ENXIO;
395
396 sc->as_apt = pa->pa_memt;
397
398 return 0;
399 }
400
401 struct agp_gatt *
402 agp_alloc_gatt(struct agp_softc *sc)
403 {
404 u_int32_t apsize = AGP_GET_APERTURE(sc);
405 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
406 struct agp_gatt *gatt;
407 void *virtual;
408 int dummyseg;
409
410 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
411 if (!gatt)
412 return NULL;
413 gatt->ag_entries = entries;
414
415 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
416 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
417 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
418 free(gatt, M_AGP);
419 return NULL;
420 }
421 gatt->ag_virtual = (uint32_t *)virtual;
422
423 gatt->ag_size = entries * sizeof(u_int32_t);
424 memset(gatt->ag_virtual, 0, gatt->ag_size);
425 agp_flush_cache();
426
427 return gatt;
428 }
429
430 void
431 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
432 {
433 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
434 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
435 free(gatt, M_AGP);
436 }
437
438
439 int
440 agp_generic_detach(struct agp_softc *sc)
441 {
442 mutex_destroy(&sc->as_mtx);
443 agp_flush_cache();
444 return 0;
445 }
446
447 static int
448 agpdev_match(const struct pci_attach_args *pa)
449 {
450 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
451 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
452 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
453 NULL, NULL))
454 return 1;
455
456 return 0;
457 }
458
459 int
460 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
461 {
462 struct pci_attach_args pa;
463 pcireg_t tstatus, mstatus;
464 int capoff;
465
466 if (pci_find_device(&pa, agpdev_match) == 0 ||
467 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
468 &capoff, NULL) == 0) {
469 aprint_error_dev(sc->as_dev, "can't find display\n");
470 return ENXIO;
471 }
472
473 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
474 sc->as_capoff + PCI_AGP_STATUS);
475 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
476 capoff + PCI_AGP_STATUS);
477
478 if (AGP_MODE_GET_MODE_3(mode) &&
479 AGP_MODE_GET_MODE_3(tstatus) &&
480 AGP_MODE_GET_MODE_3(mstatus))
481 return agp_generic_enable_v3(sc, &pa, capoff, mode);
482 else
483 return agp_generic_enable_v2(sc, &pa, capoff, mode);
484 }
485
486 static int
487 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
488 int capoff, u_int32_t mode)
489 {
490 pcireg_t tstatus, mstatus;
491 pcireg_t command;
492 int rq, sba, fw, rate;
493
494 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
495 sc->as_capoff + PCI_AGP_STATUS);
496 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
497 capoff + PCI_AGP_STATUS);
498
499 /* Set RQ to the min of mode, tstatus and mstatus */
500 rq = AGP_MODE_GET_RQ(mode);
501 if (AGP_MODE_GET_RQ(tstatus) < rq)
502 rq = AGP_MODE_GET_RQ(tstatus);
503 if (AGP_MODE_GET_RQ(mstatus) < rq)
504 rq = AGP_MODE_GET_RQ(mstatus);
505
506 /* Set SBA if all three can deal with SBA */
507 sba = (AGP_MODE_GET_SBA(tstatus)
508 & AGP_MODE_GET_SBA(mstatus)
509 & AGP_MODE_GET_SBA(mode));
510
511 /* Similar for FW */
512 fw = (AGP_MODE_GET_FW(tstatus)
513 & AGP_MODE_GET_FW(mstatus)
514 & AGP_MODE_GET_FW(mode));
515
516 /* Figure out the max rate */
517 rate = (AGP_MODE_GET_RATE(tstatus)
518 & AGP_MODE_GET_RATE(mstatus)
519 & AGP_MODE_GET_RATE(mode));
520 if (rate & AGP_MODE_V2_RATE_4x)
521 rate = AGP_MODE_V2_RATE_4x;
522 else if (rate & AGP_MODE_V2_RATE_2x)
523 rate = AGP_MODE_V2_RATE_2x;
524 else
525 rate = AGP_MODE_V2_RATE_1x;
526
527 /* Construct the new mode word and tell the hardware */
528 command = AGP_MODE_SET_RQ(0, rq);
529 command = AGP_MODE_SET_SBA(command, sba);
530 command = AGP_MODE_SET_FW(command, fw);
531 command = AGP_MODE_SET_RATE(command, rate);
532 command = AGP_MODE_SET_AGP(command, 1);
533 pci_conf_write(sc->as_pc, sc->as_tag,
534 sc->as_capoff + PCI_AGP_COMMAND, command);
535 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
536 command);
537
538 return 0;
539 }
540
541 static int
542 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
543 int capoff, u_int32_t mode)
544 {
545 pcireg_t tstatus, mstatus;
546 pcireg_t command;
547 int rq, sba, fw, rate, arqsz, cal;
548
549 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
550 sc->as_capoff + PCI_AGP_STATUS);
551 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
552 capoff + PCI_AGP_STATUS);
553
554 /* Set RQ to the min of mode, tstatus and mstatus */
555 rq = AGP_MODE_GET_RQ(mode);
556 if (AGP_MODE_GET_RQ(tstatus) < rq)
557 rq = AGP_MODE_GET_RQ(tstatus);
558 if (AGP_MODE_GET_RQ(mstatus) < rq)
559 rq = AGP_MODE_GET_RQ(mstatus);
560
561 /*
562 * ARQSZ - Set the value to the maximum one.
563 * Don't allow the mode register to override values.
564 */
565 arqsz = AGP_MODE_GET_ARQSZ(mode);
566 if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
567 arqsz = AGP_MODE_GET_ARQSZ(tstatus);
568 if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
569 arqsz = AGP_MODE_GET_ARQSZ(mstatus);
570
571 /* Calibration cycle - don't allow override by mode register */
572 cal = AGP_MODE_GET_CAL(tstatus);
573 if (AGP_MODE_GET_CAL(mstatus) < cal)
574 cal = AGP_MODE_GET_CAL(mstatus);
575
576 /* SBA must be supported for AGP v3. */
577 sba = 1;
578
579 /* Set FW if all three support it. */
580 fw = (AGP_MODE_GET_FW(tstatus)
581 & AGP_MODE_GET_FW(mstatus)
582 & AGP_MODE_GET_FW(mode));
583
584 /* Figure out the max rate */
585 rate = (AGP_MODE_GET_RATE(tstatus)
586 & AGP_MODE_GET_RATE(mstatus)
587 & AGP_MODE_GET_RATE(mode));
588 if (rate & AGP_MODE_V3_RATE_8x)
589 rate = AGP_MODE_V3_RATE_8x;
590 else
591 rate = AGP_MODE_V3_RATE_4x;
592
593 /* Construct the new mode word and tell the hardware */
594 command = AGP_MODE_SET_RQ(0, rq);
595 command = AGP_MODE_SET_ARQSZ(command, arqsz);
596 command = AGP_MODE_SET_CAL(command, cal);
597 command = AGP_MODE_SET_SBA(command, sba);
598 command = AGP_MODE_SET_FW(command, fw);
599 command = AGP_MODE_SET_RATE(command, rate);
600 command = AGP_MODE_SET_AGP(command, 1);
601 pci_conf_write(sc->as_pc, sc->as_tag,
602 sc->as_capoff + PCI_AGP_COMMAND, command);
603 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
604 command);
605
606 return 0;
607 }
608
609 struct agp_memory *
610 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
611 {
612 struct agp_memory *mem;
613
614 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
615 return 0;
616
617 if (sc->as_allocated + size > sc->as_maxmem)
618 return 0;
619
620 if (type != 0) {
621 printf("agp_generic_alloc_memory: unsupported type %d\n",
622 type);
623 return 0;
624 }
625
626 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
627 if (mem == NULL)
628 return NULL;
629
630 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
631 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
632 free(mem, M_AGP);
633 return NULL;
634 }
635
636 mem->am_id = sc->as_nextid++;
637 mem->am_size = size;
638 mem->am_type = 0;
639 mem->am_physical = 0;
640 mem->am_offset = 0;
641 mem->am_is_bound = 0;
642 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
643 sc->as_allocated += size;
644
645 return mem;
646 }
647
648 int
649 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
650 {
651 if (mem->am_is_bound)
652 return EBUSY;
653
654 sc->as_allocated -= mem->am_size;
655 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
656 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
657 free(mem, M_AGP);
658 return 0;
659 }
660
661 int
662 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
663 off_t offset)
664 {
665
666 return agp_generic_bind_memory_bounded(sc, mem, offset,
667 0, AGP_GET_APERTURE(sc));
668 }
669
670 int
671 agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem,
672 off_t offset, off_t start, off_t end)
673 {
674 off_t i, k;
675 bus_size_t done, j;
676 int error;
677 bus_dma_segment_t *segs, *seg;
678 bus_addr_t pa;
679 int contigpages, nseg;
680
681 mutex_enter(&sc->as_mtx);
682
683 if (mem->am_is_bound) {
684 aprint_error_dev(sc->as_dev, "memory already bound\n");
685 mutex_exit(&sc->as_mtx);
686 return EINVAL;
687 }
688
689 if (offset < start
690 || (offset & (AGP_PAGE_SIZE - 1)) != 0
691 || offset > end
692 || mem->am_size > (end - offset)) {
693 aprint_error_dev(sc->as_dev,
694 "binding memory at bad offset %#lx\n",
695 (unsigned long) offset);
696 mutex_exit(&sc->as_mtx);
697 return EINVAL;
698 }
699
700 /*
701 * XXXfvdl
702 * The memory here needs to be directly accessable from the
703 * AGP video card, so it should be allocated using bus_dma.
704 * However, it need not be contiguous, since individual pages
705 * are translated using the GATT.
706 *
707 * Using a large chunk of contiguous memory may get in the way
708 * of other subsystems that may need one, so we try to be friendly
709 * and ask for allocation in chunks of a minimum of 8 pages
710 * of contiguous memory on average, falling back to 4, 2 and 1
711 * if really needed. Larger chunks are preferred, since allocating
712 * a bus_dma_segment per page would be overkill.
713 */
714
715 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
716 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
717 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
718 if (segs == NULL) {
719 mutex_exit(&sc->as_mtx);
720 return ENOMEM;
721 }
722 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
723 segs, nseg, &mem->am_nseg,
724 contigpages > 1 ?
725 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
726 free(segs, M_AGP);
727 continue;
728 }
729 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
730 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
731 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
732 free(segs, M_AGP);
733 continue;
734 }
735 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
736 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
737 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
738 mem->am_size);
739 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
740 free(segs, M_AGP);
741 continue;
742 }
743 mem->am_dmaseg = segs;
744 break;
745 }
746
747 if (contigpages == 0) {
748 mutex_exit(&sc->as_mtx);
749 return ENOMEM;
750 }
751
752
753 /*
754 * Bind the individual pages and flush the chipset's
755 * TLB.
756 */
757 done = 0;
758 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
759 seg = &mem->am_dmamap->dm_segs[i];
760 /*
761 * Install entries in the GATT, making sure that if
762 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
763 * aligned to PAGE_SIZE, we don't modify too many GATT
764 * entries.
765 */
766 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
767 j += AGP_PAGE_SIZE) {
768 pa = seg->ds_addr + j;
769 AGP_DPF(("binding offset %#lx to pa %#lx\n",
770 (unsigned long)(offset + done + j),
771 (unsigned long)pa));
772 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
773 if (error) {
774 /*
775 * Bail out. Reverse all the mappings
776 * and unwire the pages.
777 */
778 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
779 AGP_UNBIND_PAGE(sc, offset + k);
780
781 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
782 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
783 mem->am_size);
784 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
785 mem->am_nseg);
786 free(mem->am_dmaseg, M_AGP);
787 mutex_exit(&sc->as_mtx);
788 return error;
789 }
790 }
791 done += seg->ds_len;
792 }
793
794 /*
795 * Flush the CPU cache since we are providing a new mapping
796 * for these pages.
797 */
798 agp_flush_cache();
799
800 /*
801 * Make sure the chipset gets the new mappings.
802 */
803 AGP_FLUSH_TLB(sc);
804
805 mem->am_offset = offset;
806 mem->am_is_bound = 1;
807
808 mutex_exit(&sc->as_mtx);
809
810 return 0;
811 }
812
813 int
814 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
815 {
816 int i;
817
818 mutex_enter(&sc->as_mtx);
819
820 if (!mem->am_is_bound) {
821 aprint_error_dev(sc->as_dev, "memory is not bound\n");
822 mutex_exit(&sc->as_mtx);
823 return EINVAL;
824 }
825
826
827 /*
828 * Unbind the individual pages and flush the chipset's
829 * TLB. Unwire the pages so they can be swapped.
830 */
831 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
832 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
833
834 agp_flush_cache();
835 AGP_FLUSH_TLB(sc);
836
837 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
838 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
839 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
840
841 free(mem->am_dmaseg, M_AGP);
842
843 mem->am_offset = 0;
844 mem->am_is_bound = 0;
845
846 mutex_exit(&sc->as_mtx);
847
848 return 0;
849 }
850
851 /* Helper functions for implementing user/kernel api */
852
853 static int
854 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
855 {
856 if (sc->as_state != AGP_ACQUIRE_FREE)
857 return EBUSY;
858 sc->as_state = state;
859
860 return 0;
861 }
862
863 static int
864 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
865 {
866
867 if (sc->as_state == AGP_ACQUIRE_FREE)
868 return 0;
869
870 if (sc->as_state != state)
871 return EBUSY;
872
873 sc->as_state = AGP_ACQUIRE_FREE;
874 return 0;
875 }
876
877 static struct agp_memory *
878 agp_find_memory(struct agp_softc *sc, int id)
879 {
880 struct agp_memory *mem;
881
882 AGP_DPF(("searching for memory block %d\n", id));
883 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
884 AGP_DPF(("considering memory block %d\n", mem->am_id));
885 if (mem->am_id == id)
886 return mem;
887 }
888 return 0;
889 }
890
891 /* Implementation of the userland ioctl api */
892
893 static int
894 agp_info_user(struct agp_softc *sc, agp_info *info)
895 {
896 memset(info, 0, sizeof *info);
897 info->bridge_id = sc->as_id;
898 if (sc->as_capoff != 0)
899 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
900 sc->as_capoff + PCI_AGP_STATUS);
901 else
902 info->agp_mode = 0; /* i810 doesn't have real AGP */
903 info->aper_base = sc->as_apaddr;
904 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
905 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
906 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
907
908 return 0;
909 }
910
911 static int
912 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
913 {
914 return AGP_ENABLE(sc, setup->agp_mode);
915 }
916
917 static int
918 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
919 {
920 struct agp_memory *mem;
921
922 mem = AGP_ALLOC_MEMORY(sc,
923 alloc->type,
924 alloc->pg_count << AGP_PAGE_SHIFT);
925 if (mem) {
926 alloc->key = mem->am_id;
927 alloc->physical = mem->am_physical;
928 return 0;
929 } else {
930 return ENOMEM;
931 }
932 }
933
934 static int
935 agp_deallocate_user(struct agp_softc *sc, int id)
936 {
937 struct agp_memory *mem = agp_find_memory(sc, id);
938
939 if (mem) {
940 AGP_FREE_MEMORY(sc, mem);
941 return 0;
942 } else {
943 return ENOENT;
944 }
945 }
946
947 static int
948 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
949 {
950 struct agp_memory *mem = agp_find_memory(sc, bind->key);
951
952 if (!mem)
953 return ENOENT;
954
955 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
956 }
957
958 static int
959 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
960 {
961 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
962
963 if (!mem)
964 return ENOENT;
965
966 return AGP_UNBIND_MEMORY(sc, mem);
967 }
968
969 static int
970 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
971 {
972 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
973
974 if (sc == NULL)
975 return ENXIO;
976
977 if (sc->as_chipc == NULL)
978 return ENXIO;
979
980 if (!sc->as_isopen)
981 sc->as_isopen = 1;
982 else
983 return EBUSY;
984
985 return 0;
986 }
987
988 static int
989 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
990 {
991 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
992 struct agp_memory *mem;
993
994 if (sc == NULL)
995 return ENODEV;
996
997 /*
998 * Clear the GATT and force release on last close
999 */
1000 if (sc->as_state == AGP_ACQUIRE_USER) {
1001 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
1002 if (mem->am_is_bound) {
1003 printf("agpclose: mem %d is bound\n",
1004 mem->am_id);
1005 AGP_UNBIND_MEMORY(sc, mem);
1006 }
1007 /*
1008 * XXX it is not documented, but if the protocol allows
1009 * allocate->acquire->bind, it would be possible that
1010 * memory ranges are allocated by the kernel here,
1011 * which we shouldn't free. We'd have to keep track of
1012 * the memory range's owner.
1013 * The kernel API is unsed yet, so we get away with
1014 * freeing all.
1015 */
1016 AGP_FREE_MEMORY(sc, mem);
1017 }
1018 agp_release_helper(sc, AGP_ACQUIRE_USER);
1019 }
1020 sc->as_isopen = 0;
1021
1022 return 0;
1023 }
1024
1025 static int
1026 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
1027 {
1028 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1029
1030 if (sc == NULL)
1031 return ENODEV;
1032
1033 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
1034 return EPERM;
1035
1036 switch (cmd) {
1037 case AGPIOC_INFO:
1038 return agp_info_user(sc, (agp_info *) data);
1039
1040 case AGPIOC_ACQUIRE:
1041 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
1042
1043 case AGPIOC_RELEASE:
1044 return agp_release_helper(sc, AGP_ACQUIRE_USER);
1045
1046 case AGPIOC_SETUP:
1047 return agp_setup_user(sc, (agp_setup *)data);
1048
1049 #ifdef __x86_64__
1050 {
1051 /*
1052 * Handle paddr_t change from 32 bit for non PAE kernels
1053 * to 64 bit.
1054 */
1055 #define AGPIOC_OALLOCATE _IOWR(AGPIOC_BASE, 6, agp_oallocate)
1056
1057 typedef struct _agp_oallocate {
1058 int key; /* tag of allocation */
1059 size_t pg_count; /* number of pages */
1060 uint32_t type; /* 0 == normal, other devspec */
1061 u_long physical; /* device specific (some devices
1062 * need a phys address of the
1063 * actual page behind the gatt
1064 * table) */
1065 } agp_oallocate;
1066
1067 case AGPIOC_OALLOCATE: {
1068 int ret;
1069 agp_allocate aga;
1070 agp_oallocate *oaga = data;
1071
1072 aga.type = oaga->type;
1073 aga.pg_count = oaga->pg_count;
1074
1075 if ((ret = agp_allocate_user(sc, &aga)) == 0) {
1076 oaga->key = aga.key;
1077 oaga->physical = (u_long)aga.physical;
1078 }
1079
1080 return ret;
1081 }
1082 }
1083 #endif
1084 case AGPIOC_ALLOCATE:
1085 return agp_allocate_user(sc, (agp_allocate *)data);
1086
1087 case AGPIOC_DEALLOCATE:
1088 return agp_deallocate_user(sc, *(int *) data);
1089
1090 case AGPIOC_BIND:
1091 return agp_bind_user(sc, (agp_bind *)data);
1092
1093 case AGPIOC_UNBIND:
1094 return agp_unbind_user(sc, (agp_unbind *)data);
1095
1096 }
1097
1098 return EINVAL;
1099 }
1100
1101 static paddr_t
1102 agpmmap(dev_t dev, off_t offset, int prot)
1103 {
1104 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1105
1106 if (sc == NULL)
1107 return ENODEV;
1108
1109 if (offset > AGP_GET_APERTURE(sc))
1110 return -1;
1111
1112 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1113 BUS_SPACE_MAP_LINEAR));
1114 }
1115
1116 const struct cdevsw agp_cdevsw = {
1117 .d_open = agpopen,
1118 .d_close = agpclose,
1119 .d_read = noread,
1120 .d_write = nowrite,
1121 .d_ioctl = agpioctl,
1122 .d_stop = nostop,
1123 .d_tty = notty,
1124 .d_poll = nopoll,
1125 .d_mmap = agpmmap,
1126 .d_kqfilter = nokqfilter,
1127 .d_discard = nodiscard,
1128 .d_flag = D_OTHER
1129 };
1130
1131 /* Implementation of the kernel api */
1132
1133 void *
1134 agp_find_device(int unit)
1135 {
1136 return device_lookup_private(&agp_cd, unit);
1137 }
1138
1139 enum agp_acquire_state
1140 agp_state(void *devcookie)
1141 {
1142 struct agp_softc *sc = devcookie;
1143
1144 return sc->as_state;
1145 }
1146
1147 void
1148 agp_get_info(void *devcookie, struct agp_info *info)
1149 {
1150 struct agp_softc *sc = devcookie;
1151
1152 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1153 sc->as_capoff + PCI_AGP_STATUS);
1154 info->ai_aperture_base = sc->as_apaddr;
1155 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
1156 info->ai_memory_allowed = sc->as_maxmem;
1157 info->ai_memory_used = sc->as_allocated;
1158 info->ai_devid = sc->as_id;
1159 }
1160
1161 int
1162 agp_acquire(void *dev)
1163 {
1164 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1165 }
1166
1167 int
1168 agp_release(void *dev)
1169 {
1170 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1171 }
1172
1173 int
1174 agp_enable(void *dev, u_int32_t mode)
1175 {
1176 struct agp_softc *sc = dev;
1177
1178 return AGP_ENABLE(sc, mode);
1179 }
1180
1181 void *
1182 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1183 {
1184 struct agp_softc *sc = dev;
1185
1186 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1187 }
1188
1189 void
1190 agp_free_memory(void *dev, void *handle)
1191 {
1192 struct agp_softc *sc = dev;
1193 struct agp_memory *mem = handle;
1194
1195 AGP_FREE_MEMORY(sc, mem);
1196 }
1197
1198 int
1199 agp_bind_memory(void *dev, void *handle, off_t offset)
1200 {
1201 struct agp_softc *sc = dev;
1202 struct agp_memory *mem = handle;
1203
1204 return AGP_BIND_MEMORY(sc, mem, offset);
1205 }
1206
1207 int
1208 agp_unbind_memory(void *dev, void *handle)
1209 {
1210 struct agp_softc *sc = dev;
1211 struct agp_memory *mem = handle;
1212
1213 return AGP_UNBIND_MEMORY(sc, mem);
1214 }
1215
1216 void
1217 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1218 {
1219 struct agp_memory *mem = handle;
1220
1221 mi->ami_size = mem->am_size;
1222 mi->ami_physical = mem->am_physical;
1223 mi->ami_offset = mem->am_offset;
1224 mi->ami_is_bound = mem->am_is_bound;
1225 }
1226
1227 int
1228 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1229 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1230 bus_dma_segment_t *seg, int nseg, int *rseg)
1231
1232 {
1233 int error, level = 0;
1234
1235 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1236 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1237 goto out;
1238 level++;
1239
1240 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1241 BUS_DMA_NOWAIT | flags)) != 0)
1242 goto out;
1243 level++;
1244
1245 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1246 BUS_DMA_NOWAIT, mapp)) != 0)
1247 goto out;
1248 level++;
1249
1250 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1251 BUS_DMA_NOWAIT)) != 0)
1252 goto out;
1253
1254 *baddr = (*mapp)->dm_segs[0].ds_addr;
1255
1256 return 0;
1257 out:
1258 switch (level) {
1259 case 3:
1260 bus_dmamap_destroy(tag, *mapp);
1261 /* FALLTHROUGH */
1262 case 2:
1263 bus_dmamem_unmap(tag, *vaddr, size);
1264 /* FALLTHROUGH */
1265 case 1:
1266 bus_dmamem_free(tag, seg, *rseg);
1267 break;
1268 default:
1269 break;
1270 }
1271
1272 return error;
1273 }
1274
1275 void
1276 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1277 void *vaddr, bus_dma_segment_t *seg, int nseg)
1278 {
1279 bus_dmamap_unload(tag, map);
1280 bus_dmamap_destroy(tag, map);
1281 bus_dmamem_unmap(tag, vaddr, size);
1282 bus_dmamem_free(tag, seg, nseg);
1283 }
1284
1285 static bool
1286 agp_resume(device_t dv, const pmf_qual_t *qual)
1287 {
1288 agp_flush_cache();
1289
1290 return true;
1291 }
1292