amr.c revision 1.10 1 1.10 ad /* $NetBSD: amr.c,v 1.10 2003/05/14 11:22:55 ad Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.9 ad * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 ad * by Andrew Doran.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1 ad * must display the following acknowledgement:
20 1.1 ad * This product includes software developed by the NetBSD
21 1.1 ad * Foundation, Inc. and its contributors.
22 1.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 ad * contributors may be used to endorse or promote products derived
24 1.1 ad * from this software without specific prior written permission.
25 1.1 ad *
26 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1 ad */
38 1.1 ad
39 1.1 ad /*-
40 1.1 ad * Copyright (c) 1999,2000 Michael Smith
41 1.1 ad * Copyright (c) 2000 BSDi
42 1.1 ad * All rights reserved.
43 1.1 ad *
44 1.1 ad * Redistribution and use in source and binary forms, with or without
45 1.1 ad * modification, are permitted provided that the following conditions
46 1.1 ad * are met:
47 1.1 ad * 1. Redistributions of source code must retain the above copyright
48 1.1 ad * notice, this list of conditions and the following disclaimer.
49 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 ad * notice, this list of conditions and the following disclaimer in the
51 1.1 ad * documentation and/or other materials provided with the distribution.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 1.1 ad * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 1.1 ad */
68 1.1 ad
69 1.1 ad /*
70 1.1 ad * Driver for AMI RAID controllers.
71 1.1 ad */
72 1.1 ad
73 1.1 ad #include <sys/cdefs.h>
74 1.10 ad __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.10 2003/05/14 11:22:55 ad Exp $");
75 1.1 ad
76 1.1 ad #include <sys/param.h>
77 1.1 ad #include <sys/systm.h>
78 1.1 ad #include <sys/kernel.h>
79 1.1 ad #include <sys/device.h>
80 1.1 ad #include <sys/queue.h>
81 1.1 ad #include <sys/proc.h>
82 1.1 ad #include <sys/buf.h>
83 1.1 ad #include <sys/malloc.h>
84 1.9 ad #include <sys/kthread.h>
85 1.1 ad
86 1.1 ad #include <uvm/uvm_extern.h>
87 1.1 ad
88 1.1 ad #include <machine/endian.h>
89 1.1 ad #include <machine/bus.h>
90 1.1 ad
91 1.1 ad #include <dev/pci/pcidevs.h>
92 1.1 ad #include <dev/pci/pcivar.h>
93 1.1 ad #include <dev/pci/amrreg.h>
94 1.1 ad #include <dev/pci/amrvar.h>
95 1.1 ad
96 1.1 ad void amr_attach(struct device *, struct device *, void *);
97 1.10 ad void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
98 1.9 ad void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
99 1.1 ad int amr_init(struct amr_softc *, const char *,
100 1.1 ad struct pci_attach_args *pa);
101 1.1 ad int amr_intr(void *);
102 1.1 ad int amr_match(struct device *, struct cfdata *, void *);
103 1.1 ad int amr_print(void *, const char *);
104 1.1 ad void amr_shutdown(void *);
105 1.1 ad int amr_submatch(struct device *, struct cfdata *, void *);
106 1.9 ad void amr_teardown(struct amr_softc *);
107 1.9 ad void amr_thread(void *);
108 1.9 ad void amr_thread_create(void *);
109 1.1 ad
110 1.1 ad int amr_mbox_wait(struct amr_softc *);
111 1.9 ad int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
112 1.1 ad int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
113 1.9 ad int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
114 1.1 ad int amr_std_submit(struct amr_softc *, struct amr_ccb *);
115 1.1 ad
116 1.1 ad static inline u_int8_t amr_inb(struct amr_softc *, int);
117 1.1 ad static inline u_int32_t amr_inl(struct amr_softc *, int);
118 1.1 ad static inline void amr_outb(struct amr_softc *, int, u_int8_t);
119 1.1 ad static inline void amr_outl(struct amr_softc *, int, u_int32_t);
120 1.1 ad
121 1.5 thorpej CFATTACH_DECL(amr, sizeof(struct amr_softc),
122 1.6 thorpej amr_match, amr_attach, NULL, NULL);
123 1.1 ad
124 1.1 ad #define AT_QUARTZ 0x01 /* `Quartz' chipset */
125 1.1 ad #define AT_SIG 0x02 /* Check for signature */
126 1.1 ad
127 1.1 ad struct amr_pci_type {
128 1.1 ad u_short apt_vendor;
129 1.1 ad u_short apt_product;
130 1.1 ad u_short apt_flags;
131 1.9 ad } const amr_pci_type[] = {
132 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
133 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
134 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
135 1.1 ad { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }
136 1.1 ad };
137 1.1 ad
138 1.1 ad struct amr_typestr {
139 1.1 ad const char *at_str;
140 1.1 ad int at_sig;
141 1.9 ad } const amr_typestr[] = {
142 1.1 ad { "Series 431", AMR_SIG_431 },
143 1.1 ad { "Series 438", AMR_SIG_438 },
144 1.1 ad { "Series 466", AMR_SIG_466 },
145 1.1 ad { "Series 467", AMR_SIG_467 },
146 1.1 ad { "Series 490", AMR_SIG_490 },
147 1.1 ad { "Series 762", AMR_SIG_762 },
148 1.1 ad { "HP NetRAID (T5)", AMR_SIG_T5 },
149 1.1 ad { "HP NetRAID (T7)", AMR_SIG_T7 },
150 1.1 ad };
151 1.1 ad
152 1.9 ad struct {
153 1.9 ad const char *ds_descr;
154 1.9 ad int ds_happy;
155 1.9 ad } const amr_dstate[] = {
156 1.9 ad { "offline", 0 },
157 1.9 ad { "degraded", 1 },
158 1.9 ad { "optimal", 1 },
159 1.9 ad { "online", 1 },
160 1.9 ad { "failed", 0 },
161 1.9 ad { "rebuilding", 1 },
162 1.9 ad { "hotspare", 0 },
163 1.9 ad };
164 1.9 ad
165 1.9 ad void *amr_sdh;
166 1.9 ad int amr_max_segs;
167 1.9 ad int amr_max_xfer;
168 1.1 ad
169 1.1 ad static inline u_int8_t
170 1.1 ad amr_inb(struct amr_softc *amr, int off)
171 1.1 ad {
172 1.1 ad
173 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
174 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
175 1.1 ad return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
176 1.1 ad }
177 1.1 ad
178 1.1 ad static inline u_int32_t
179 1.1 ad amr_inl(struct amr_softc *amr, int off)
180 1.1 ad {
181 1.1 ad
182 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
183 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
184 1.1 ad return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
185 1.1 ad }
186 1.1 ad
187 1.1 ad static inline void
188 1.1 ad amr_outb(struct amr_softc *amr, int off, u_int8_t val)
189 1.1 ad {
190 1.1 ad
191 1.1 ad bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
192 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
193 1.1 ad BUS_SPACE_BARRIER_WRITE);
194 1.1 ad }
195 1.1 ad
196 1.1 ad static inline void
197 1.1 ad amr_outl(struct amr_softc *amr, int off, u_int32_t val)
198 1.1 ad {
199 1.1 ad
200 1.1 ad bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
201 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
202 1.1 ad BUS_SPACE_BARRIER_WRITE);
203 1.1 ad }
204 1.1 ad
205 1.1 ad /*
206 1.1 ad * Match a supported device.
207 1.1 ad */
208 1.1 ad int
209 1.1 ad amr_match(struct device *parent, struct cfdata *match, void *aux)
210 1.1 ad {
211 1.1 ad struct pci_attach_args *pa;
212 1.1 ad pcireg_t s;
213 1.1 ad int i;
214 1.1 ad
215 1.1 ad pa = (struct pci_attach_args *)aux;
216 1.1 ad
217 1.1 ad /*
218 1.1 ad * Don't match the device if it's operating in I2O mode. In this
219 1.1 ad * case it should be handled by the `iop' driver.
220 1.1 ad */
221 1.1 ad if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
222 1.1 ad return (0);
223 1.1 ad
224 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
225 1.1 ad if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
226 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
227 1.1 ad break;
228 1.1 ad
229 1.1 ad if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
230 1.1 ad return (0);
231 1.1 ad
232 1.1 ad if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
233 1.1 ad return (1);
234 1.1 ad
235 1.1 ad s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
236 1.1 ad return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
237 1.1 ad }
238 1.1 ad
239 1.1 ad /*
240 1.9 ad * Attach a supported device.
241 1.1 ad */
242 1.1 ad void
243 1.1 ad amr_attach(struct device *parent, struct device *self, void *aux)
244 1.1 ad {
245 1.1 ad bus_space_tag_t memt, iot;
246 1.1 ad bus_space_handle_t memh, ioh;
247 1.1 ad struct pci_attach_args *pa;
248 1.1 ad struct amr_attach_args amra;
249 1.1 ad const struct amr_pci_type *apt;
250 1.1 ad struct amr_softc *amr;
251 1.1 ad pci_chipset_tag_t pc;
252 1.1 ad pci_intr_handle_t ih;
253 1.1 ad const char *intrstr;
254 1.1 ad pcireg_t reg;
255 1.9 ad int rseg, i, j, size, rv, memreg, ioreg;
256 1.9 ad bus_size_t memsize, iosize;
257 1.1 ad struct amr_ccb *ac;
258 1.1 ad
259 1.8 thorpej aprint_naive(": RAID controller\n");
260 1.8 thorpej
261 1.1 ad amr = (struct amr_softc *)self;
262 1.1 ad pa = (struct pci_attach_args *)aux;
263 1.1 ad pc = pa->pa_pc;
264 1.1 ad
265 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
266 1.1 ad if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
267 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
268 1.1 ad break;
269 1.1 ad apt = amr_pci_type + i;
270 1.1 ad
271 1.1 ad memreg = ioreg = 0;
272 1.1 ad for (i = 0x10; i <= 0x14; i += 4) {
273 1.1 ad reg = pci_conf_read(pc, pa->pa_tag, i);
274 1.1 ad switch (PCI_MAPREG_TYPE(reg)) {
275 1.1 ad case PCI_MAPREG_TYPE_MEM:
276 1.9 ad if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0)
277 1.1 ad memreg = i;
278 1.1 ad break;
279 1.1 ad case PCI_MAPREG_TYPE_IO:
280 1.9 ad if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0)
281 1.1 ad ioreg = i;
282 1.1 ad break;
283 1.1 ad }
284 1.1 ad }
285 1.1 ad
286 1.1 ad if (memreg != 0)
287 1.1 ad if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
288 1.1 ad &memt, &memh, NULL, NULL))
289 1.1 ad memreg = 0;
290 1.1 ad if (ioreg != 0)
291 1.1 ad if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
292 1.1 ad &iot, &ioh, NULL, NULL))
293 1.1 ad ioreg = 0;
294 1.1 ad
295 1.1 ad if (memreg) {
296 1.1 ad amr->amr_iot = memt;
297 1.1 ad amr->amr_ioh = memh;
298 1.9 ad amr->amr_ios = memsize;
299 1.1 ad } else if (ioreg) {
300 1.1 ad amr->amr_iot = iot;
301 1.1 ad amr->amr_ioh = ioh;
302 1.9 ad amr->amr_ios = iosize;
303 1.1 ad } else {
304 1.8 thorpej aprint_error("can't map control registers\n");
305 1.9 ad amr_teardown(amr);
306 1.1 ad return;
307 1.1 ad }
308 1.1 ad
309 1.9 ad amr->amr_flags |= AMRF_PCI_REGS;
310 1.1 ad amr->amr_dmat = pa->pa_dmat;
311 1.9 ad amr->amr_pc = pa->pa_pc;
312 1.1 ad
313 1.1 ad /* Enable the device. */
314 1.1 ad reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
315 1.1 ad pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
316 1.1 ad reg | PCI_COMMAND_MASTER_ENABLE);
317 1.1 ad
318 1.1 ad /* Map and establish the interrupt. */
319 1.1 ad if (pci_intr_map(pa, &ih)) {
320 1.8 thorpej aprint_error("can't map interrupt\n");
321 1.9 ad amr_teardown(amr);
322 1.1 ad return;
323 1.1 ad }
324 1.1 ad intrstr = pci_intr_string(pc, ih);
325 1.1 ad amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
326 1.1 ad if (amr->amr_ih == NULL) {
327 1.8 thorpej aprint_error("can't establish interrupt");
328 1.1 ad if (intrstr != NULL)
329 1.8 thorpej aprint_normal(" at %s", intrstr);
330 1.8 thorpej aprint_normal("\n");
331 1.9 ad amr_teardown(amr);
332 1.1 ad return;
333 1.1 ad }
334 1.9 ad amr->amr_flags |= AMRF_PCI_INTR;
335 1.1 ad
336 1.1 ad /*
337 1.1 ad * Allocate space for the mailbox and S/G lists. Some controllers
338 1.1 ad * don't like S/G lists to be located below 0x2000, so we allocate
339 1.1 ad * enough slop to enable us to compensate.
340 1.1 ad *
341 1.1 ad * The standard mailbox structure needs to be aligned on a 16-byte
342 1.1 ad * boundary. The 64-bit mailbox has one extra field, 4 bytes in
343 1.1 ad * size, which preceeds the standard mailbox.
344 1.1 ad */
345 1.1 ad size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
346 1.9 ad amr->amr_dmasize = size;
347 1.1 ad
348 1.9 ad if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, NULL,
349 1.9 ad &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
350 1.8 thorpej aprint_error("%s: unable to allocate buffer, rv = %d\n",
351 1.1 ad amr->amr_dv.dv_xname, rv);
352 1.9 ad amr_teardown(amr);
353 1.1 ad return;
354 1.1 ad }
355 1.9 ad amr->amr_flags |= AMRF_DMA_ALLOC;
356 1.1 ad
357 1.9 ad if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
358 1.1 ad (caddr_t *)&amr->amr_mbox,
359 1.1 ad BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
360 1.8 thorpej aprint_error("%s: unable to map buffer, rv = %d\n",
361 1.1 ad amr->amr_dv.dv_xname, rv);
362 1.9 ad amr_teardown(amr);
363 1.1 ad return;
364 1.1 ad }
365 1.9 ad amr->amr_flags |= AMRF_DMA_MAP;
366 1.1 ad
367 1.1 ad if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
368 1.1 ad BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
369 1.8 thorpej aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
370 1.1 ad amr->amr_dv.dv_xname, rv);
371 1.9 ad amr_teardown(amr);
372 1.1 ad return;
373 1.1 ad }
374 1.9 ad amr->amr_flags |= AMRF_DMA_CREATE;
375 1.1 ad
376 1.1 ad if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
377 1.1 ad amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
378 1.8 thorpej aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
379 1.1 ad amr->amr_dv.dv_xname, rv);
380 1.9 ad amr_teardown(amr);
381 1.1 ad return;
382 1.1 ad }
383 1.9 ad amr->amr_flags |= AMRF_DMA_LOAD;
384 1.1 ad
385 1.1 ad memset(amr->amr_mbox, 0, size);
386 1.1 ad
387 1.9 ad amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
388 1.1 ad amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
389 1.1 ad amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
390 1.1 ad amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
391 1.1 ad
392 1.1 ad /*
393 1.1 ad * Allocate and initalise the command control blocks.
394 1.1 ad */
395 1.1 ad ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
396 1.1 ad amr->amr_ccbs = ac;
397 1.1 ad SLIST_INIT(&amr->amr_ccb_freelist);
398 1.10 ad TAILQ_INIT(&amr->amr_ccb_active);
399 1.9 ad amr->amr_flags |= AMRF_CCBS;
400 1.9 ad
401 1.9 ad if (amr_max_xfer == 0) {
402 1.9 ad amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
403 1.9 ad amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
404 1.9 ad }
405 1.1 ad
406 1.1 ad for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
407 1.9 ad rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
408 1.9 ad amr_max_segs, amr_max_xfer, 0,
409 1.9 ad BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
410 1.1 ad if (rv != 0)
411 1.1 ad break;
412 1.1 ad
413 1.1 ad ac->ac_ident = i;
414 1.9 ad amr_ccb_free(amr, ac);
415 1.9 ad }
416 1.9 ad if (i != AMR_MAX_CMDS) {
417 1.9 ad aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
418 1.9 ad amr_teardown(amr);
419 1.9 ad return;
420 1.1 ad }
421 1.1 ad
422 1.1 ad /*
423 1.1 ad * Take care of model-specific tasks.
424 1.1 ad */
425 1.1 ad if ((apt->apt_flags & AT_QUARTZ) != 0) {
426 1.1 ad amr->amr_submit = amr_quartz_submit;
427 1.1 ad amr->amr_get_work = amr_quartz_get_work;
428 1.1 ad } else {
429 1.1 ad amr->amr_submit = amr_std_submit;
430 1.1 ad amr->amr_get_work = amr_std_get_work;
431 1.1 ad
432 1.1 ad /* Notify the controller of the mailbox location. */
433 1.9 ad amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
434 1.1 ad amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
435 1.1 ad
436 1.1 ad /* Clear outstanding interrupts and enable interrupts. */
437 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
438 1.1 ad amr_outb(amr, AMR_SREG_TOGL,
439 1.1 ad amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
440 1.1 ad }
441 1.1 ad
442 1.1 ad /*
443 1.1 ad * Retrieve parameters, and tell the world about us.
444 1.1 ad */
445 1.9 ad amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
446 1.9 ad amr->amr_flags |= AMRF_ENQBUF;
447 1.1 ad amr->amr_maxqueuecnt = i;
448 1.8 thorpej aprint_normal(": AMI RAID ");
449 1.9 ad if (amr_init(amr, intrstr, pa) != 0) {
450 1.9 ad amr_teardown(amr);
451 1.1 ad return;
452 1.9 ad }
453 1.1 ad
454 1.1 ad /*
455 1.1 ad * Cap the maximum number of outstanding commands. AMI's Linux
456 1.1 ad * driver doesn't trust the controller's reported value, and lockups
457 1.1 ad * have been seen when we do.
458 1.1 ad */
459 1.1 ad amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
460 1.1 ad if (amr->amr_maxqueuecnt > i)
461 1.1 ad amr->amr_maxqueuecnt = i;
462 1.1 ad
463 1.1 ad /* Set our `shutdownhook' before we start any device activity. */
464 1.1 ad if (amr_sdh == NULL)
465 1.1 ad amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
466 1.1 ad
467 1.1 ad /* Attach sub-devices. */
468 1.9 ad for (j = 0; j < amr->amr_numdrives; j++) {
469 1.9 ad if (amr->amr_drive[j].al_size == 0)
470 1.1 ad continue;
471 1.9 ad amra.amra_unit = j;
472 1.9 ad amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
473 1.9 ad amr_print, amr_submatch);
474 1.1 ad }
475 1.1 ad
476 1.1 ad SIMPLEQ_INIT(&amr->amr_ccb_queue);
477 1.9 ad kthread_create(amr_thread_create, amr);
478 1.9 ad }
479 1.9 ad
480 1.9 ad /*
481 1.9 ad * Free up resources.
482 1.9 ad */
483 1.9 ad void
484 1.9 ad amr_teardown(struct amr_softc *amr)
485 1.9 ad {
486 1.9 ad struct amr_ccb *ac;
487 1.9 ad int fl;
488 1.9 ad
489 1.9 ad fl = amr->amr_flags;
490 1.9 ad
491 1.9 ad if ((fl & AMRF_THREAD) != 0) {
492 1.9 ad amr->amr_flags |= AMRF_THREAD_EXIT;
493 1.9 ad wakeup(amr_thread);
494 1.9 ad while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
495 1.9 ad tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
496 1.9 ad }
497 1.9 ad if ((fl & AMRF_CCBS) != 0) {
498 1.9 ad SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
499 1.9 ad bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
500 1.9 ad }
501 1.9 ad free(amr->amr_ccbs, M_DEVBUF);
502 1.9 ad }
503 1.9 ad if ((fl & AMRF_ENQBUF) != 0)
504 1.9 ad free(amr->amr_enqbuf, M_DEVBUF);
505 1.9 ad if ((fl & AMRF_DMA_LOAD) != 0)
506 1.9 ad bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
507 1.9 ad if ((fl & AMRF_DMA_MAP) != 0)
508 1.9 ad bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
509 1.9 ad amr->amr_dmasize);
510 1.9 ad if ((fl & AMRF_DMA_ALLOC) != 0)
511 1.9 ad bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
512 1.9 ad if ((fl & AMRF_DMA_CREATE) != 0)
513 1.9 ad bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
514 1.9 ad if ((fl & AMRF_PCI_INTR) != 0)
515 1.9 ad pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
516 1.9 ad if ((fl & AMRF_PCI_REGS) != 0)
517 1.9 ad bus_space_unmap(amr->amr_ioh, amr->amr_iot, amr->amr_ios);
518 1.1 ad }
519 1.1 ad
520 1.1 ad /*
521 1.1 ad * Print autoconfiguration message for a sub-device.
522 1.1 ad */
523 1.1 ad int
524 1.1 ad amr_print(void *aux, const char *pnp)
525 1.1 ad {
526 1.1 ad struct amr_attach_args *amra;
527 1.1 ad
528 1.1 ad amra = (struct amr_attach_args *)aux;
529 1.1 ad
530 1.1 ad if (pnp != NULL)
531 1.7 thorpej aprint_normal("block device at %s", pnp);
532 1.7 thorpej aprint_normal(" unit %d", amra->amra_unit);
533 1.1 ad return (UNCONF);
534 1.1 ad }
535 1.1 ad
536 1.1 ad /*
537 1.1 ad * Match a sub-device.
538 1.1 ad */
539 1.1 ad int
540 1.1 ad amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
541 1.1 ad {
542 1.1 ad struct amr_attach_args *amra;
543 1.1 ad
544 1.1 ad amra = (struct amr_attach_args *)aux;
545 1.1 ad
546 1.1 ad if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
547 1.1 ad cf->amracf_unit != amra->amra_unit)
548 1.1 ad return (0);
549 1.1 ad
550 1.3 thorpej return (config_match(parent, cf, aux));
551 1.1 ad }
552 1.1 ad
553 1.1 ad /*
554 1.1 ad * Retrieve operational parameters and describe the controller.
555 1.1 ad */
556 1.1 ad int
557 1.1 ad amr_init(struct amr_softc *amr, const char *intrstr,
558 1.1 ad struct pci_attach_args *pa)
559 1.1 ad {
560 1.9 ad struct amr_adapter_info *aa;
561 1.1 ad struct amr_prodinfo *ap;
562 1.1 ad struct amr_enquiry *ae;
563 1.1 ad struct amr_enquiry3 *aex;
564 1.1 ad const char *prodstr;
565 1.9 ad u_int i, sig, ishp;
566 1.1 ad char buf[64];
567 1.1 ad
568 1.1 ad /*
569 1.1 ad * Try to get 40LD product info, which tells us what the card is
570 1.1 ad * labelled as.
571 1.1 ad */
572 1.9 ad ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
573 1.9 ad amr->amr_enqbuf);
574 1.1 ad if (ap != NULL) {
575 1.8 thorpej aprint_normal("<%.80s>\n", ap->ap_product);
576 1.1 ad if (intrstr != NULL)
577 1.8 thorpej aprint_normal("%s: interrupting at %s\n",
578 1.1 ad amr->amr_dv.dv_xname, intrstr);
579 1.8 thorpej aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
580 1.1 ad amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
581 1.1 ad le16toh(ap->ap_memsize));
582 1.1 ad
583 1.1 ad amr->amr_maxqueuecnt = ap->ap_maxio;
584 1.1 ad
585 1.1 ad /*
586 1.1 ad * Fetch and record state of logical drives.
587 1.1 ad */
588 1.1 ad aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
589 1.9 ad AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
590 1.1 ad if (aex == NULL) {
591 1.8 thorpej aprint_error("%s ENQUIRY3 failed\n",
592 1.8 thorpej amr->amr_dv.dv_xname);
593 1.1 ad return (-1);
594 1.1 ad }
595 1.1 ad
596 1.1 ad if (aex->ae_numldrives > AMR_MAX_UNITS) {
597 1.8 thorpej aprint_error(
598 1.8 thorpej "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
599 1.1 ad "\n", amr->amr_dv.dv_xname,
600 1.1 ad ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
601 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
602 1.1 ad } else
603 1.1 ad amr->amr_numdrives = aex->ae_numldrives;
604 1.1 ad
605 1.1 ad for (i = 0; i < amr->amr_numdrives; i++) {
606 1.1 ad amr->amr_drive[i].al_size =
607 1.1 ad le32toh(aex->ae_drivesize[i]);
608 1.1 ad amr->amr_drive[i].al_state = aex->ae_drivestate[i];
609 1.1 ad amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
610 1.1 ad }
611 1.1 ad
612 1.1 ad return (0);
613 1.1 ad }
614 1.1 ad
615 1.1 ad /*
616 1.1 ad * Try 8LD extended ENQUIRY to get the controller signature. Once
617 1.1 ad * found, search for a product description.
618 1.1 ad */
619 1.9 ad ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
620 1.9 ad if (ae != NULL) {
621 1.1 ad i = 0;
622 1.1 ad sig = le32toh(ae->ae_signature);
623 1.1 ad
624 1.1 ad while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
625 1.1 ad if (amr_typestr[i].at_sig == sig)
626 1.1 ad break;
627 1.1 ad i++;
628 1.1 ad }
629 1.1 ad if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
630 1.1 ad sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
631 1.1 ad prodstr = buf;
632 1.1 ad } else
633 1.1 ad prodstr = amr_typestr[i].at_str;
634 1.1 ad } else {
635 1.9 ad ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
636 1.9 ad if (ae == NULL) {
637 1.8 thorpej aprint_error("%s: unsupported controller\n",
638 1.1 ad amr->amr_dv.dv_xname);
639 1.1 ad return (-1);
640 1.1 ad }
641 1.1 ad
642 1.1 ad switch (PCI_PRODUCT(pa->pa_id)) {
643 1.1 ad case PCI_PRODUCT_AMI_MEGARAID:
644 1.1 ad prodstr = "Series 428";
645 1.1 ad break;
646 1.1 ad case PCI_PRODUCT_AMI_MEGARAID2:
647 1.1 ad prodstr = "Series 434";
648 1.1 ad break;
649 1.1 ad default:
650 1.1 ad sprintf(buf, "unknown PCI dev (0x%04x)",
651 1.1 ad PCI_PRODUCT(pa->pa_id));
652 1.1 ad prodstr = buf;
653 1.1 ad break;
654 1.1 ad }
655 1.1 ad }
656 1.1 ad
657 1.9 ad /*
658 1.9 ad * HP NetRaid controllers have a special encoding of the firmware
659 1.9 ad * and BIOS versions. The AMI version seems to have it as strings
660 1.9 ad * whereas the HP version does it with a leading uppercase character
661 1.9 ad * and two binary numbers.
662 1.9 ad */
663 1.9 ad aa = &ae->ae_adapter;
664 1.9 ad
665 1.9 ad if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
666 1.9 ad aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
667 1.9 ad aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
668 1.9 ad aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
669 1.9 ad if (le32toh(ae->ae_signature) == AMR_SIG_438) {
670 1.9 ad /* The AMI 438 is a NetRaid 3si in HP-land. */
671 1.9 ad prodstr = "HP NetRaid 3si";
672 1.9 ad }
673 1.9 ad ishp = 1;
674 1.9 ad } else
675 1.9 ad ishp = 0;
676 1.9 ad
677 1.8 thorpej aprint_normal("<%s>\n", prodstr);
678 1.1 ad if (intrstr != NULL)
679 1.8 thorpej aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
680 1.1 ad intrstr);
681 1.1 ad
682 1.9 ad if (ishp)
683 1.9 ad aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
684 1.9 ad ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
685 1.9 ad aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
686 1.9 ad aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
687 1.9 ad else
688 1.9 ad aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
689 1.9 ad amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
690 1.9 ad aa->aa_memorysize);
691 1.9 ad
692 1.9 ad amr->amr_maxqueuecnt = aa->aa_maxio;
693 1.1 ad
694 1.1 ad /*
695 1.1 ad * Record state of logical drives.
696 1.1 ad */
697 1.1 ad if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
698 1.8 thorpej aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
699 1.1 ad amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
700 1.1 ad AMR_MAX_UNITS);
701 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
702 1.1 ad } else
703 1.1 ad amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
704 1.1 ad
705 1.1 ad for (i = 0; i < AMR_MAX_UNITS; i++) {
706 1.1 ad amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
707 1.1 ad amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
708 1.1 ad amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
709 1.1 ad }
710 1.1 ad
711 1.1 ad return (0);
712 1.1 ad }
713 1.1 ad
714 1.1 ad /*
715 1.1 ad * Flush the internal cache on each configured controller. Called at
716 1.1 ad * shutdown time.
717 1.1 ad */
718 1.1 ad void
719 1.1 ad amr_shutdown(void *cookie)
720 1.1 ad {
721 1.1 ad extern struct cfdriver amr_cd;
722 1.1 ad struct amr_softc *amr;
723 1.1 ad struct amr_ccb *ac;
724 1.9 ad int i, rv, s;
725 1.1 ad
726 1.1 ad for (i = 0; i < amr_cd.cd_ndevs; i++) {
727 1.1 ad if ((amr = device_lookup(&amr_cd, i)) == NULL)
728 1.1 ad continue;
729 1.1 ad
730 1.1 ad if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
731 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
732 1.9 ad s = splbio();
733 1.1 ad rv = amr_ccb_poll(amr, ac, 30000);
734 1.9 ad splx(s);
735 1.1 ad amr_ccb_free(amr, ac);
736 1.1 ad }
737 1.1 ad if (rv != 0)
738 1.1 ad printf("%s: unable to flush cache (%d)\n",
739 1.1 ad amr->amr_dv.dv_xname, rv);
740 1.1 ad }
741 1.1 ad }
742 1.1 ad
743 1.1 ad /*
744 1.1 ad * Interrupt service routine.
745 1.1 ad */
746 1.1 ad int
747 1.1 ad amr_intr(void *cookie)
748 1.1 ad {
749 1.1 ad struct amr_softc *amr;
750 1.1 ad struct amr_ccb *ac;
751 1.9 ad struct amr_mailbox_resp mbox;
752 1.1 ad u_int i, forus, idx;
753 1.1 ad
754 1.1 ad amr = cookie;
755 1.1 ad forus = 0;
756 1.1 ad
757 1.1 ad while ((*amr->amr_get_work)(amr, &mbox) == 0) {
758 1.1 ad /* Iterate over completed commands in this result. */
759 1.1 ad for (i = 0; i < mbox.mb_nstatus; i++) {
760 1.1 ad idx = mbox.mb_completed[i] - 1;
761 1.1 ad ac = amr->amr_ccbs + idx;
762 1.1 ad
763 1.1 ad if (idx >= amr->amr_maxqueuecnt) {
764 1.1 ad printf("%s: bad status (bogus ID: %u=%u)\n",
765 1.1 ad amr->amr_dv.dv_xname, i, idx);
766 1.1 ad continue;
767 1.1 ad }
768 1.1 ad
769 1.1 ad if ((ac->ac_flags & AC_ACTIVE) == 0) {
770 1.1 ad printf("%s: bad status (not active; 0x04%x)\n",
771 1.1 ad amr->amr_dv.dv_xname, ac->ac_flags);
772 1.1 ad continue;
773 1.1 ad }
774 1.1 ad
775 1.1 ad ac->ac_status = mbox.mb_status;
776 1.1 ad ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
777 1.1 ad AC_COMPLETE;
778 1.10 ad TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
779 1.10 ad
780 1.10 ad if ((ac->ac_flags & AC_MOAN) != 0)
781 1.10 ad printf("%s: ccb %d completed\n",
782 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
783 1.1 ad
784 1.1 ad /* Pass notification to upper layers. */
785 1.1 ad if (ac->ac_handler != NULL)
786 1.1 ad (*ac->ac_handler)(ac);
787 1.9 ad else
788 1.9 ad wakeup(ac);
789 1.1 ad }
790 1.1 ad forus = 1;
791 1.1 ad }
792 1.1 ad
793 1.1 ad if (forus)
794 1.1 ad amr_ccb_enqueue(amr, NULL);
795 1.9 ad
796 1.1 ad return (forus);
797 1.1 ad }
798 1.1 ad
799 1.1 ad /*
800 1.9 ad * Create the watchdog thread.
801 1.9 ad */
802 1.9 ad void
803 1.9 ad amr_thread_create(void *cookie)
804 1.9 ad {
805 1.9 ad struct amr_softc *amr;
806 1.9 ad int rv;
807 1.9 ad
808 1.9 ad amr = cookie;
809 1.9 ad
810 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
811 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
812 1.9 ad wakeup(&amr->amr_flags);
813 1.9 ad return;
814 1.9 ad }
815 1.9 ad
816 1.9 ad rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
817 1.9 ad amr->amr_dv.dv_xname);
818 1.9 ad if (rv != 0)
819 1.9 ad aprint_error("%s: unable to create thread (%d)",
820 1.9 ad amr->amr_dv.dv_xname, rv);
821 1.9 ad else
822 1.9 ad amr->amr_flags |= AMRF_THREAD;
823 1.9 ad }
824 1.9 ad
825 1.9 ad /*
826 1.9 ad * Watchdog thread.
827 1.9 ad */
828 1.9 ad void
829 1.9 ad amr_thread(void *cookie)
830 1.9 ad {
831 1.9 ad struct amr_softc *amr;
832 1.9 ad struct amr_ccb *ac;
833 1.9 ad struct amr_logdrive *al;
834 1.9 ad struct amr_enquiry *ae;
835 1.10 ad time_t curtime;
836 1.9 ad int rv, i, s;
837 1.9 ad
838 1.9 ad amr = cookie;
839 1.9 ad ae = amr->amr_enqbuf;
840 1.9 ad
841 1.9 ad for (;;) {
842 1.9 ad tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
843 1.9 ad
844 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
845 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
846 1.9 ad wakeup(&amr->amr_flags);
847 1.9 ad kthread_exit(0);
848 1.9 ad }
849 1.9 ad
850 1.9 ad s = splbio();
851 1.9 ad amr_intr(cookie);
852 1.10 ad curtime = (time_t)mono_time.tv_sec;
853 1.10 ad if ((ac = TAILQ_FIRST(&amr->amr_ccb_active)) != NULL) {
854 1.10 ad if (ac->ac_start_time + AMR_TIMEOUT > curtime)
855 1.10 ad break;
856 1.10 ad if ((ac->ac_flags & AC_MOAN) == 0) {
857 1.10 ad printf("%s: ccb %d timed out; mailbox:\n",
858 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
859 1.10 ad amr_ccb_dump(amr, ac);
860 1.10 ad ac->ac_flags |= AC_MOAN;
861 1.10 ad }
862 1.10 ad }
863 1.9 ad splx(s);
864 1.9 ad
865 1.9 ad if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
866 1.9 ad printf("%s: ccb_alloc failed (%d)\n",
867 1.9 ad amr->amr_dv.dv_xname, rv);
868 1.9 ad continue;
869 1.9 ad }
870 1.9 ad
871 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
872 1.9 ad
873 1.9 ad rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
874 1.9 ad AMR_ENQUIRY_BUFSIZE, 0);
875 1.9 ad if (rv != 0) {
876 1.9 ad printf("%s: ccb_map failed (%d)\n",
877 1.9 ad amr->amr_dv.dv_xname, rv);
878 1.9 ad amr_ccb_free(amr, ac);
879 1.9 ad continue;
880 1.9 ad }
881 1.9 ad
882 1.9 ad rv = amr_ccb_wait(amr, ac);
883 1.9 ad amr_ccb_unmap(amr, ac);
884 1.9 ad if (rv != 0) {
885 1.9 ad printf("%s: enquiry failed (st=%d)\n",
886 1.9 ad amr->amr_dv.dv_xname, ac->ac_status);
887 1.9 ad continue;
888 1.9 ad }
889 1.9 ad amr_ccb_free(amr, ac);
890 1.9 ad
891 1.9 ad al = amr->amr_drive;
892 1.9 ad for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
893 1.9 ad if (al->al_dv == NULL)
894 1.9 ad continue;
895 1.9 ad if (al->al_state == ae->ae_ldrv.al_state[i])
896 1.9 ad continue;
897 1.9 ad
898 1.9 ad printf("%s: state changed: %s -> %s\n",
899 1.9 ad al->al_dv->dv_xname,
900 1.9 ad amr_drive_state(al->al_state, NULL),
901 1.9 ad amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
902 1.9 ad
903 1.9 ad al->al_state = ae->ae_ldrv.al_state[i];
904 1.9 ad }
905 1.9 ad }
906 1.9 ad }
907 1.9 ad
908 1.9 ad /*
909 1.9 ad * Return a text description of a logical drive's current state.
910 1.9 ad */
911 1.9 ad const char *
912 1.9 ad amr_drive_state(int state, int *happy)
913 1.9 ad {
914 1.9 ad const char *str;
915 1.9 ad
916 1.9 ad state = AMR_DRV_CURSTATE(state);
917 1.9 ad if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
918 1.9 ad if (happy)
919 1.9 ad *happy = 1;
920 1.9 ad str = "status unknown";
921 1.9 ad } else {
922 1.9 ad if (happy)
923 1.9 ad *happy = amr_dstate[state].ds_happy;
924 1.9 ad str = amr_dstate[state].ds_descr;
925 1.9 ad }
926 1.9 ad
927 1.9 ad return (str);
928 1.9 ad }
929 1.9 ad
930 1.9 ad /*
931 1.1 ad * Run a generic enquiry-style command.
932 1.1 ad */
933 1.1 ad void *
934 1.1 ad amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
935 1.9 ad u_int8_t cmdqual, void *buf)
936 1.1 ad {
937 1.1 ad struct amr_ccb *ac;
938 1.1 ad u_int8_t *mb;
939 1.1 ad int rv;
940 1.1 ad
941 1.1 ad if (amr_ccb_alloc(amr, &ac) != 0)
942 1.1 ad return (NULL);
943 1.1 ad
944 1.1 ad /* Build the command proper. */
945 1.9 ad mb = (u_int8_t *)&ac->ac_cmd;
946 1.1 ad mb[0] = cmd;
947 1.1 ad mb[2] = cmdsub;
948 1.1 ad mb[3] = cmdqual;
949 1.1 ad
950 1.9 ad rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
951 1.9 ad if (rv == 0) {
952 1.1 ad rv = amr_ccb_poll(amr, ac, 2000);
953 1.1 ad amr_ccb_unmap(amr, ac);
954 1.1 ad }
955 1.1 ad amr_ccb_free(amr, ac);
956 1.1 ad
957 1.9 ad return (rv ? NULL : buf);
958 1.1 ad }
959 1.1 ad
960 1.1 ad /*
961 1.1 ad * Allocate and initialise a CCB.
962 1.1 ad */
963 1.1 ad int
964 1.1 ad amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
965 1.1 ad {
966 1.1 ad int s;
967 1.1 ad
968 1.1 ad s = splbio();
969 1.9 ad if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
970 1.1 ad splx(s);
971 1.1 ad return (EAGAIN);
972 1.1 ad }
973 1.1 ad SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
974 1.1 ad splx(s);
975 1.1 ad
976 1.1 ad return (0);
977 1.1 ad }
978 1.1 ad
979 1.1 ad /*
980 1.1 ad * Free a CCB.
981 1.1 ad */
982 1.1 ad void
983 1.1 ad amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
984 1.1 ad {
985 1.1 ad int s;
986 1.1 ad
987 1.9 ad memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
988 1.9 ad ac->ac_cmd.mb_ident = ac->ac_ident + 1;
989 1.9 ad ac->ac_cmd.mb_busy = 1;
990 1.9 ad ac->ac_handler = NULL;
991 1.1 ad ac->ac_flags = 0;
992 1.1 ad
993 1.1 ad s = splbio();
994 1.1 ad SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
995 1.1 ad splx(s);
996 1.1 ad }
997 1.1 ad
998 1.1 ad /*
999 1.1 ad * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1000 1.1 ad * the order that they were enqueued and try to submit their command blocks
1001 1.1 ad * to the controller for execution.
1002 1.1 ad */
1003 1.1 ad void
1004 1.1 ad amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1005 1.1 ad {
1006 1.1 ad int s;
1007 1.1 ad
1008 1.1 ad s = splbio();
1009 1.1 ad
1010 1.1 ad if (ac != NULL)
1011 1.1 ad SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1012 1.1 ad
1013 1.1 ad while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1014 1.1 ad if ((*amr->amr_submit)(amr, ac) != 0)
1015 1.1 ad break;
1016 1.2 lukem SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1017 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1018 1.1 ad }
1019 1.1 ad
1020 1.1 ad splx(s);
1021 1.1 ad }
1022 1.1 ad
1023 1.1 ad /*
1024 1.1 ad * Map the specified CCB's data buffer onto the bus, and fill the
1025 1.1 ad * scatter-gather list.
1026 1.1 ad */
1027 1.1 ad int
1028 1.1 ad amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1029 1.1 ad int out)
1030 1.1 ad {
1031 1.1 ad struct amr_sgentry *sge;
1032 1.9 ad struct amr_mailbox_cmd *mb;
1033 1.1 ad int nsegs, i, rv, sgloff;
1034 1.1 ad bus_dmamap_t xfer;
1035 1.1 ad
1036 1.1 ad xfer = ac->ac_xfer_map;
1037 1.1 ad
1038 1.1 ad rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1039 1.1 ad BUS_DMA_NOWAIT);
1040 1.1 ad if (rv != 0)
1041 1.1 ad return (rv);
1042 1.1 ad
1043 1.9 ad mb = &ac->ac_cmd;
1044 1.1 ad ac->ac_xfer_size = size;
1045 1.1 ad ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1046 1.1 ad sgloff = AMR_SGL_SIZE * ac->ac_ident;
1047 1.1 ad
1048 1.1 ad /* We don't need to use a scatter/gather list for just 1 segment. */
1049 1.1 ad nsegs = xfer->dm_nsegs;
1050 1.1 ad if (nsegs == 1) {
1051 1.1 ad mb->mb_nsgelem = 0;
1052 1.1 ad mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1053 1.1 ad ac->ac_flags |= AC_NOSGL;
1054 1.1 ad } else {
1055 1.1 ad mb->mb_nsgelem = nsegs;
1056 1.1 ad mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1057 1.1 ad
1058 1.1 ad sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1059 1.1 ad for (i = 0; i < nsegs; i++, sge++) {
1060 1.1 ad sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1061 1.1 ad sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1062 1.1 ad }
1063 1.1 ad }
1064 1.1 ad
1065 1.1 ad bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1066 1.1 ad out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1067 1.1 ad
1068 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1069 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1070 1.1 ad AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1071 1.1 ad
1072 1.1 ad return (0);
1073 1.1 ad }
1074 1.1 ad
1075 1.1 ad /*
1076 1.1 ad * Unmap the specified CCB's data buffer.
1077 1.1 ad */
1078 1.1 ad void
1079 1.1 ad amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1080 1.1 ad {
1081 1.1 ad
1082 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1083 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1084 1.1 ad AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1085 1.1 ad BUS_DMASYNC_POSTWRITE);
1086 1.1 ad bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1087 1.1 ad (ac->ac_flags & AC_XFER_IN) != 0 ?
1088 1.1 ad BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1089 1.1 ad bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1090 1.1 ad }
1091 1.1 ad
1092 1.1 ad /*
1093 1.1 ad * Submit a command to the controller and poll on completion. Return
1094 1.1 ad * non-zero on timeout or error. Must be called with interrupts blocked.
1095 1.1 ad */
1096 1.1 ad int
1097 1.1 ad amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1098 1.1 ad {
1099 1.1 ad int rv;
1100 1.1 ad
1101 1.1 ad if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1102 1.1 ad return (rv);
1103 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1104 1.1 ad
1105 1.1 ad for (timo *= 10; timo != 0; timo--) {
1106 1.1 ad amr_intr(amr);
1107 1.1 ad if ((ac->ac_flags & AC_COMPLETE) != 0)
1108 1.1 ad break;
1109 1.1 ad DELAY(100);
1110 1.1 ad }
1111 1.1 ad
1112 1.1 ad return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1113 1.1 ad }
1114 1.1 ad
1115 1.1 ad /*
1116 1.9 ad * Submit a command to the controller and sleep on completion. Return
1117 1.9 ad * non-zero on error.
1118 1.9 ad */
1119 1.9 ad int
1120 1.9 ad amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1121 1.9 ad {
1122 1.9 ad int s;
1123 1.9 ad
1124 1.9 ad s = splbio();
1125 1.9 ad amr_ccb_enqueue(amr, ac);
1126 1.9 ad tsleep(ac, PRIBIO, "amrcmd", 0);
1127 1.9 ad splx(s);
1128 1.9 ad
1129 1.9 ad return (ac->ac_status != 0 ? EIO : 0);
1130 1.9 ad }
1131 1.9 ad
1132 1.9 ad /*
1133 1.1 ad * Wait for the mailbox to become available.
1134 1.1 ad */
1135 1.1 ad int
1136 1.1 ad amr_mbox_wait(struct amr_softc *amr)
1137 1.1 ad {
1138 1.1 ad int timo;
1139 1.1 ad
1140 1.1 ad for (timo = 10000; timo != 0; timo--) {
1141 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1142 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1143 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1144 1.1 ad break;
1145 1.1 ad DELAY(100);
1146 1.1 ad }
1147 1.1 ad
1148 1.9 ad if (timo == 0)
1149 1.1 ad printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1150 1.1 ad
1151 1.9 ad return (timo != 0 ? 0 : EAGAIN);
1152 1.1 ad }
1153 1.1 ad
1154 1.1 ad /*
1155 1.1 ad * Tell the controller that the mailbox contains a valid command. Must be
1156 1.1 ad * called with interrupts blocked.
1157 1.1 ad */
1158 1.1 ad int
1159 1.1 ad amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1160 1.1 ad {
1161 1.1 ad u_int32_t v;
1162 1.1 ad
1163 1.9 ad amr->amr_mbox->mb_poll = 0;
1164 1.9 ad amr->amr_mbox->mb_ack = 0;
1165 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1166 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1167 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1168 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1169 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1170 1.9 ad return (EAGAIN);
1171 1.9 ad
1172 1.1 ad v = amr_inl(amr, AMR_QREG_IDB);
1173 1.9 ad if ((v & (AMR_QIDB_SUBMIT | AMR_QIDB_ACK)) != 0) {
1174 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1175 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1176 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1177 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1178 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1179 1.9 ad return (EAGAIN);
1180 1.9 ad }
1181 1.1 ad
1182 1.10 ad amr->amr_mbox->mb_segment = 0;
1183 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1184 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1185 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1186 1.10 ad
1187 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1188 1.1 ad ac->ac_flags |= AC_ACTIVE;
1189 1.1 ad amr_outl(amr, AMR_QREG_IDB, amr->amr_mbox_paddr | AMR_QIDB_SUBMIT);
1190 1.1 ad return (0);
1191 1.1 ad }
1192 1.1 ad
1193 1.1 ad int
1194 1.1 ad amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1195 1.1 ad {
1196 1.1 ad
1197 1.9 ad amr->amr_mbox->mb_poll = 0;
1198 1.9 ad amr->amr_mbox->mb_ack = 0;
1199 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1200 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1201 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1202 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1203 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1204 1.9 ad return (EAGAIN);
1205 1.9 ad
1206 1.9 ad if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1207 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1208 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1209 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1210 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1211 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1212 1.9 ad return (EAGAIN);
1213 1.9 ad }
1214 1.1 ad
1215 1.10 ad amr->amr_mbox->mb_segment = 0;
1216 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1217 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1218 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1219 1.10 ad
1220 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1221 1.1 ad ac->ac_flags |= AC_ACTIVE;
1222 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1223 1.1 ad return (0);
1224 1.1 ad }
1225 1.1 ad
1226 1.1 ad /*
1227 1.1 ad * Claim any work that the controller has completed; acknowledge completion,
1228 1.1 ad * save details of the completion in (mbsave). Must be called with
1229 1.1 ad * interrupts blocked.
1230 1.1 ad */
1231 1.1 ad int
1232 1.9 ad amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1233 1.1 ad {
1234 1.1 ad
1235 1.1 ad /* Work waiting for us? */
1236 1.1 ad if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1237 1.1 ad return (-1);
1238 1.1 ad
1239 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1240 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1241 1.9 ad
1242 1.1 ad /* Save the mailbox, which contains a list of completed commands. */
1243 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1244 1.9 ad
1245 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1246 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1247 1.1 ad
1248 1.1 ad /* Ack the interrupt and mailbox transfer. */
1249 1.1 ad amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1250 1.9 ad amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1251 1.1 ad
1252 1.1 ad /*
1253 1.1 ad * This waits for the controller to notice that we've taken the
1254 1.1 ad * command from it. It's very inefficient, and we shouldn't do it,
1255 1.1 ad * but if we remove this code, we stop completing commands under
1256 1.1 ad * load.
1257 1.1 ad *
1258 1.1 ad * Peter J says we shouldn't do this. The documentation says we
1259 1.1 ad * should. Who is right?
1260 1.1 ad */
1261 1.1 ad while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1262 1.1 ad ;
1263 1.1 ad
1264 1.1 ad return (0);
1265 1.1 ad }
1266 1.1 ad
1267 1.1 ad int
1268 1.9 ad amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1269 1.1 ad {
1270 1.1 ad u_int8_t istat;
1271 1.1 ad
1272 1.1 ad /* Check for valid interrupt status. */
1273 1.1 ad if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1274 1.1 ad return (-1);
1275 1.1 ad
1276 1.1 ad /* Ack the interrupt. */
1277 1.1 ad amr_outb(amr, AMR_SREG_INTR, istat);
1278 1.1 ad
1279 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1280 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1281 1.9 ad
1282 1.1 ad /* Save mailbox, which contains a list of completed commands. */
1283 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1284 1.9 ad
1285 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1286 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1287 1.1 ad
1288 1.1 ad /* Ack mailbox transfer. */
1289 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1290 1.1 ad
1291 1.1 ad return (0);
1292 1.10 ad }
1293 1.10 ad
1294 1.10 ad void
1295 1.10 ad amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1296 1.10 ad {
1297 1.10 ad int i;
1298 1.10 ad
1299 1.10 ad printf("%s: ", amr->amr_dv.dv_xname);
1300 1.10 ad for (i = 0; i < 4; i++)
1301 1.10 ad printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1302 1.10 ad printf("\n");
1303 1.1 ad }
1304