agp.c revision 1.85.6.1 1 /* $NetBSD: agp.c,v 1.85.6.1 2020/01/31 11:17:32 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29 */
30
31 /*
32 * Copyright (c) 2001 Wasabi Systems, Inc.
33 * All rights reserved.
34 *
35 * Written by Frank van der Linden for Wasabi Systems, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed for the NetBSD Project by
48 * Wasabi Systems, Inc.
49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50 * or promote products derived from this software without specific prior
51 * written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.85.6.1 2020/01/31 11:17:32 martin Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/agpvar.h>
85 #include <dev/pci/agpreg.h>
86 #include <dev/pci/pcidevs.h>
87
88 #include <sys/bus.h>
89
90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91
92 /* Helper functions for implementing chipset mini drivers. */
93 /* XXXfvdl get rid of this one. */
94
95 extern struct cfdriver agp_cd;
96
97 static int agp_info_user(struct agp_softc *, agp_info *);
98 static int agp_setup_user(struct agp_softc *, agp_setup *);
99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 static int agp_deallocate_user(struct agp_softc *, int);
101 static int agp_bind_user(struct agp_softc *, agp_bind *);
102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 static int agp_generic_enable_v2(struct agp_softc *,
104 const struct pci_attach_args *, int, u_int32_t);
105 static int agp_generic_enable_v3(struct agp_softc *,
106 const struct pci_attach_args *, int, u_int32_t);
107 static int agpdev_match(const struct pci_attach_args *);
108 static bool agp_resume(device_t, const pmf_qual_t *);
109
110 #include "agp_ali.h"
111 #include "agp_amd.h"
112 #include "agp_i810.h"
113 #include "agp_intel.h"
114 #include "agp_sis.h"
115 #include "agp_via.h"
116 #include "agp_amd64.h"
117
118 const struct agp_product {
119 uint32_t ap_vendor;
120 uint32_t ap_product;
121 int (*ap_match)(const struct pci_attach_args *);
122 int (*ap_attach)(device_t, device_t, void *);
123 } agp_products[] = {
124 #if NAGP_AMD64 > 0
125 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
126 agp_amd64_match, agp_amd64_attach },
127 #endif
128
129 #if NAGP_ALI > 0
130 { PCI_VENDOR_ALI, -1,
131 NULL, agp_ali_attach },
132 #endif
133
134 #if NAGP_AMD64 > 0
135 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
136 agp_amd64_match, agp_amd64_attach },
137 #endif
138
139 #if NAGP_AMD > 0
140 { PCI_VENDOR_AMD, -1,
141 agp_amd_match, agp_amd_attach },
142 #endif
143
144 #if NAGP_I810 > 0
145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
146 NULL, agp_i810_attach },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 NULL, agp_i810_attach },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
150 NULL, agp_i810_attach },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 NULL, agp_i810_attach },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
154 NULL, agp_i810_attach },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
156 NULL, agp_i810_attach },
157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
158 NULL, agp_i810_attach },
159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
160 NULL, agp_i810_attach },
161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
162 NULL, agp_i810_attach },
163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
164 NULL, agp_i810_attach },
165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
166 NULL, agp_i810_attach },
167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
168 NULL, agp_i810_attach },
169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
170 NULL, agp_i810_attach },
171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
172 NULL, agp_i810_attach },
173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
174 NULL, agp_i810_attach },
175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
176 NULL, agp_i810_attach },
177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
178 NULL, agp_i810_attach },
179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
180 NULL, agp_i810_attach },
181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
182 NULL, agp_i810_attach },
183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
184 NULL, agp_i810_attach },
185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
186 NULL, agp_i810_attach },
187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
188 NULL, agp_i810_attach },
189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
190 NULL, agp_i810_attach },
191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB,
192 NULL, agp_i810_attach },
193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB,
194 NULL, agp_i810_attach },
195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB,
196 NULL, agp_i810_attach },
197 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB,
198 NULL, agp_i810_attach },
199 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB,
200 NULL, agp_i810_attach },
201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB,
202 NULL, agp_i810_attach },
203 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB,
204 NULL, agp_i810_attach },
205 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
206 NULL, agp_i810_attach },
207 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
208 NULL, agp_i810_attach },
209 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
210 NULL, agp_i810_attach },
211 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
212 NULL, agp_i810_attach },
213 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_HB,
214 NULL, agp_i810_attach },
215 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
216 NULL, agp_i810_attach },
217 #endif
218
219 #if NAGP_INTEL > 0
220 { PCI_VENDOR_INTEL, -1,
221 NULL, agp_intel_attach },
222 #endif
223
224 #if NAGP_AMD64 > 0
225 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
226 agp_amd64_match, agp_amd64_attach },
227 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
228 agp_amd64_match, agp_amd64_attach },
229 #endif
230
231 #if NAGP_AMD64 > 0
232 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
233 agp_amd64_match, agp_amd64_attach },
234 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
235 agp_amd64_match, agp_amd64_attach },
236 #endif
237
238 #if NAGP_SIS > 0
239 { PCI_VENDOR_SIS, -1,
240 NULL, agp_sis_attach },
241 #endif
242
243 #if NAGP_AMD64 > 0
244 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
245 agp_amd64_match, agp_amd64_attach },
246 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
247 agp_amd64_match, agp_amd64_attach },
248 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
249 agp_amd64_match, agp_amd64_attach },
250 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
251 agp_amd64_match, agp_amd64_attach },
252 #endif
253
254 #if NAGP_VIA > 0
255 { PCI_VENDOR_VIATECH, -1,
256 NULL, agp_via_attach },
257 #endif
258
259 { 0, 0,
260 NULL, NULL },
261 };
262
263 static const struct agp_product *
264 agp_lookup(const struct pci_attach_args *pa)
265 {
266 const struct agp_product *ap;
267
268 /* First find the vendor. */
269 for (ap = agp_products; ap->ap_attach != NULL; ap++) {
270 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
271 break;
272 }
273
274 if (ap->ap_attach == NULL)
275 return (NULL);
276
277 /* Now find the product within the vendor's domain. */
278 for (; ap->ap_attach != NULL; ap++) {
279 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
280 /* Ran out of this vendor's section of the table. */
281 return (NULL);
282 }
283 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
284 /* Exact match. */
285 break;
286 }
287 if (ap->ap_product == (uint32_t) -1) {
288 /* Wildcard match. */
289 break;
290 }
291 }
292
293 if (ap->ap_attach == NULL)
294 return (NULL);
295
296 /* Now let the product-specific driver filter the match. */
297 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
298 return (NULL);
299
300 return (ap);
301 }
302
303 static int
304 agpmatch(device_t parent, cfdata_t match, void *aux)
305 {
306 struct agpbus_attach_args *apa = aux;
307 struct pci_attach_args *pa = &apa->apa_pci_args;
308
309 if (agp_lookup(pa) == NULL)
310 return (0);
311
312 return (1);
313 }
314
315 static const u_int agp_max[][2] = {
316 {0, 0},
317 {32, 4},
318 {64, 28},
319 {128, 96},
320 {256, 204},
321 {512, 440},
322 {1024, 942},
323 {2048, 1920},
324 {4096, 3932}
325 };
326 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
327
328 static void
329 agpattach(device_t parent, device_t self, void *aux)
330 {
331 struct agpbus_attach_args *apa = aux;
332 struct pci_attach_args *pa = &apa->apa_pci_args;
333 struct agp_softc *sc = device_private(self);
334 const struct agp_product *ap;
335 int ret;
336 u_int memsize, i;
337
338 ap = agp_lookup(pa);
339 KASSERT(ap != NULL);
340
341 aprint_naive(": AGP controller\n");
342
343 sc->as_dev = self;
344 sc->as_dmat = pa->pa_dmat;
345 sc->as_pc = pa->pa_pc;
346 sc->as_tag = pa->pa_tag;
347 sc->as_id = pa->pa_id;
348
349 /*
350 * Work out an upper bound for agp memory allocation. This
351 * uses a heuristic table from the Linux driver.
352 */
353 memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
354 for (i = 0; i < agp_max_size; i++) {
355 if (memsize <= agp_max[i][0])
356 break;
357 }
358 if (i == agp_max_size)
359 i = agp_max_size - 1;
360 sc->as_maxmem = agp_max[i][1] << 20U;
361
362 /*
363 * The mutex is used to prevent re-entry to
364 * agp_generic_bind_memory() since that function can sleep.
365 */
366 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
367
368 TAILQ_INIT(&sc->as_memory);
369
370 ret = (*ap->ap_attach)(parent, self, pa);
371 if (ret == 0)
372 aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
373 (unsigned long)sc->as_apaddr,
374 (unsigned long)AGP_GET_APERTURE(sc));
375 else
376 sc->as_chipc = NULL;
377
378 if (!pmf_device_register(self, NULL, agp_resume))
379 aprint_error_dev(self, "couldn't establish power handler\n");
380 }
381
382 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
383 agpmatch, agpattach, NULL, NULL);
384
385 int
386 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
387 {
388 /*
389 * Find the aperture. Don't map it (yet), this would
390 * eat KVA.
391 */
392 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
393 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
394 &sc->as_apflags) != 0)
395 return ENXIO;
396
397 sc->as_apt = pa->pa_memt;
398
399 return 0;
400 }
401
402 struct agp_gatt *
403 agp_alloc_gatt(struct agp_softc *sc)
404 {
405 u_int32_t apsize = AGP_GET_APERTURE(sc);
406 u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
407 struct agp_gatt *gatt;
408 void *virtual;
409 int dummyseg;
410
411 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
412 if (!gatt)
413 return NULL;
414 gatt->ag_entries = entries;
415
416 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
417 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
418 &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
419 free(gatt, M_AGP);
420 return NULL;
421 }
422 gatt->ag_virtual = (uint32_t *)virtual;
423
424 gatt->ag_size = entries * sizeof(u_int32_t);
425 memset(gatt->ag_virtual, 0, gatt->ag_size);
426 agp_flush_cache();
427
428 return gatt;
429 }
430
431 void
432 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
433 {
434 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
435 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
436 free(gatt, M_AGP);
437 }
438
439
440 int
441 agp_generic_detach(struct agp_softc *sc)
442 {
443 mutex_destroy(&sc->as_mtx);
444 agp_flush_cache();
445 return 0;
446 }
447
448 static int
449 agpdev_match(const struct pci_attach_args *pa)
450 {
451 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
452 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
453 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
454 NULL, NULL))
455 return 1;
456
457 return 0;
458 }
459
460 int
461 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
462 {
463 struct pci_attach_args pa;
464 pcireg_t tstatus, mstatus;
465 int capoff;
466
467 if (pci_find_device(&pa, agpdev_match) == 0 ||
468 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
469 &capoff, NULL) == 0) {
470 aprint_error_dev(sc->as_dev, "can't find display\n");
471 return ENXIO;
472 }
473
474 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
475 sc->as_capoff + PCI_AGP_STATUS);
476 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
477 capoff + PCI_AGP_STATUS);
478
479 if (AGP_MODE_GET_MODE_3(mode) &&
480 AGP_MODE_GET_MODE_3(tstatus) &&
481 AGP_MODE_GET_MODE_3(mstatus))
482 return agp_generic_enable_v3(sc, &pa, capoff, mode);
483 else
484 return agp_generic_enable_v2(sc, &pa, capoff, mode);
485 }
486
487 static int
488 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
489 int capoff, u_int32_t mode)
490 {
491 pcireg_t tstatus, mstatus;
492 pcireg_t command;
493 int rq, sba, fw, rate;
494
495 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
496 sc->as_capoff + PCI_AGP_STATUS);
497 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
498 capoff + PCI_AGP_STATUS);
499
500 /* Set RQ to the min of mode, tstatus and mstatus */
501 rq = AGP_MODE_GET_RQ(mode);
502 if (AGP_MODE_GET_RQ(tstatus) < rq)
503 rq = AGP_MODE_GET_RQ(tstatus);
504 if (AGP_MODE_GET_RQ(mstatus) < rq)
505 rq = AGP_MODE_GET_RQ(mstatus);
506
507 /* Set SBA if all three can deal with SBA */
508 sba = (AGP_MODE_GET_SBA(tstatus)
509 & AGP_MODE_GET_SBA(mstatus)
510 & AGP_MODE_GET_SBA(mode));
511
512 /* Similar for FW */
513 fw = (AGP_MODE_GET_FW(tstatus)
514 & AGP_MODE_GET_FW(mstatus)
515 & AGP_MODE_GET_FW(mode));
516
517 /* Figure out the max rate */
518 rate = (AGP_MODE_GET_RATE(tstatus)
519 & AGP_MODE_GET_RATE(mstatus)
520 & AGP_MODE_GET_RATE(mode));
521 if (rate & AGP_MODE_V2_RATE_4x)
522 rate = AGP_MODE_V2_RATE_4x;
523 else if (rate & AGP_MODE_V2_RATE_2x)
524 rate = AGP_MODE_V2_RATE_2x;
525 else
526 rate = AGP_MODE_V2_RATE_1x;
527
528 /* Construct the new mode word and tell the hardware */
529 command = AGP_MODE_SET_RQ(0, rq);
530 command = AGP_MODE_SET_SBA(command, sba);
531 command = AGP_MODE_SET_FW(command, fw);
532 command = AGP_MODE_SET_RATE(command, rate);
533 command = AGP_MODE_SET_AGP(command, 1);
534 pci_conf_write(sc->as_pc, sc->as_tag,
535 sc->as_capoff + PCI_AGP_COMMAND, command);
536 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
537 command);
538
539 return 0;
540 }
541
542 static int
543 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
544 int capoff, u_int32_t mode)
545 {
546 pcireg_t tstatus, mstatus;
547 pcireg_t command;
548 int rq, sba, fw, rate, arqsz, cal;
549
550 tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
551 sc->as_capoff + PCI_AGP_STATUS);
552 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
553 capoff + PCI_AGP_STATUS);
554
555 /* Set RQ to the min of mode, tstatus and mstatus */
556 rq = AGP_MODE_GET_RQ(mode);
557 if (AGP_MODE_GET_RQ(tstatus) < rq)
558 rq = AGP_MODE_GET_RQ(tstatus);
559 if (AGP_MODE_GET_RQ(mstatus) < rq)
560 rq = AGP_MODE_GET_RQ(mstatus);
561
562 /*
563 * ARQSZ - Set the value to the maximum one.
564 * Don't allow the mode register to override values.
565 */
566 arqsz = AGP_MODE_GET_ARQSZ(mode);
567 if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
568 arqsz = AGP_MODE_GET_ARQSZ(tstatus);
569 if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
570 arqsz = AGP_MODE_GET_ARQSZ(mstatus);
571
572 /* Calibration cycle - don't allow override by mode register */
573 cal = AGP_MODE_GET_CAL(tstatus);
574 if (AGP_MODE_GET_CAL(mstatus) < cal)
575 cal = AGP_MODE_GET_CAL(mstatus);
576
577 /* SBA must be supported for AGP v3. */
578 sba = 1;
579
580 /* Set FW if all three support it. */
581 fw = (AGP_MODE_GET_FW(tstatus)
582 & AGP_MODE_GET_FW(mstatus)
583 & AGP_MODE_GET_FW(mode));
584
585 /* Figure out the max rate */
586 rate = (AGP_MODE_GET_RATE(tstatus)
587 & AGP_MODE_GET_RATE(mstatus)
588 & AGP_MODE_GET_RATE(mode));
589 if (rate & AGP_MODE_V3_RATE_8x)
590 rate = AGP_MODE_V3_RATE_8x;
591 else
592 rate = AGP_MODE_V3_RATE_4x;
593
594 /* Construct the new mode word and tell the hardware */
595 command = AGP_MODE_SET_RQ(0, rq);
596 command = AGP_MODE_SET_ARQSZ(command, arqsz);
597 command = AGP_MODE_SET_CAL(command, cal);
598 command = AGP_MODE_SET_SBA(command, sba);
599 command = AGP_MODE_SET_FW(command, fw);
600 command = AGP_MODE_SET_RATE(command, rate);
601 command = AGP_MODE_SET_AGP(command, 1);
602 pci_conf_write(sc->as_pc, sc->as_tag,
603 sc->as_capoff + PCI_AGP_COMMAND, command);
604 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
605 command);
606
607 return 0;
608 }
609
610 struct agp_memory *
611 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
612 {
613 struct agp_memory *mem;
614
615 if ((size & (AGP_PAGE_SIZE - 1)) != 0)
616 return 0;
617
618 if (sc->as_allocated + size > sc->as_maxmem)
619 return 0;
620
621 if (type != 0) {
622 printf("agp_generic_alloc_memory: unsupported type %d\n",
623 type);
624 return 0;
625 }
626
627 mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
628 if (mem == NULL)
629 return NULL;
630
631 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
632 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
633 free(mem, M_AGP);
634 return NULL;
635 }
636
637 mem->am_id = sc->as_nextid++;
638 mem->am_size = size;
639 mem->am_type = 0;
640 mem->am_physical = 0;
641 mem->am_offset = 0;
642 mem->am_is_bound = 0;
643 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
644 sc->as_allocated += size;
645
646 return mem;
647 }
648
649 int
650 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
651 {
652 if (mem->am_is_bound)
653 return EBUSY;
654
655 sc->as_allocated -= mem->am_size;
656 TAILQ_REMOVE(&sc->as_memory, mem, am_link);
657 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
658 free(mem, M_AGP);
659 return 0;
660 }
661
662 int
663 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
664 off_t offset)
665 {
666
667 return agp_generic_bind_memory_bounded(sc, mem, offset,
668 0, AGP_GET_APERTURE(sc));
669 }
670
671 int
672 agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem,
673 off_t offset, off_t start, off_t end)
674 {
675 off_t i, k;
676 bus_size_t done, j;
677 int error;
678 bus_dma_segment_t *segs, *seg;
679 bus_addr_t pa;
680 int contigpages, nseg;
681
682 mutex_enter(&sc->as_mtx);
683
684 if (mem->am_is_bound) {
685 aprint_error_dev(sc->as_dev, "memory already bound\n");
686 mutex_exit(&sc->as_mtx);
687 return EINVAL;
688 }
689
690 if (offset < start
691 || (offset & (AGP_PAGE_SIZE - 1)) != 0
692 || offset > end
693 || mem->am_size > (end - offset)) {
694 aprint_error_dev(sc->as_dev,
695 "binding memory at bad offset %#lx\n",
696 (unsigned long) offset);
697 mutex_exit(&sc->as_mtx);
698 return EINVAL;
699 }
700
701 /*
702 * XXXfvdl
703 * The memory here needs to be directly accessable from the
704 * AGP video card, so it should be allocated using bus_dma.
705 * However, it need not be contiguous, since individual pages
706 * are translated using the GATT.
707 *
708 * Using a large chunk of contiguous memory may get in the way
709 * of other subsystems that may need one, so we try to be friendly
710 * and ask for allocation in chunks of a minimum of 8 pages
711 * of contiguous memory on average, falling back to 4, 2 and 1
712 * if really needed. Larger chunks are preferred, since allocating
713 * a bus_dma_segment per page would be overkill.
714 */
715
716 for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
717 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
718 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
719 if (segs == NULL) {
720 mutex_exit(&sc->as_mtx);
721 return ENOMEM;
722 }
723 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
724 segs, nseg, &mem->am_nseg,
725 contigpages > 1 ?
726 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
727 free(segs, M_AGP);
728 continue;
729 }
730 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
731 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
732 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
733 free(segs, M_AGP);
734 continue;
735 }
736 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
737 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
738 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
739 mem->am_size);
740 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
741 free(segs, M_AGP);
742 continue;
743 }
744 mem->am_dmaseg = segs;
745 break;
746 }
747
748 if (contigpages == 0) {
749 mutex_exit(&sc->as_mtx);
750 return ENOMEM;
751 }
752
753
754 /*
755 * Bind the individual pages and flush the chipset's
756 * TLB.
757 */
758 done = 0;
759 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
760 seg = &mem->am_dmamap->dm_segs[i];
761 /*
762 * Install entries in the GATT, making sure that if
763 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
764 * aligned to PAGE_SIZE, we don't modify too many GATT
765 * entries.
766 */
767 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
768 j += AGP_PAGE_SIZE) {
769 pa = seg->ds_addr + j;
770 AGP_DPF(("binding offset %#lx to pa %#lx\n",
771 (unsigned long)(offset + done + j),
772 (unsigned long)pa));
773 error = AGP_BIND_PAGE(sc, offset + done + j, pa);
774 if (error) {
775 /*
776 * Bail out. Reverse all the mappings
777 * and unwire the pages.
778 */
779 for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
780 AGP_UNBIND_PAGE(sc, offset + k);
781
782 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
783 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
784 mem->am_size);
785 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
786 mem->am_nseg);
787 free(mem->am_dmaseg, M_AGP);
788 mutex_exit(&sc->as_mtx);
789 return error;
790 }
791 }
792 done += seg->ds_len;
793 }
794
795 /*
796 * Flush the CPU cache since we are providing a new mapping
797 * for these pages.
798 */
799 agp_flush_cache();
800
801 /*
802 * Make sure the chipset gets the new mappings.
803 */
804 AGP_FLUSH_TLB(sc);
805
806 mem->am_offset = offset;
807 mem->am_is_bound = 1;
808
809 mutex_exit(&sc->as_mtx);
810
811 return 0;
812 }
813
814 int
815 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
816 {
817 int i;
818
819 mutex_enter(&sc->as_mtx);
820
821 if (!mem->am_is_bound) {
822 aprint_error_dev(sc->as_dev, "memory is not bound\n");
823 mutex_exit(&sc->as_mtx);
824 return EINVAL;
825 }
826
827
828 /*
829 * Unbind the individual pages and flush the chipset's
830 * TLB. Unwire the pages so they can be swapped.
831 */
832 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
833 AGP_UNBIND_PAGE(sc, mem->am_offset + i);
834
835 agp_flush_cache();
836 AGP_FLUSH_TLB(sc);
837
838 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
839 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
840 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
841
842 free(mem->am_dmaseg, M_AGP);
843
844 mem->am_offset = 0;
845 mem->am_is_bound = 0;
846
847 mutex_exit(&sc->as_mtx);
848
849 return 0;
850 }
851
852 /* Helper functions for implementing user/kernel api */
853
854 static int
855 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
856 {
857 if (sc->as_state != AGP_ACQUIRE_FREE)
858 return EBUSY;
859 sc->as_state = state;
860
861 return 0;
862 }
863
864 static int
865 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
866 {
867
868 if (sc->as_state == AGP_ACQUIRE_FREE)
869 return 0;
870
871 if (sc->as_state != state)
872 return EBUSY;
873
874 sc->as_state = AGP_ACQUIRE_FREE;
875 return 0;
876 }
877
878 static struct agp_memory *
879 agp_find_memory(struct agp_softc *sc, int id)
880 {
881 struct agp_memory *mem;
882
883 AGP_DPF(("searching for memory block %d\n", id));
884 TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
885 AGP_DPF(("considering memory block %d\n", mem->am_id));
886 if (mem->am_id == id)
887 return mem;
888 }
889 return 0;
890 }
891
892 /* Implementation of the userland ioctl api */
893
894 static int
895 agp_info_user(struct agp_softc *sc, agp_info *info)
896 {
897 memset(info, 0, sizeof *info);
898 info->bridge_id = sc->as_id;
899 if (sc->as_capoff != 0)
900 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
901 sc->as_capoff + PCI_AGP_STATUS);
902 else
903 info->agp_mode = 0; /* i810 doesn't have real AGP */
904 info->aper_base = sc->as_apaddr;
905 info->aper_size = AGP_GET_APERTURE(sc) >> 20;
906 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
907 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
908
909 return 0;
910 }
911
912 static int
913 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
914 {
915 return AGP_ENABLE(sc, setup->agp_mode);
916 }
917
918 static int
919 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
920 {
921 struct agp_memory *mem;
922
923 mem = AGP_ALLOC_MEMORY(sc,
924 alloc->type,
925 alloc->pg_count << AGP_PAGE_SHIFT);
926 if (mem) {
927 alloc->key = mem->am_id;
928 alloc->physical = mem->am_physical;
929 return 0;
930 } else {
931 return ENOMEM;
932 }
933 }
934
935 static int
936 agp_deallocate_user(struct agp_softc *sc, int id)
937 {
938 struct agp_memory *mem = agp_find_memory(sc, id);
939
940 if (mem) {
941 AGP_FREE_MEMORY(sc, mem);
942 return 0;
943 } else {
944 return ENOENT;
945 }
946 }
947
948 static int
949 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
950 {
951 struct agp_memory *mem = agp_find_memory(sc, bind->key);
952
953 if (!mem)
954 return ENOENT;
955
956 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
957 }
958
959 static int
960 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
961 {
962 struct agp_memory *mem = agp_find_memory(sc, unbind->key);
963
964 if (!mem)
965 return ENOENT;
966
967 return AGP_UNBIND_MEMORY(sc, mem);
968 }
969
970 static int
971 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
972 {
973 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
974
975 if (sc == NULL)
976 return ENXIO;
977
978 if (sc->as_chipc == NULL)
979 return ENXIO;
980
981 if (!sc->as_isopen)
982 sc->as_isopen = 1;
983 else
984 return EBUSY;
985
986 return 0;
987 }
988
989 static int
990 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
991 {
992 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
993 struct agp_memory *mem;
994
995 if (sc == NULL)
996 return ENODEV;
997
998 /*
999 * Clear the GATT and force release on last close
1000 */
1001 if (sc->as_state == AGP_ACQUIRE_USER) {
1002 while ((mem = TAILQ_FIRST(&sc->as_memory))) {
1003 if (mem->am_is_bound) {
1004 printf("agpclose: mem %d is bound\n",
1005 mem->am_id);
1006 AGP_UNBIND_MEMORY(sc, mem);
1007 }
1008 /*
1009 * XXX it is not documented, but if the protocol allows
1010 * allocate->acquire->bind, it would be possible that
1011 * memory ranges are allocated by the kernel here,
1012 * which we shouldn't free. We'd have to keep track of
1013 * the memory range's owner.
1014 * The kernel API is unsed yet, so we get away with
1015 * freeing all.
1016 */
1017 AGP_FREE_MEMORY(sc, mem);
1018 }
1019 agp_release_helper(sc, AGP_ACQUIRE_USER);
1020 }
1021 sc->as_isopen = 0;
1022
1023 return 0;
1024 }
1025
1026 static int
1027 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
1028 {
1029 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1030
1031 if (sc == NULL)
1032 return ENODEV;
1033
1034 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
1035 return EPERM;
1036
1037 switch (cmd) {
1038 case AGPIOC_INFO:
1039 return agp_info_user(sc, (agp_info *) data);
1040
1041 case AGPIOC_ACQUIRE:
1042 return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
1043
1044 case AGPIOC_RELEASE:
1045 return agp_release_helper(sc, AGP_ACQUIRE_USER);
1046
1047 case AGPIOC_SETUP:
1048 return agp_setup_user(sc, (agp_setup *)data);
1049
1050 #ifdef __x86_64__
1051 {
1052 /*
1053 * Handle paddr_t change from 32 bit for non PAE kernels
1054 * to 64 bit.
1055 */
1056 #define AGPIOC_OALLOCATE _IOWR(AGPIOC_BASE, 6, agp_oallocate)
1057
1058 typedef struct _agp_oallocate {
1059 int key; /* tag of allocation */
1060 size_t pg_count; /* number of pages */
1061 uint32_t type; /* 0 == normal, other devspec */
1062 u_long physical; /* device specific (some devices
1063 * need a phys address of the
1064 * actual page behind the gatt
1065 * table) */
1066 } agp_oallocate;
1067
1068 case AGPIOC_OALLOCATE: {
1069 int ret;
1070 agp_allocate aga;
1071 agp_oallocate *oaga = data;
1072
1073 aga.type = oaga->type;
1074 aga.pg_count = oaga->pg_count;
1075
1076 if ((ret = agp_allocate_user(sc, &aga)) == 0) {
1077 oaga->key = aga.key;
1078 oaga->physical = (u_long)aga.physical;
1079 }
1080
1081 return ret;
1082 }
1083 }
1084 #endif
1085 case AGPIOC_ALLOCATE:
1086 return agp_allocate_user(sc, (agp_allocate *)data);
1087
1088 case AGPIOC_DEALLOCATE:
1089 return agp_deallocate_user(sc, *(int *) data);
1090
1091 case AGPIOC_BIND:
1092 return agp_bind_user(sc, (agp_bind *)data);
1093
1094 case AGPIOC_UNBIND:
1095 return agp_unbind_user(sc, (agp_unbind *)data);
1096
1097 }
1098
1099 return EINVAL;
1100 }
1101
1102 static paddr_t
1103 agpmmap(dev_t dev, off_t offset, int prot)
1104 {
1105 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1106
1107 if (sc == NULL)
1108 return ENODEV;
1109
1110 if (offset > AGP_GET_APERTURE(sc))
1111 return -1;
1112
1113 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1114 BUS_SPACE_MAP_LINEAR));
1115 }
1116
1117 const struct cdevsw agp_cdevsw = {
1118 .d_open = agpopen,
1119 .d_close = agpclose,
1120 .d_read = noread,
1121 .d_write = nowrite,
1122 .d_ioctl = agpioctl,
1123 .d_stop = nostop,
1124 .d_tty = notty,
1125 .d_poll = nopoll,
1126 .d_mmap = agpmmap,
1127 .d_kqfilter = nokqfilter,
1128 .d_discard = nodiscard,
1129 .d_flag = D_OTHER
1130 };
1131
1132 /* Implementation of the kernel api */
1133
1134 void *
1135 agp_find_device(int unit)
1136 {
1137 return device_lookup_private(&agp_cd, unit);
1138 }
1139
1140 enum agp_acquire_state
1141 agp_state(void *devcookie)
1142 {
1143 struct agp_softc *sc = devcookie;
1144
1145 return sc->as_state;
1146 }
1147
1148 void
1149 agp_get_info(void *devcookie, struct agp_info *info)
1150 {
1151 struct agp_softc *sc = devcookie;
1152
1153 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1154 sc->as_capoff + PCI_AGP_STATUS);
1155 info->ai_aperture_base = sc->as_apaddr;
1156 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
1157 info->ai_memory_allowed = sc->as_maxmem;
1158 info->ai_memory_used = sc->as_allocated;
1159 info->ai_devid = sc->as_id;
1160 }
1161
1162 int
1163 agp_acquire(void *dev)
1164 {
1165 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1166 }
1167
1168 int
1169 agp_release(void *dev)
1170 {
1171 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1172 }
1173
1174 int
1175 agp_enable(void *dev, u_int32_t mode)
1176 {
1177 struct agp_softc *sc = dev;
1178
1179 return AGP_ENABLE(sc, mode);
1180 }
1181
1182 void *
1183 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1184 {
1185 struct agp_softc *sc = dev;
1186
1187 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1188 }
1189
1190 void
1191 agp_free_memory(void *dev, void *handle)
1192 {
1193 struct agp_softc *sc = dev;
1194 struct agp_memory *mem = handle;
1195
1196 AGP_FREE_MEMORY(sc, mem);
1197 }
1198
1199 int
1200 agp_bind_memory(void *dev, void *handle, off_t offset)
1201 {
1202 struct agp_softc *sc = dev;
1203 struct agp_memory *mem = handle;
1204
1205 return AGP_BIND_MEMORY(sc, mem, offset);
1206 }
1207
1208 int
1209 agp_unbind_memory(void *dev, void *handle)
1210 {
1211 struct agp_softc *sc = dev;
1212 struct agp_memory *mem = handle;
1213
1214 return AGP_UNBIND_MEMORY(sc, mem);
1215 }
1216
1217 void
1218 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1219 {
1220 struct agp_memory *mem = handle;
1221
1222 mi->ami_size = mem->am_size;
1223 mi->ami_physical = mem->am_physical;
1224 mi->ami_offset = mem->am_offset;
1225 mi->ami_is_bound = mem->am_is_bound;
1226 }
1227
1228 int
1229 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1230 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1231 bus_dma_segment_t *seg, int nseg, int *rseg)
1232
1233 {
1234 int error, level = 0;
1235
1236 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1237 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1238 goto out;
1239 level++;
1240
1241 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1242 BUS_DMA_NOWAIT | flags)) != 0)
1243 goto out;
1244 level++;
1245
1246 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1247 BUS_DMA_NOWAIT, mapp)) != 0)
1248 goto out;
1249 level++;
1250
1251 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1252 BUS_DMA_NOWAIT)) != 0)
1253 goto out;
1254
1255 *baddr = (*mapp)->dm_segs[0].ds_addr;
1256
1257 return 0;
1258 out:
1259 switch (level) {
1260 case 3:
1261 bus_dmamap_destroy(tag, *mapp);
1262 /* FALLTHROUGH */
1263 case 2:
1264 bus_dmamem_unmap(tag, *vaddr, size);
1265 /* FALLTHROUGH */
1266 case 1:
1267 bus_dmamem_free(tag, seg, *rseg);
1268 break;
1269 default:
1270 break;
1271 }
1272
1273 return error;
1274 }
1275
1276 void
1277 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1278 void *vaddr, bus_dma_segment_t *seg, int nseg)
1279 {
1280 bus_dmamap_unload(tag, map);
1281 bus_dmamap_destroy(tag, map);
1282 bus_dmamem_unmap(tag, vaddr, size);
1283 bus_dmamem_free(tag, seg, nseg);
1284 }
1285
1286 static bool
1287 agp_resume(device_t dv, const pmf_qual_t *qual)
1288 {
1289 agp_flush_cache();
1290
1291 return true;
1292 }
1293