Home | History | Annotate | Line # | Download | only in pci
agp.c revision 1.85.6.1
      1 /*	$NetBSD: agp.c,v 1.85.6.1 2020/01/31 11:17:32 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.85.6.1 2020/01/31 11:17:32 martin Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <dev/pci/pcireg.h>
     83 #include <dev/pci/pcivar.h>
     84 #include <dev/pci/agpvar.h>
     85 #include <dev/pci/agpreg.h>
     86 #include <dev/pci/pcidevs.h>
     87 
     88 #include <sys/bus.h>
     89 
     90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     91 
     92 /* Helper functions for implementing chipset mini drivers. */
     93 /* XXXfvdl get rid of this one. */
     94 
     95 extern struct cfdriver agp_cd;
     96 
     97 static int agp_info_user(struct agp_softc *, agp_info *);
     98 static int agp_setup_user(struct agp_softc *, agp_setup *);
     99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    100 static int agp_deallocate_user(struct agp_softc *, int);
    101 static int agp_bind_user(struct agp_softc *, agp_bind *);
    102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    103 static int agp_generic_enable_v2(struct agp_softc *,
    104     const struct pci_attach_args *, int, u_int32_t);
    105 static int agp_generic_enable_v3(struct agp_softc *,
    106     const struct pci_attach_args *, int, u_int32_t);
    107 static int agpdev_match(const struct pci_attach_args *);
    108 static bool agp_resume(device_t, const pmf_qual_t *);
    109 
    110 #include "agp_ali.h"
    111 #include "agp_amd.h"
    112 #include "agp_i810.h"
    113 #include "agp_intel.h"
    114 #include "agp_sis.h"
    115 #include "agp_via.h"
    116 #include "agp_amd64.h"
    117 
    118 const struct agp_product {
    119 	uint32_t	ap_vendor;
    120 	uint32_t	ap_product;
    121 	int		(*ap_match)(const struct pci_attach_args *);
    122 	int		(*ap_attach)(device_t, device_t, void *);
    123 } agp_products[] = {
    124 #if NAGP_AMD64 > 0
    125 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
    126 	  agp_amd64_match,	agp_amd64_attach },
    127 #endif
    128 
    129 #if NAGP_ALI > 0
    130 	{ PCI_VENDOR_ALI,	-1,
    131 	  NULL,			agp_ali_attach },
    132 #endif
    133 
    134 #if NAGP_AMD64 > 0
    135 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    136 	  agp_amd64_match,	agp_amd64_attach },
    137 #endif
    138 
    139 #if NAGP_AMD > 0
    140 	{ PCI_VENDOR_AMD,	-1,
    141 	  agp_amd_match,	agp_amd_attach },
    142 #endif
    143 
    144 #if NAGP_I810 > 0
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    166 	  NULL,			agp_i810_attach },
    167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    168 	  NULL,			agp_i810_attach },
    169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    170 	  NULL,			agp_i810_attach },
    171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
    172 	  NULL,			agp_i810_attach },
    173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    174 	  NULL,			agp_i810_attach },
    175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    176 	  NULL,			agp_i810_attach },
    177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    178 	  NULL,			agp_i810_attach },
    179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    180 	  NULL,			agp_i810_attach },
    181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    182 	  NULL,			agp_i810_attach },
    183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    184 	  NULL,			agp_i810_attach },
    185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
    186 	  NULL,			agp_i810_attach },
    187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
    188 	  NULL,			agp_i810_attach },
    189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
    190 	  NULL, 		agp_i810_attach },
    191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
    192 	  NULL, 		agp_i810_attach },
    193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
    194 	  NULL, 		agp_i810_attach },
    195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
    196 	  NULL, 		agp_i810_attach },
    197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
    198 	  NULL, 		agp_i810_attach },
    199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
    200 	  NULL, 		agp_i810_attach },
    201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
    202 	  NULL, 		agp_i810_attach },
    203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
    204 	  NULL, 		agp_i810_attach },
    205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
    206 	  NULL, 		agp_i810_attach },
    207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
    208 	  NULL, 		agp_i810_attach },
    209 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
    210 	  NULL, 		agp_i810_attach },
    211 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
    212 	  NULL, 		agp_i810_attach },
    213 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_HB,
    214 	  NULL, 		agp_i810_attach },
    215 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
    216 	  NULL, 		agp_i810_attach },
    217 #endif
    218 
    219 #if NAGP_INTEL > 0
    220 	{ PCI_VENDOR_INTEL,	-1,
    221 	  NULL,			agp_intel_attach },
    222 #endif
    223 
    224 #if NAGP_AMD64 > 0
    225 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    226 	  agp_amd64_match,	agp_amd64_attach },
    227 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    228 	  agp_amd64_match,	agp_amd64_attach },
    229 #endif
    230 
    231 #if NAGP_AMD64 > 0
    232 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    233 	  agp_amd64_match,	agp_amd64_attach },
    234 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    235 	  agp_amd64_match,	agp_amd64_attach },
    236 #endif
    237 
    238 #if NAGP_SIS > 0
    239 	{ PCI_VENDOR_SIS,	-1,
    240 	  NULL,			agp_sis_attach },
    241 #endif
    242 
    243 #if NAGP_AMD64 > 0
    244 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    245 	  agp_amd64_match,	agp_amd64_attach },
    246 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    247 	  agp_amd64_match,	agp_amd64_attach },
    248 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    249 	  agp_amd64_match,	agp_amd64_attach },
    250 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    251 	  agp_amd64_match,	agp_amd64_attach },
    252 #endif
    253 
    254 #if NAGP_VIA > 0
    255 	{ PCI_VENDOR_VIATECH,	-1,
    256 	  NULL,			agp_via_attach },
    257 #endif
    258 
    259 	{ 0,			0,
    260 	  NULL,			NULL },
    261 };
    262 
    263 static const struct agp_product *
    264 agp_lookup(const struct pci_attach_args *pa)
    265 {
    266 	const struct agp_product *ap;
    267 
    268 	/* First find the vendor. */
    269 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    270 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    271 			break;
    272 	}
    273 
    274 	if (ap->ap_attach == NULL)
    275 		return (NULL);
    276 
    277 	/* Now find the product within the vendor's domain. */
    278 	for (; ap->ap_attach != NULL; ap++) {
    279 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    280 			/* Ran out of this vendor's section of the table. */
    281 			return (NULL);
    282 		}
    283 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    284 			/* Exact match. */
    285 			break;
    286 		}
    287 		if (ap->ap_product == (uint32_t) -1) {
    288 			/* Wildcard match. */
    289 			break;
    290 		}
    291 	}
    292 
    293 	if (ap->ap_attach == NULL)
    294 		return (NULL);
    295 
    296 	/* Now let the product-specific driver filter the match. */
    297 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    298 		return (NULL);
    299 
    300 	return (ap);
    301 }
    302 
    303 static int
    304 agpmatch(device_t parent, cfdata_t match, void *aux)
    305 {
    306 	struct agpbus_attach_args *apa = aux;
    307 	struct pci_attach_args *pa = &apa->apa_pci_args;
    308 
    309 	if (agp_lookup(pa) == NULL)
    310 		return (0);
    311 
    312 	return (1);
    313 }
    314 
    315 static const u_int agp_max[][2] = {
    316 	{0,	0},
    317 	{32,	4},
    318 	{64,	28},
    319 	{128,	96},
    320 	{256,	204},
    321 	{512,	440},
    322 	{1024,	942},
    323 	{2048,	1920},
    324 	{4096,	3932}
    325 };
    326 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    327 
    328 static void
    329 agpattach(device_t parent, device_t self, void *aux)
    330 {
    331 	struct agpbus_attach_args *apa = aux;
    332 	struct pci_attach_args *pa = &apa->apa_pci_args;
    333 	struct agp_softc *sc = device_private(self);
    334 	const struct agp_product *ap;
    335 	int ret;
    336 	u_int memsize, i;
    337 
    338 	ap = agp_lookup(pa);
    339 	KASSERT(ap != NULL);
    340 
    341 	aprint_naive(": AGP controller\n");
    342 
    343 	sc->as_dev = self;
    344 	sc->as_dmat = pa->pa_dmat;
    345 	sc->as_pc = pa->pa_pc;
    346 	sc->as_tag = pa->pa_tag;
    347 	sc->as_id = pa->pa_id;
    348 
    349 	/*
    350 	 * Work out an upper bound for agp memory allocation. This
    351 	 * uses a heuristic table from the Linux driver.
    352 	 */
    353 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
    354 	for (i = 0; i < agp_max_size; i++) {
    355 		if (memsize <= agp_max[i][0])
    356 			break;
    357 	}
    358 	if (i == agp_max_size)
    359 		i = agp_max_size - 1;
    360 	sc->as_maxmem = agp_max[i][1] << 20U;
    361 
    362 	/*
    363 	 * The mutex is used to prevent re-entry to
    364 	 * agp_generic_bind_memory() since that function can sleep.
    365 	 */
    366 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    367 
    368 	TAILQ_INIT(&sc->as_memory);
    369 
    370 	ret = (*ap->ap_attach)(parent, self, pa);
    371 	if (ret == 0)
    372 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    373 		    (unsigned long)sc->as_apaddr,
    374 		    (unsigned long)AGP_GET_APERTURE(sc));
    375 	else
    376 		sc->as_chipc = NULL;
    377 
    378 	if (!pmf_device_register(self, NULL, agp_resume))
    379 		aprint_error_dev(self, "couldn't establish power handler\n");
    380 }
    381 
    382 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
    383     agpmatch, agpattach, NULL, NULL);
    384 
    385 int
    386 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    387 {
    388 	/*
    389 	 * Find the aperture. Don't map it (yet), this would
    390 	 * eat KVA.
    391 	 */
    392 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    393 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    394 	    &sc->as_apflags) != 0)
    395 		return ENXIO;
    396 
    397 	sc->as_apt = pa->pa_memt;
    398 
    399 	return 0;
    400 }
    401 
    402 struct agp_gatt *
    403 agp_alloc_gatt(struct agp_softc *sc)
    404 {
    405 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    406 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    407 	struct agp_gatt *gatt;
    408 	void *virtual;
    409 	int dummyseg;
    410 
    411 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
    412 	if (!gatt)
    413 		return NULL;
    414 	gatt->ag_entries = entries;
    415 
    416 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    417 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    418 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
    419 		free(gatt, M_AGP);
    420 		return NULL;
    421 	}
    422 	gatt->ag_virtual = (uint32_t *)virtual;
    423 
    424 	gatt->ag_size = entries * sizeof(u_int32_t);
    425 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    426 	agp_flush_cache();
    427 
    428 	return gatt;
    429 }
    430 
    431 void
    432 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    433 {
    434 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    435 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    436 	free(gatt, M_AGP);
    437 }
    438 
    439 
    440 int
    441 agp_generic_detach(struct agp_softc *sc)
    442 {
    443 	mutex_destroy(&sc->as_mtx);
    444 	agp_flush_cache();
    445 	return 0;
    446 }
    447 
    448 static int
    449 agpdev_match(const struct pci_attach_args *pa)
    450 {
    451 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    452 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    453 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    454 		    NULL, NULL))
    455 		return 1;
    456 
    457 	return 0;
    458 }
    459 
    460 int
    461 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    462 {
    463 	struct pci_attach_args pa;
    464 	pcireg_t tstatus, mstatus;
    465 	int capoff;
    466 
    467 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    468 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    469 	     &capoff, NULL) == 0) {
    470 		aprint_error_dev(sc->as_dev, "can't find display\n");
    471 		return ENXIO;
    472 	}
    473 
    474 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    475 	    sc->as_capoff + PCI_AGP_STATUS);
    476 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    477 	    capoff + PCI_AGP_STATUS);
    478 
    479 	if (AGP_MODE_GET_MODE_3(mode) &&
    480 	    AGP_MODE_GET_MODE_3(tstatus) &&
    481 	    AGP_MODE_GET_MODE_3(mstatus))
    482 		return agp_generic_enable_v3(sc, &pa, capoff, mode);
    483 	else
    484 		return agp_generic_enable_v2(sc, &pa, capoff, mode);
    485 }
    486 
    487 static int
    488 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
    489     int capoff, u_int32_t mode)
    490 {
    491 	pcireg_t tstatus, mstatus;
    492 	pcireg_t command;
    493 	int rq, sba, fw, rate;
    494 
    495 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    496 	    sc->as_capoff + PCI_AGP_STATUS);
    497 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
    498 	    capoff + PCI_AGP_STATUS);
    499 
    500 	/* Set RQ to the min of mode, tstatus and mstatus */
    501 	rq = AGP_MODE_GET_RQ(mode);
    502 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    503 		rq = AGP_MODE_GET_RQ(tstatus);
    504 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    505 		rq = AGP_MODE_GET_RQ(mstatus);
    506 
    507 	/* Set SBA if all three can deal with SBA */
    508 	sba = (AGP_MODE_GET_SBA(tstatus)
    509 	       & AGP_MODE_GET_SBA(mstatus)
    510 	       & AGP_MODE_GET_SBA(mode));
    511 
    512 	/* Similar for FW */
    513 	fw = (AGP_MODE_GET_FW(tstatus)
    514 	       & AGP_MODE_GET_FW(mstatus)
    515 	       & AGP_MODE_GET_FW(mode));
    516 
    517 	/* Figure out the max rate */
    518 	rate = (AGP_MODE_GET_RATE(tstatus)
    519 		& AGP_MODE_GET_RATE(mstatus)
    520 		& AGP_MODE_GET_RATE(mode));
    521 	if (rate & AGP_MODE_V2_RATE_4x)
    522 		rate = AGP_MODE_V2_RATE_4x;
    523 	else if (rate & AGP_MODE_V2_RATE_2x)
    524 		rate = AGP_MODE_V2_RATE_2x;
    525 	else
    526 		rate = AGP_MODE_V2_RATE_1x;
    527 
    528 	/* Construct the new mode word and tell the hardware */
    529 	command = AGP_MODE_SET_RQ(0, rq);
    530 	command = AGP_MODE_SET_SBA(command, sba);
    531 	command = AGP_MODE_SET_FW(command, fw);
    532 	command = AGP_MODE_SET_RATE(command, rate);
    533 	command = AGP_MODE_SET_AGP(command, 1);
    534 	pci_conf_write(sc->as_pc, sc->as_tag,
    535 	    sc->as_capoff + PCI_AGP_COMMAND, command);
    536 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
    537 		       command);
    538 
    539 	return 0;
    540 }
    541 
    542 static int
    543 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
    544     int capoff, u_int32_t mode)
    545 {
    546 	pcireg_t tstatus, mstatus;
    547 	pcireg_t command;
    548 	int rq, sba, fw, rate, arqsz, cal;
    549 
    550 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    551 	    sc->as_capoff + PCI_AGP_STATUS);
    552 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
    553 	    capoff + PCI_AGP_STATUS);
    554 
    555 	/* Set RQ to the min of mode, tstatus and mstatus */
    556 	rq = AGP_MODE_GET_RQ(mode);
    557 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    558 		rq = AGP_MODE_GET_RQ(tstatus);
    559 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    560 		rq = AGP_MODE_GET_RQ(mstatus);
    561 
    562 	/*
    563 	 * ARQSZ - Set the value to the maximum one.
    564 	 * Don't allow the mode register to override values.
    565 	 */
    566 	arqsz = AGP_MODE_GET_ARQSZ(mode);
    567 	if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
    568 		arqsz = AGP_MODE_GET_ARQSZ(tstatus);
    569 	if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
    570 		arqsz = AGP_MODE_GET_ARQSZ(mstatus);
    571 
    572 	/* Calibration cycle - don't allow override by mode register */
    573 	cal = AGP_MODE_GET_CAL(tstatus);
    574 	if (AGP_MODE_GET_CAL(mstatus) < cal)
    575 		cal = AGP_MODE_GET_CAL(mstatus);
    576 
    577 	/* SBA must be supported for AGP v3. */
    578 	sba = 1;
    579 
    580 	/* Set FW if all three support it. */
    581 	fw = (AGP_MODE_GET_FW(tstatus)
    582 	       & AGP_MODE_GET_FW(mstatus)
    583 	       & AGP_MODE_GET_FW(mode));
    584 
    585 	/* Figure out the max rate */
    586 	rate = (AGP_MODE_GET_RATE(tstatus)
    587 		& AGP_MODE_GET_RATE(mstatus)
    588 		& AGP_MODE_GET_RATE(mode));
    589 	if (rate & AGP_MODE_V3_RATE_8x)
    590 		rate = AGP_MODE_V3_RATE_8x;
    591 	else
    592 		rate = AGP_MODE_V3_RATE_4x;
    593 
    594 	/* Construct the new mode word and tell the hardware */
    595 	command = AGP_MODE_SET_RQ(0, rq);
    596 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
    597 	command = AGP_MODE_SET_CAL(command, cal);
    598 	command = AGP_MODE_SET_SBA(command, sba);
    599 	command = AGP_MODE_SET_FW(command, fw);
    600 	command = AGP_MODE_SET_RATE(command, rate);
    601 	command = AGP_MODE_SET_AGP(command, 1);
    602 	pci_conf_write(sc->as_pc, sc->as_tag,
    603 	    sc->as_capoff + PCI_AGP_COMMAND, command);
    604 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
    605 		       command);
    606 
    607 	return 0;
    608 }
    609 
    610 struct agp_memory *
    611 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    612 {
    613 	struct agp_memory *mem;
    614 
    615 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    616 		return 0;
    617 
    618 	if (sc->as_allocated + size > sc->as_maxmem)
    619 		return 0;
    620 
    621 	if (type != 0) {
    622 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    623 		       type);
    624 		return 0;
    625 	}
    626 
    627 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    628 	if (mem == NULL)
    629 		return NULL;
    630 
    631 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    632 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    633 		free(mem, M_AGP);
    634 		return NULL;
    635 	}
    636 
    637 	mem->am_id = sc->as_nextid++;
    638 	mem->am_size = size;
    639 	mem->am_type = 0;
    640 	mem->am_physical = 0;
    641 	mem->am_offset = 0;
    642 	mem->am_is_bound = 0;
    643 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    644 	sc->as_allocated += size;
    645 
    646 	return mem;
    647 }
    648 
    649 int
    650 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    651 {
    652 	if (mem->am_is_bound)
    653 		return EBUSY;
    654 
    655 	sc->as_allocated -= mem->am_size;
    656 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    657 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    658 	free(mem, M_AGP);
    659 	return 0;
    660 }
    661 
    662 int
    663 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    664     off_t offset)
    665 {
    666 
    667 	return agp_generic_bind_memory_bounded(sc, mem, offset,
    668 	    0, AGP_GET_APERTURE(sc));
    669 }
    670 
    671 int
    672 agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem,
    673     off_t offset, off_t start, off_t end)
    674 {
    675 	off_t i, k;
    676 	bus_size_t done, j;
    677 	int error;
    678 	bus_dma_segment_t *segs, *seg;
    679 	bus_addr_t pa;
    680 	int contigpages, nseg;
    681 
    682 	mutex_enter(&sc->as_mtx);
    683 
    684 	if (mem->am_is_bound) {
    685 		aprint_error_dev(sc->as_dev, "memory already bound\n");
    686 		mutex_exit(&sc->as_mtx);
    687 		return EINVAL;
    688 	}
    689 
    690 	if (offset < start
    691 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    692 	    || offset > end
    693 	    || mem->am_size > (end - offset)) {
    694 		aprint_error_dev(sc->as_dev,
    695 			      "binding memory at bad offset %#lx\n",
    696 			      (unsigned long) offset);
    697 		mutex_exit(&sc->as_mtx);
    698 		return EINVAL;
    699 	}
    700 
    701 	/*
    702 	 * XXXfvdl
    703 	 * The memory here needs to be directly accessable from the
    704 	 * AGP video card, so it should be allocated using bus_dma.
    705 	 * However, it need not be contiguous, since individual pages
    706 	 * are translated using the GATT.
    707 	 *
    708 	 * Using a large chunk of contiguous memory may get in the way
    709 	 * of other subsystems that may need one, so we try to be friendly
    710 	 * and ask for allocation in chunks of a minimum of 8 pages
    711 	 * of contiguous memory on average, falling back to 4, 2 and 1
    712 	 * if really needed. Larger chunks are preferred, since allocating
    713 	 * a bus_dma_segment per page would be overkill.
    714 	 */
    715 
    716 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    717 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    718 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    719 		if (segs == NULL) {
    720 			mutex_exit(&sc->as_mtx);
    721 			return ENOMEM;
    722 		}
    723 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    724 				     segs, nseg, &mem->am_nseg,
    725 				     contigpages > 1 ?
    726 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    727 			free(segs, M_AGP);
    728 			continue;
    729 		}
    730 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    731 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    732 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    733 			free(segs, M_AGP);
    734 			continue;
    735 		}
    736 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    737 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    738 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    739 			    mem->am_size);
    740 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    741 			free(segs, M_AGP);
    742 			continue;
    743 		}
    744 		mem->am_dmaseg = segs;
    745 		break;
    746 	}
    747 
    748 	if (contigpages == 0) {
    749 		mutex_exit(&sc->as_mtx);
    750 		return ENOMEM;
    751 	}
    752 
    753 
    754 	/*
    755 	 * Bind the individual pages and flush the chipset's
    756 	 * TLB.
    757 	 */
    758 	done = 0;
    759 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    760 		seg = &mem->am_dmamap->dm_segs[i];
    761 		/*
    762 		 * Install entries in the GATT, making sure that if
    763 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    764 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    765 		 * entries.
    766 		 */
    767 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    768 		     j += AGP_PAGE_SIZE) {
    769 			pa = seg->ds_addr + j;
    770 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    771 				(unsigned long)(offset + done + j),
    772 				(unsigned long)pa));
    773 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    774 			if (error) {
    775 				/*
    776 				 * Bail out. Reverse all the mappings
    777 				 * and unwire the pages.
    778 				 */
    779 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    780 					AGP_UNBIND_PAGE(sc, offset + k);
    781 
    782 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    783 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    784 						 mem->am_size);
    785 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    786 						mem->am_nseg);
    787 				free(mem->am_dmaseg, M_AGP);
    788 				mutex_exit(&sc->as_mtx);
    789 				return error;
    790 			}
    791 		}
    792 		done += seg->ds_len;
    793 	}
    794 
    795 	/*
    796 	 * Flush the CPU cache since we are providing a new mapping
    797 	 * for these pages.
    798 	 */
    799 	agp_flush_cache();
    800 
    801 	/*
    802 	 * Make sure the chipset gets the new mappings.
    803 	 */
    804 	AGP_FLUSH_TLB(sc);
    805 
    806 	mem->am_offset = offset;
    807 	mem->am_is_bound = 1;
    808 
    809 	mutex_exit(&sc->as_mtx);
    810 
    811 	return 0;
    812 }
    813 
    814 int
    815 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    816 {
    817 	int i;
    818 
    819 	mutex_enter(&sc->as_mtx);
    820 
    821 	if (!mem->am_is_bound) {
    822 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
    823 		mutex_exit(&sc->as_mtx);
    824 		return EINVAL;
    825 	}
    826 
    827 
    828 	/*
    829 	 * Unbind the individual pages and flush the chipset's
    830 	 * TLB. Unwire the pages so they can be swapped.
    831 	 */
    832 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    833 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    834 
    835 	agp_flush_cache();
    836 	AGP_FLUSH_TLB(sc);
    837 
    838 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    839 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    840 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    841 
    842 	free(mem->am_dmaseg, M_AGP);
    843 
    844 	mem->am_offset = 0;
    845 	mem->am_is_bound = 0;
    846 
    847 	mutex_exit(&sc->as_mtx);
    848 
    849 	return 0;
    850 }
    851 
    852 /* Helper functions for implementing user/kernel api */
    853 
    854 static int
    855 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    856 {
    857 	if (sc->as_state != AGP_ACQUIRE_FREE)
    858 		return EBUSY;
    859 	sc->as_state = state;
    860 
    861 	return 0;
    862 }
    863 
    864 static int
    865 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    866 {
    867 
    868 	if (sc->as_state == AGP_ACQUIRE_FREE)
    869 		return 0;
    870 
    871 	if (sc->as_state != state)
    872 		return EBUSY;
    873 
    874 	sc->as_state = AGP_ACQUIRE_FREE;
    875 	return 0;
    876 }
    877 
    878 static struct agp_memory *
    879 agp_find_memory(struct agp_softc *sc, int id)
    880 {
    881 	struct agp_memory *mem;
    882 
    883 	AGP_DPF(("searching for memory block %d\n", id));
    884 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    885 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    886 		if (mem->am_id == id)
    887 			return mem;
    888 	}
    889 	return 0;
    890 }
    891 
    892 /* Implementation of the userland ioctl api */
    893 
    894 static int
    895 agp_info_user(struct agp_softc *sc, agp_info *info)
    896 {
    897 	memset(info, 0, sizeof *info);
    898 	info->bridge_id = sc->as_id;
    899 	if (sc->as_capoff != 0)
    900 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    901 					       sc->as_capoff + PCI_AGP_STATUS);
    902 	else
    903 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    904 	info->aper_base = sc->as_apaddr;
    905 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    906 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    907 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    908 
    909 	return 0;
    910 }
    911 
    912 static int
    913 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    914 {
    915 	return AGP_ENABLE(sc, setup->agp_mode);
    916 }
    917 
    918 static int
    919 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    920 {
    921 	struct agp_memory *mem;
    922 
    923 	mem = AGP_ALLOC_MEMORY(sc,
    924 			       alloc->type,
    925 			       alloc->pg_count << AGP_PAGE_SHIFT);
    926 	if (mem) {
    927 		alloc->key = mem->am_id;
    928 		alloc->physical = mem->am_physical;
    929 		return 0;
    930 	} else {
    931 		return ENOMEM;
    932 	}
    933 }
    934 
    935 static int
    936 agp_deallocate_user(struct agp_softc *sc, int id)
    937 {
    938 	struct agp_memory *mem = agp_find_memory(sc, id);
    939 
    940 	if (mem) {
    941 		AGP_FREE_MEMORY(sc, mem);
    942 		return 0;
    943 	} else {
    944 		return ENOENT;
    945 	}
    946 }
    947 
    948 static int
    949 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    950 {
    951 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    952 
    953 	if (!mem)
    954 		return ENOENT;
    955 
    956 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    957 }
    958 
    959 static int
    960 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    961 {
    962 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    963 
    964 	if (!mem)
    965 		return ENOENT;
    966 
    967 	return AGP_UNBIND_MEMORY(sc, mem);
    968 }
    969 
    970 static int
    971 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
    972 {
    973 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    974 
    975 	if (sc == NULL)
    976 		return ENXIO;
    977 
    978 	if (sc->as_chipc == NULL)
    979 		return ENXIO;
    980 
    981 	if (!sc->as_isopen)
    982 		sc->as_isopen = 1;
    983 	else
    984 		return EBUSY;
    985 
    986 	return 0;
    987 }
    988 
    989 static int
    990 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
    991 {
    992 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    993 	struct agp_memory *mem;
    994 
    995 	if (sc == NULL)
    996 		return ENODEV;
    997 
    998 	/*
    999 	 * Clear the GATT and force release on last close
   1000 	 */
   1001 	if (sc->as_state == AGP_ACQUIRE_USER) {
   1002 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
   1003 			if (mem->am_is_bound) {
   1004 				printf("agpclose: mem %d is bound\n",
   1005 				       mem->am_id);
   1006 				AGP_UNBIND_MEMORY(sc, mem);
   1007 			}
   1008 			/*
   1009 			 * XXX it is not documented, but if the protocol allows
   1010 			 * allocate->acquire->bind, it would be possible that
   1011 			 * memory ranges are allocated by the kernel here,
   1012 			 * which we shouldn't free. We'd have to keep track of
   1013 			 * the memory range's owner.
   1014 			 * The kernel API is unsed yet, so we get away with
   1015 			 * freeing all.
   1016 			 */
   1017 			AGP_FREE_MEMORY(sc, mem);
   1018 		}
   1019 		agp_release_helper(sc, AGP_ACQUIRE_USER);
   1020 	}
   1021 	sc->as_isopen = 0;
   1022 
   1023 	return 0;
   1024 }
   1025 
   1026 static int
   1027 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
   1028 {
   1029 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
   1030 
   1031 	if (sc == NULL)
   1032 		return ENODEV;
   1033 
   1034 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
   1035 		return EPERM;
   1036 
   1037 	switch (cmd) {
   1038 	case AGPIOC_INFO:
   1039 		return agp_info_user(sc, (agp_info *) data);
   1040 
   1041 	case AGPIOC_ACQUIRE:
   1042 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
   1043 
   1044 	case AGPIOC_RELEASE:
   1045 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
   1046 
   1047 	case AGPIOC_SETUP:
   1048 		return agp_setup_user(sc, (agp_setup *)data);
   1049 
   1050 #ifdef __x86_64__
   1051 {
   1052 	/*
   1053 	 * Handle paddr_t change from 32 bit for non PAE kernels
   1054 	 * to 64 bit.
   1055 	 */
   1056 #define AGPIOC_OALLOCATE  _IOWR(AGPIOC_BASE, 6, agp_oallocate)
   1057 
   1058 	typedef struct _agp_oallocate {
   1059 		int key;		/* tag of allocation            */
   1060 		size_t pg_count;	/* number of pages              */
   1061 		uint32_t type;		/* 0 == normal, other devspec   */
   1062 		u_long physical;	/* device specific (some devices
   1063 					 * need a phys address of the
   1064 					 * actual page behind the gatt
   1065 					 * table)                        */
   1066 	} agp_oallocate;
   1067 
   1068 	case AGPIOC_OALLOCATE: {
   1069 		int ret;
   1070 		agp_allocate aga;
   1071 		agp_oallocate *oaga = data;
   1072 
   1073 		aga.type = oaga->type;
   1074 		aga.pg_count = oaga->pg_count;
   1075 
   1076 		if ((ret = agp_allocate_user(sc, &aga)) == 0) {
   1077 			oaga->key = aga.key;
   1078 			oaga->physical = (u_long)aga.physical;
   1079 		}
   1080 
   1081 		return ret;
   1082 	}
   1083 }
   1084 #endif
   1085 	case AGPIOC_ALLOCATE:
   1086 		return agp_allocate_user(sc, (agp_allocate *)data);
   1087 
   1088 	case AGPIOC_DEALLOCATE:
   1089 		return agp_deallocate_user(sc, *(int *) data);
   1090 
   1091 	case AGPIOC_BIND:
   1092 		return agp_bind_user(sc, (agp_bind *)data);
   1093 
   1094 	case AGPIOC_UNBIND:
   1095 		return agp_unbind_user(sc, (agp_unbind *)data);
   1096 
   1097 	}
   1098 
   1099 	return EINVAL;
   1100 }
   1101 
   1102 static paddr_t
   1103 agpmmap(dev_t dev, off_t offset, int prot)
   1104 {
   1105 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
   1106 
   1107 	if (sc == NULL)
   1108 		return ENODEV;
   1109 
   1110 	if (offset > AGP_GET_APERTURE(sc))
   1111 		return -1;
   1112 
   1113 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
   1114 	    BUS_SPACE_MAP_LINEAR));
   1115 }
   1116 
   1117 const struct cdevsw agp_cdevsw = {
   1118 	.d_open = agpopen,
   1119 	.d_close = agpclose,
   1120 	.d_read = noread,
   1121 	.d_write = nowrite,
   1122 	.d_ioctl = agpioctl,
   1123 	.d_stop = nostop,
   1124 	.d_tty = notty,
   1125 	.d_poll = nopoll,
   1126 	.d_mmap = agpmmap,
   1127 	.d_kqfilter = nokqfilter,
   1128 	.d_discard = nodiscard,
   1129 	.d_flag = D_OTHER
   1130 };
   1131 
   1132 /* Implementation of the kernel api */
   1133 
   1134 void *
   1135 agp_find_device(int unit)
   1136 {
   1137 	return device_lookup_private(&agp_cd, unit);
   1138 }
   1139 
   1140 enum agp_acquire_state
   1141 agp_state(void *devcookie)
   1142 {
   1143 	struct agp_softc *sc = devcookie;
   1144 
   1145 	return sc->as_state;
   1146 }
   1147 
   1148 void
   1149 agp_get_info(void *devcookie, struct agp_info *info)
   1150 {
   1151 	struct agp_softc *sc = devcookie;
   1152 
   1153 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
   1154 	    sc->as_capoff + PCI_AGP_STATUS);
   1155 	info->ai_aperture_base = sc->as_apaddr;
   1156 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
   1157 	info->ai_memory_allowed = sc->as_maxmem;
   1158 	info->ai_memory_used = sc->as_allocated;
   1159 	info->ai_devid = sc->as_id;
   1160 }
   1161 
   1162 int
   1163 agp_acquire(void *dev)
   1164 {
   1165 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
   1166 }
   1167 
   1168 int
   1169 agp_release(void *dev)
   1170 {
   1171 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
   1172 }
   1173 
   1174 int
   1175 agp_enable(void *dev, u_int32_t mode)
   1176 {
   1177 	struct agp_softc *sc = dev;
   1178 
   1179 	return AGP_ENABLE(sc, mode);
   1180 }
   1181 
   1182 void *
   1183 agp_alloc_memory(void *dev, int type, vsize_t bytes)
   1184 {
   1185 	struct agp_softc *sc = dev;
   1186 
   1187 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
   1188 }
   1189 
   1190 void
   1191 agp_free_memory(void *dev, void *handle)
   1192 {
   1193 	struct agp_softc *sc = dev;
   1194 	struct agp_memory *mem = handle;
   1195 
   1196 	AGP_FREE_MEMORY(sc, mem);
   1197 }
   1198 
   1199 int
   1200 agp_bind_memory(void *dev, void *handle, off_t offset)
   1201 {
   1202 	struct agp_softc *sc = dev;
   1203 	struct agp_memory *mem = handle;
   1204 
   1205 	return AGP_BIND_MEMORY(sc, mem, offset);
   1206 }
   1207 
   1208 int
   1209 agp_unbind_memory(void *dev, void *handle)
   1210 {
   1211 	struct agp_softc *sc = dev;
   1212 	struct agp_memory *mem = handle;
   1213 
   1214 	return AGP_UNBIND_MEMORY(sc, mem);
   1215 }
   1216 
   1217 void
   1218 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
   1219 {
   1220 	struct agp_memory *mem = handle;
   1221 
   1222 	mi->ami_size = mem->am_size;
   1223 	mi->ami_physical = mem->am_physical;
   1224 	mi->ami_offset = mem->am_offset;
   1225 	mi->ami_is_bound = mem->am_is_bound;
   1226 }
   1227 
   1228 int
   1229 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1230 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1231 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1232 
   1233 {
   1234 	int error, level = 0;
   1235 
   1236 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1237 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1238 		goto out;
   1239 	level++;
   1240 
   1241 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1242 			BUS_DMA_NOWAIT | flags)) != 0)
   1243 		goto out;
   1244 	level++;
   1245 
   1246 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1247 			BUS_DMA_NOWAIT, mapp)) != 0)
   1248 		goto out;
   1249 	level++;
   1250 
   1251 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1252 			BUS_DMA_NOWAIT)) != 0)
   1253 		goto out;
   1254 
   1255 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1256 
   1257 	return 0;
   1258 out:
   1259 	switch (level) {
   1260 	case 3:
   1261 		bus_dmamap_destroy(tag, *mapp);
   1262 		/* FALLTHROUGH */
   1263 	case 2:
   1264 		bus_dmamem_unmap(tag, *vaddr, size);
   1265 		/* FALLTHROUGH */
   1266 	case 1:
   1267 		bus_dmamem_free(tag, seg, *rseg);
   1268 		break;
   1269 	default:
   1270 		break;
   1271 	}
   1272 
   1273 	return error;
   1274 }
   1275 
   1276 void
   1277 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1278 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1279 {
   1280 	bus_dmamap_unload(tag, map);
   1281 	bus_dmamap_destroy(tag, map);
   1282 	bus_dmamem_unmap(tag, vaddr, size);
   1283 	bus_dmamem_free(tag, seg, nseg);
   1284 }
   1285 
   1286 static bool
   1287 agp_resume(device_t dv, const pmf_qual_t *qual)
   1288 {
   1289 	agp_flush_cache();
   1290 
   1291 	return true;
   1292 }
   1293