Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.10
      1  1.10       ad /*	$NetBSD: amr.c,v 1.10 2003/05/14 11:22:55 ad Exp $	*/
      2   1.1       ad 
      3   1.1       ad /*-
      4   1.9       ad  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5   1.1       ad  * All rights reserved.
      6   1.1       ad  *
      7   1.1       ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1       ad  * by Andrew Doran.
      9   1.1       ad  *
     10   1.1       ad  * Redistribution and use in source and binary forms, with or without
     11   1.1       ad  * modification, are permitted provided that the following conditions
     12   1.1       ad  * are met:
     13   1.1       ad  * 1. Redistributions of source code must retain the above copyright
     14   1.1       ad  *    notice, this list of conditions and the following disclaimer.
     15   1.1       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1       ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1       ad  *    documentation and/or other materials provided with the distribution.
     18   1.1       ad  * 3. All advertising materials mentioning features or use of this software
     19   1.1       ad  *    must display the following acknowledgement:
     20   1.1       ad  *        This product includes software developed by the NetBSD
     21   1.1       ad  *        Foundation, Inc. and its contributors.
     22   1.1       ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1       ad  *    contributors may be used to endorse or promote products derived
     24   1.1       ad  *    from this software without specific prior written permission.
     25   1.1       ad  *
     26   1.1       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1       ad  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1       ad  */
     38   1.1       ad 
     39   1.1       ad /*-
     40   1.1       ad  * Copyright (c) 1999,2000 Michael Smith
     41   1.1       ad  * Copyright (c) 2000 BSDi
     42   1.1       ad  * All rights reserved.
     43   1.1       ad  *
     44   1.1       ad  * Redistribution and use in source and binary forms, with or without
     45   1.1       ad  * modification, are permitted provided that the following conditions
     46   1.1       ad  * are met:
     47   1.1       ad  * 1. Redistributions of source code must retain the above copyright
     48   1.1       ad  *    notice, this list of conditions and the following disclaimer.
     49   1.1       ad  * 2. Redistributions in binary form must reproduce the above copyright
     50   1.1       ad  *    notice, this list of conditions and the following disclaimer in the
     51   1.1       ad  *    documentation and/or other materials provided with the distribution.
     52   1.1       ad  *
     53   1.1       ad  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54   1.1       ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55   1.1       ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56   1.1       ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57   1.1       ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58   1.1       ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59   1.1       ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60   1.1       ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61   1.1       ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62   1.1       ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63   1.1       ad  * SUCH DAMAGE.
     64   1.1       ad  *
     65   1.1       ad  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66   1.1       ad  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67   1.1       ad  */
     68   1.1       ad 
     69   1.1       ad /*
     70   1.1       ad  * Driver for AMI RAID controllers.
     71   1.1       ad  */
     72   1.1       ad 
     73   1.1       ad #include <sys/cdefs.h>
     74  1.10       ad __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.10 2003/05/14 11:22:55 ad Exp $");
     75   1.1       ad 
     76   1.1       ad #include <sys/param.h>
     77   1.1       ad #include <sys/systm.h>
     78   1.1       ad #include <sys/kernel.h>
     79   1.1       ad #include <sys/device.h>
     80   1.1       ad #include <sys/queue.h>
     81   1.1       ad #include <sys/proc.h>
     82   1.1       ad #include <sys/buf.h>
     83   1.1       ad #include <sys/malloc.h>
     84   1.9       ad #include <sys/kthread.h>
     85   1.1       ad 
     86   1.1       ad #include <uvm/uvm_extern.h>
     87   1.1       ad 
     88   1.1       ad #include <machine/endian.h>
     89   1.1       ad #include <machine/bus.h>
     90   1.1       ad 
     91   1.1       ad #include <dev/pci/pcidevs.h>
     92   1.1       ad #include <dev/pci/pcivar.h>
     93   1.1       ad #include <dev/pci/amrreg.h>
     94   1.1       ad #include <dev/pci/amrvar.h>
     95   1.1       ad 
     96   1.1       ad void	amr_attach(struct device *, struct device *, void *);
     97  1.10       ad void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
     98   1.9       ad void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
     99   1.1       ad int	amr_init(struct amr_softc *, const char *,
    100   1.1       ad 			 struct pci_attach_args *pa);
    101   1.1       ad int	amr_intr(void *);
    102   1.1       ad int	amr_match(struct device *, struct cfdata *, void *);
    103   1.1       ad int	amr_print(void *, const char *);
    104   1.1       ad void	amr_shutdown(void *);
    105   1.1       ad int	amr_submatch(struct device *, struct cfdata *, void *);
    106   1.9       ad void	amr_teardown(struct amr_softc *);
    107   1.9       ad void	amr_thread(void *);
    108   1.9       ad void	amr_thread_create(void *);
    109   1.1       ad 
    110   1.1       ad int	amr_mbox_wait(struct amr_softc *);
    111   1.9       ad int	amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    112   1.1       ad int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    113   1.9       ad int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    114   1.1       ad int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    115   1.1       ad 
    116   1.1       ad static inline u_int8_t	amr_inb(struct amr_softc *, int);
    117   1.1       ad static inline u_int32_t	amr_inl(struct amr_softc *, int);
    118   1.1       ad static inline void	amr_outb(struct amr_softc *, int, u_int8_t);
    119   1.1       ad static inline void	amr_outl(struct amr_softc *, int, u_int32_t);
    120   1.1       ad 
    121   1.5  thorpej CFATTACH_DECL(amr, sizeof(struct amr_softc),
    122   1.6  thorpej     amr_match, amr_attach, NULL, NULL);
    123   1.1       ad 
    124   1.1       ad #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    125   1.1       ad #define	AT_SIG		0x02	/* Check for signature */
    126   1.1       ad 
    127   1.1       ad struct amr_pci_type {
    128   1.1       ad 	u_short	apt_vendor;
    129   1.1       ad 	u_short	apt_product;
    130   1.1       ad 	u_short	apt_flags;
    131   1.9       ad } const amr_pci_type[] = {
    132   1.1       ad 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    133   1.1       ad 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    134   1.1       ad 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    135   1.1       ad 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }
    136   1.1       ad };
    137   1.1       ad 
    138   1.1       ad struct amr_typestr {
    139   1.1       ad 	const char	*at_str;
    140   1.1       ad 	int		at_sig;
    141   1.9       ad } const amr_typestr[] = {
    142   1.1       ad 	{ "Series 431",			AMR_SIG_431 },
    143   1.1       ad 	{ "Series 438",			AMR_SIG_438 },
    144   1.1       ad 	{ "Series 466",			AMR_SIG_466 },
    145   1.1       ad 	{ "Series 467",			AMR_SIG_467 },
    146   1.1       ad 	{ "Series 490",			AMR_SIG_490 },
    147   1.1       ad 	{ "Series 762",			AMR_SIG_762 },
    148   1.1       ad 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    149   1.1       ad 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    150   1.1       ad };
    151   1.1       ad 
    152   1.9       ad struct {
    153   1.9       ad 	const char	*ds_descr;
    154   1.9       ad 	int	ds_happy;
    155   1.9       ad } const amr_dstate[] = {
    156   1.9       ad 	{ "offline",	0 },
    157   1.9       ad 	{ "degraded",	1 },
    158   1.9       ad 	{ "optimal",	1 },
    159   1.9       ad 	{ "online",	1 },
    160   1.9       ad 	{ "failed",	0 },
    161   1.9       ad 	{ "rebuilding",	1 },
    162   1.9       ad 	{ "hotspare",	0 },
    163   1.9       ad };
    164   1.9       ad 
    165   1.9       ad void	*amr_sdh;
    166   1.9       ad int	amr_max_segs;
    167   1.9       ad int	amr_max_xfer;
    168   1.1       ad 
    169   1.1       ad static inline u_int8_t
    170   1.1       ad amr_inb(struct amr_softc *amr, int off)
    171   1.1       ad {
    172   1.1       ad 
    173   1.1       ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    174   1.1       ad 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    175   1.1       ad 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    176   1.1       ad }
    177   1.1       ad 
    178   1.1       ad static inline u_int32_t
    179   1.1       ad amr_inl(struct amr_softc *amr, int off)
    180   1.1       ad {
    181   1.1       ad 
    182   1.1       ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    183   1.1       ad 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    184   1.1       ad 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    185   1.1       ad }
    186   1.1       ad 
    187   1.1       ad static inline void
    188   1.1       ad amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    189   1.1       ad {
    190   1.1       ad 
    191   1.1       ad 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    192   1.1       ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    193   1.1       ad 	    BUS_SPACE_BARRIER_WRITE);
    194   1.1       ad }
    195   1.1       ad 
    196   1.1       ad static inline void
    197   1.1       ad amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    198   1.1       ad {
    199   1.1       ad 
    200   1.1       ad 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    201   1.1       ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    202   1.1       ad 	    BUS_SPACE_BARRIER_WRITE);
    203   1.1       ad }
    204   1.1       ad 
    205   1.1       ad /*
    206   1.1       ad  * Match a supported device.
    207   1.1       ad  */
    208   1.1       ad int
    209   1.1       ad amr_match(struct device *parent, struct cfdata *match, void *aux)
    210   1.1       ad {
    211   1.1       ad 	struct pci_attach_args *pa;
    212   1.1       ad 	pcireg_t s;
    213   1.1       ad 	int i;
    214   1.1       ad 
    215   1.1       ad 	pa = (struct pci_attach_args *)aux;
    216   1.1       ad 
    217   1.1       ad 	/*
    218   1.1       ad 	 * Don't match the device if it's operating in I2O mode.  In this
    219   1.1       ad 	 * case it should be handled by the `iop' driver.
    220   1.1       ad 	 */
    221   1.1       ad 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    222   1.1       ad 		return (0);
    223   1.1       ad 
    224   1.1       ad 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    225   1.1       ad 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    226   1.1       ad 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    227   1.1       ad 		    	break;
    228   1.1       ad 
    229   1.1       ad 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    230   1.1       ad 		return (0);
    231   1.1       ad 
    232   1.1       ad 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    233   1.1       ad 		return (1);
    234   1.1       ad 
    235   1.1       ad 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    236   1.1       ad 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    237   1.1       ad }
    238   1.1       ad 
    239   1.1       ad /*
    240   1.9       ad  * Attach a supported device.
    241   1.1       ad  */
    242   1.1       ad void
    243   1.1       ad amr_attach(struct device *parent, struct device *self, void *aux)
    244   1.1       ad {
    245   1.1       ad 	bus_space_tag_t memt, iot;
    246   1.1       ad 	bus_space_handle_t memh, ioh;
    247   1.1       ad 	struct pci_attach_args *pa;
    248   1.1       ad 	struct amr_attach_args amra;
    249   1.1       ad 	const struct amr_pci_type *apt;
    250   1.1       ad 	struct amr_softc *amr;
    251   1.1       ad 	pci_chipset_tag_t pc;
    252   1.1       ad 	pci_intr_handle_t ih;
    253   1.1       ad 	const char *intrstr;
    254   1.1       ad 	pcireg_t reg;
    255   1.9       ad 	int rseg, i, j, size, rv, memreg, ioreg;
    256   1.9       ad 	bus_size_t memsize, iosize;
    257   1.1       ad         struct amr_ccb *ac;
    258   1.1       ad 
    259   1.8  thorpej 	aprint_naive(": RAID controller\n");
    260   1.8  thorpej 
    261   1.1       ad 	amr = (struct amr_softc *)self;
    262   1.1       ad 	pa = (struct pci_attach_args *)aux;
    263   1.1       ad 	pc = pa->pa_pc;
    264   1.1       ad 
    265   1.1       ad 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    266   1.1       ad 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    267   1.1       ad 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    268   1.1       ad 			break;
    269   1.1       ad 	apt = amr_pci_type + i;
    270   1.1       ad 
    271   1.1       ad 	memreg = ioreg = 0;
    272   1.1       ad 	for (i = 0x10; i <= 0x14; i += 4) {
    273   1.1       ad 		reg = pci_conf_read(pc, pa->pa_tag, i);
    274   1.1       ad 		switch (PCI_MAPREG_TYPE(reg)) {
    275   1.1       ad 		case PCI_MAPREG_TYPE_MEM:
    276   1.9       ad 			if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0)
    277   1.1       ad 				memreg = i;
    278   1.1       ad 			break;
    279   1.1       ad 		case PCI_MAPREG_TYPE_IO:
    280   1.9       ad 			if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0)
    281   1.1       ad 				ioreg = i;
    282   1.1       ad 			break;
    283   1.1       ad 		}
    284   1.1       ad 	}
    285   1.1       ad 
    286   1.1       ad 	if (memreg != 0)
    287   1.1       ad 		if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    288   1.1       ad 		    &memt, &memh, NULL, NULL))
    289   1.1       ad 			memreg = 0;
    290   1.1       ad 	if (ioreg != 0)
    291   1.1       ad 		if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    292   1.1       ad 		    &iot, &ioh, NULL, NULL))
    293   1.1       ad 			ioreg = 0;
    294   1.1       ad 
    295   1.1       ad 	if (memreg) {
    296   1.1       ad 		amr->amr_iot = memt;
    297   1.1       ad 		amr->amr_ioh = memh;
    298   1.9       ad 		amr->amr_ios = memsize;
    299   1.1       ad 	} else if (ioreg) {
    300   1.1       ad 		amr->amr_iot = iot;
    301   1.1       ad 		amr->amr_ioh = ioh;
    302   1.9       ad 		amr->amr_ios = iosize;
    303   1.1       ad 	} else {
    304   1.8  thorpej 		aprint_error("can't map control registers\n");
    305   1.9       ad 		amr_teardown(amr);
    306   1.1       ad 		return;
    307   1.1       ad 	}
    308   1.1       ad 
    309   1.9       ad 	amr->amr_flags |= AMRF_PCI_REGS;
    310   1.1       ad 	amr->amr_dmat = pa->pa_dmat;
    311   1.9       ad 	amr->amr_pc = pa->pa_pc;
    312   1.1       ad 
    313   1.1       ad 	/* Enable the device. */
    314   1.1       ad 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    315   1.1       ad 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    316   1.1       ad 	    reg | PCI_COMMAND_MASTER_ENABLE);
    317   1.1       ad 
    318   1.1       ad 	/* Map and establish the interrupt. */
    319   1.1       ad 	if (pci_intr_map(pa, &ih)) {
    320   1.8  thorpej 		aprint_error("can't map interrupt\n");
    321   1.9       ad 		amr_teardown(amr);
    322   1.1       ad 		return;
    323   1.1       ad 	}
    324   1.1       ad 	intrstr = pci_intr_string(pc, ih);
    325   1.1       ad 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    326   1.1       ad 	if (amr->amr_ih == NULL) {
    327   1.8  thorpej 		aprint_error("can't establish interrupt");
    328   1.1       ad 		if (intrstr != NULL)
    329   1.8  thorpej 			aprint_normal(" at %s", intrstr);
    330   1.8  thorpej 		aprint_normal("\n");
    331   1.9       ad 		amr_teardown(amr);
    332   1.1       ad 		return;
    333   1.1       ad 	}
    334   1.9       ad 	amr->amr_flags |= AMRF_PCI_INTR;
    335   1.1       ad 
    336   1.1       ad 	/*
    337   1.1       ad 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    338   1.1       ad 	 * don't like S/G lists to be located below 0x2000, so we allocate
    339   1.1       ad 	 * enough slop to enable us to compensate.
    340   1.1       ad 	 *
    341   1.1       ad 	 * The standard mailbox structure needs to be aligned on a 16-byte
    342   1.1       ad 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    343   1.1       ad 	 * size, which preceeds the standard mailbox.
    344   1.1       ad 	 */
    345   1.1       ad 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    346   1.9       ad 	amr->amr_dmasize = size;
    347   1.1       ad 
    348   1.9       ad 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, NULL,
    349   1.9       ad 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    350   1.8  thorpej 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    351   1.1       ad 		    amr->amr_dv.dv_xname, rv);
    352   1.9       ad 		amr_teardown(amr);
    353   1.1       ad 		return;
    354   1.1       ad 	}
    355   1.9       ad 	amr->amr_flags |= AMRF_DMA_ALLOC;
    356   1.1       ad 
    357   1.9       ad 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    358   1.1       ad 	    (caddr_t *)&amr->amr_mbox,
    359   1.1       ad 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    360   1.8  thorpej 		aprint_error("%s: unable to map buffer, rv = %d\n",
    361   1.1       ad 		    amr->amr_dv.dv_xname, rv);
    362   1.9       ad 		amr_teardown(amr);
    363   1.1       ad 		return;
    364   1.1       ad 	}
    365   1.9       ad 	amr->amr_flags |= AMRF_DMA_MAP;
    366   1.1       ad 
    367   1.1       ad 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    368   1.1       ad 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    369   1.8  thorpej 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    370   1.1       ad 		    amr->amr_dv.dv_xname, rv);
    371   1.9       ad 		amr_teardown(amr);
    372   1.1       ad 		return;
    373   1.1       ad 	}
    374   1.9       ad 	amr->amr_flags |= AMRF_DMA_CREATE;
    375   1.1       ad 
    376   1.1       ad 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    377   1.1       ad 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    378   1.8  thorpej 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    379   1.1       ad 		    amr->amr_dv.dv_xname, rv);
    380   1.9       ad 		amr_teardown(amr);
    381   1.1       ad 		return;
    382   1.1       ad 	}
    383   1.9       ad 	amr->amr_flags |= AMRF_DMA_LOAD;
    384   1.1       ad 
    385   1.1       ad 	memset(amr->amr_mbox, 0, size);
    386   1.1       ad 
    387   1.9       ad 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    388   1.1       ad 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    389   1.1       ad 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
    390   1.1       ad 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    391   1.1       ad 
    392   1.1       ad 	/*
    393   1.1       ad 	 * Allocate and initalise the command control blocks.
    394   1.1       ad 	 */
    395   1.1       ad 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    396   1.1       ad 	amr->amr_ccbs = ac;
    397   1.1       ad 	SLIST_INIT(&amr->amr_ccb_freelist);
    398  1.10       ad 	TAILQ_INIT(&amr->amr_ccb_active);
    399   1.9       ad 	amr->amr_flags |= AMRF_CCBS;
    400   1.9       ad 
    401   1.9       ad 	if (amr_max_xfer == 0) {
    402   1.9       ad 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    403   1.9       ad 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    404   1.9       ad 	}
    405   1.1       ad 
    406   1.1       ad 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    407   1.9       ad 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    408   1.9       ad 		    amr_max_segs, amr_max_xfer, 0,
    409   1.9       ad 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    410   1.1       ad 		if (rv != 0)
    411   1.1       ad 			break;
    412   1.1       ad 
    413   1.1       ad 		ac->ac_ident = i;
    414   1.9       ad 		amr_ccb_free(amr, ac);
    415   1.9       ad 	}
    416   1.9       ad 	if (i != AMR_MAX_CMDS) {
    417   1.9       ad 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    418   1.9       ad 		amr_teardown(amr);
    419   1.9       ad 		return;
    420   1.1       ad 	}
    421   1.1       ad 
    422   1.1       ad 	/*
    423   1.1       ad 	 * Take care of model-specific tasks.
    424   1.1       ad 	 */
    425   1.1       ad 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    426   1.1       ad 		amr->amr_submit = amr_quartz_submit;
    427   1.1       ad 		amr->amr_get_work = amr_quartz_get_work;
    428   1.1       ad 	} else {
    429   1.1       ad 		amr->amr_submit = amr_std_submit;
    430   1.1       ad 		amr->amr_get_work = amr_std_get_work;
    431   1.1       ad 
    432   1.1       ad 		/* Notify the controller of the mailbox location. */
    433   1.9       ad 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    434   1.1       ad 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    435   1.1       ad 
    436   1.1       ad 		/* Clear outstanding interrupts and enable interrupts. */
    437   1.1       ad 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    438   1.1       ad 		amr_outb(amr, AMR_SREG_TOGL,
    439   1.1       ad 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    440   1.1       ad 	}
    441   1.1       ad 
    442   1.1       ad 	/*
    443   1.1       ad 	 * Retrieve parameters, and tell the world about us.
    444   1.1       ad 	 */
    445   1.9       ad 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    446   1.9       ad 	amr->amr_flags |= AMRF_ENQBUF;
    447   1.1       ad 	amr->amr_maxqueuecnt = i;
    448   1.8  thorpej 	aprint_normal(": AMI RAID ");
    449   1.9       ad 	if (amr_init(amr, intrstr, pa) != 0) {
    450   1.9       ad 		amr_teardown(amr);
    451   1.1       ad 		return;
    452   1.9       ad 	}
    453   1.1       ad 
    454   1.1       ad 	/*
    455   1.1       ad 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    456   1.1       ad 	 * driver doesn't trust the controller's reported value, and lockups
    457   1.1       ad 	 * have been seen when we do.
    458   1.1       ad 	 */
    459   1.1       ad 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    460   1.1       ad 	if (amr->amr_maxqueuecnt > i)
    461   1.1       ad 		amr->amr_maxqueuecnt = i;
    462   1.1       ad 
    463   1.1       ad 	/* Set our `shutdownhook' before we start any device activity. */
    464   1.1       ad 	if (amr_sdh == NULL)
    465   1.1       ad 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    466   1.1       ad 
    467   1.1       ad 	/* Attach sub-devices. */
    468   1.9       ad 	for (j = 0; j < amr->amr_numdrives; j++) {
    469   1.9       ad 		if (amr->amr_drive[j].al_size == 0)
    470   1.1       ad 			continue;
    471   1.9       ad 		amra.amra_unit = j;
    472   1.9       ad 		amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
    473   1.9       ad 		    amr_print, amr_submatch);
    474   1.1       ad 	}
    475   1.1       ad 
    476   1.1       ad 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    477   1.9       ad 	kthread_create(amr_thread_create, amr);
    478   1.9       ad }
    479   1.9       ad 
    480   1.9       ad /*
    481   1.9       ad  * Free up resources.
    482   1.9       ad  */
    483   1.9       ad void
    484   1.9       ad amr_teardown(struct amr_softc *amr)
    485   1.9       ad {
    486   1.9       ad 	struct amr_ccb *ac;
    487   1.9       ad 	int fl;
    488   1.9       ad 
    489   1.9       ad 	fl = amr->amr_flags;
    490   1.9       ad 
    491   1.9       ad 	if ((fl & AMRF_THREAD) != 0) {
    492   1.9       ad 		amr->amr_flags |= AMRF_THREAD_EXIT;
    493   1.9       ad 		wakeup(amr_thread);
    494   1.9       ad 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    495   1.9       ad 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    496   1.9       ad 	}
    497   1.9       ad 	if ((fl & AMRF_CCBS) != 0) {
    498   1.9       ad 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    499   1.9       ad 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    500   1.9       ad 		}
    501   1.9       ad 		free(amr->amr_ccbs, M_DEVBUF);
    502   1.9       ad 	}
    503   1.9       ad 	if ((fl & AMRF_ENQBUF) != 0)
    504   1.9       ad 		free(amr->amr_enqbuf, M_DEVBUF);
    505   1.9       ad 	if ((fl & AMRF_DMA_LOAD) != 0)
    506   1.9       ad 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    507   1.9       ad 	if ((fl & AMRF_DMA_MAP) != 0)
    508   1.9       ad 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
    509   1.9       ad 		    amr->amr_dmasize);
    510   1.9       ad 	if ((fl & AMRF_DMA_ALLOC) != 0)
    511   1.9       ad 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    512   1.9       ad 	if ((fl & AMRF_DMA_CREATE) != 0)
    513   1.9       ad 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    514   1.9       ad 	if ((fl & AMRF_PCI_INTR) != 0)
    515   1.9       ad 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    516   1.9       ad 	if ((fl & AMRF_PCI_REGS) != 0)
    517   1.9       ad 		bus_space_unmap(amr->amr_ioh, amr->amr_iot, amr->amr_ios);
    518   1.1       ad }
    519   1.1       ad 
    520   1.1       ad /*
    521   1.1       ad  * Print autoconfiguration message for a sub-device.
    522   1.1       ad  */
    523   1.1       ad int
    524   1.1       ad amr_print(void *aux, const char *pnp)
    525   1.1       ad {
    526   1.1       ad 	struct amr_attach_args *amra;
    527   1.1       ad 
    528   1.1       ad 	amra = (struct amr_attach_args *)aux;
    529   1.1       ad 
    530   1.1       ad 	if (pnp != NULL)
    531   1.7  thorpej 		aprint_normal("block device at %s", pnp);
    532   1.7  thorpej 	aprint_normal(" unit %d", amra->amra_unit);
    533   1.1       ad 	return (UNCONF);
    534   1.1       ad }
    535   1.1       ad 
    536   1.1       ad /*
    537   1.1       ad  * Match a sub-device.
    538   1.1       ad  */
    539   1.1       ad int
    540   1.1       ad amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
    541   1.1       ad {
    542   1.1       ad 	struct amr_attach_args *amra;
    543   1.1       ad 
    544   1.1       ad 	amra = (struct amr_attach_args *)aux;
    545   1.1       ad 
    546   1.1       ad 	if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
    547   1.1       ad 	    cf->amracf_unit != amra->amra_unit)
    548   1.1       ad 		return (0);
    549   1.1       ad 
    550   1.3  thorpej 	return (config_match(parent, cf, aux));
    551   1.1       ad }
    552   1.1       ad 
    553   1.1       ad /*
    554   1.1       ad  * Retrieve operational parameters and describe the controller.
    555   1.1       ad  */
    556   1.1       ad int
    557   1.1       ad amr_init(struct amr_softc *amr, const char *intrstr,
    558   1.1       ad 	 struct pci_attach_args *pa)
    559   1.1       ad {
    560   1.9       ad 	struct amr_adapter_info *aa;
    561   1.1       ad 	struct amr_prodinfo *ap;
    562   1.1       ad 	struct amr_enquiry *ae;
    563   1.1       ad 	struct amr_enquiry3 *aex;
    564   1.1       ad 	const char *prodstr;
    565   1.9       ad 	u_int i, sig, ishp;
    566   1.1       ad 	char buf[64];
    567   1.1       ad 
    568   1.1       ad 	/*
    569   1.1       ad 	 * Try to get 40LD product info, which tells us what the card is
    570   1.1       ad 	 * labelled as.
    571   1.1       ad 	 */
    572   1.9       ad 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    573   1.9       ad 	    amr->amr_enqbuf);
    574   1.1       ad 	if (ap != NULL) {
    575   1.8  thorpej 		aprint_normal("<%.80s>\n", ap->ap_product);
    576   1.1       ad 		if (intrstr != NULL)
    577   1.8  thorpej 			aprint_normal("%s: interrupting at %s\n",
    578   1.1       ad 			    amr->amr_dv.dv_xname, intrstr);
    579   1.8  thorpej 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    580   1.1       ad 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    581   1.1       ad 		    le16toh(ap->ap_memsize));
    582   1.1       ad 
    583   1.1       ad 		amr->amr_maxqueuecnt = ap->ap_maxio;
    584   1.1       ad 
    585   1.1       ad 		/*
    586   1.1       ad 		 * Fetch and record state of logical drives.
    587   1.1       ad 		 */
    588   1.1       ad 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    589   1.9       ad 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    590   1.1       ad 		if (aex == NULL) {
    591   1.8  thorpej 			aprint_error("%s ENQUIRY3 failed\n",
    592   1.8  thorpej 			    amr->amr_dv.dv_xname);
    593   1.1       ad 			return (-1);
    594   1.1       ad 		}
    595   1.1       ad 
    596   1.1       ad 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    597   1.8  thorpej 			aprint_error(
    598   1.8  thorpej 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    599   1.1       ad 			    "\n", amr->amr_dv.dv_xname,
    600   1.1       ad 			    ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
    601   1.1       ad 			amr->amr_numdrives = AMR_MAX_UNITS;
    602   1.1       ad 		} else
    603   1.1       ad 			amr->amr_numdrives = aex->ae_numldrives;
    604   1.1       ad 
    605   1.1       ad 		for (i = 0; i < amr->amr_numdrives; i++) {
    606   1.1       ad 			amr->amr_drive[i].al_size =
    607   1.1       ad 			    le32toh(aex->ae_drivesize[i]);
    608   1.1       ad 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    609   1.1       ad 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    610   1.1       ad 		}
    611   1.1       ad 
    612   1.1       ad 		return (0);
    613   1.1       ad 	}
    614   1.1       ad 
    615   1.1       ad 	/*
    616   1.1       ad 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    617   1.1       ad 	 * found, search for a product description.
    618   1.1       ad 	 */
    619   1.9       ad 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    620   1.9       ad 	if (ae != NULL) {
    621   1.1       ad 		i = 0;
    622   1.1       ad 		sig = le32toh(ae->ae_signature);
    623   1.1       ad 
    624   1.1       ad 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    625   1.1       ad 			if (amr_typestr[i].at_sig == sig)
    626   1.1       ad 				break;
    627   1.1       ad 			i++;
    628   1.1       ad 		}
    629   1.1       ad 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    630   1.1       ad 			sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
    631   1.1       ad 			prodstr = buf;
    632   1.1       ad 		} else
    633   1.1       ad 			prodstr = amr_typestr[i].at_str;
    634   1.1       ad 	} else {
    635   1.9       ad 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    636   1.9       ad 		if (ae == NULL) {
    637   1.8  thorpej 			aprint_error("%s: unsupported controller\n",
    638   1.1       ad 			    amr->amr_dv.dv_xname);
    639   1.1       ad 			return (-1);
    640   1.1       ad 		}
    641   1.1       ad 
    642   1.1       ad 		switch (PCI_PRODUCT(pa->pa_id)) {
    643   1.1       ad 		case PCI_PRODUCT_AMI_MEGARAID:
    644   1.1       ad 			prodstr = "Series 428";
    645   1.1       ad 			break;
    646   1.1       ad 		case PCI_PRODUCT_AMI_MEGARAID2:
    647   1.1       ad 			prodstr = "Series 434";
    648   1.1       ad 			break;
    649   1.1       ad 		default:
    650   1.1       ad 			sprintf(buf, "unknown PCI dev (0x%04x)",
    651   1.1       ad 			    PCI_PRODUCT(pa->pa_id));
    652   1.1       ad 			prodstr = buf;
    653   1.1       ad 			break;
    654   1.1       ad 		}
    655   1.1       ad 	}
    656   1.1       ad 
    657   1.9       ad 	/*
    658   1.9       ad 	 * HP NetRaid controllers have a special encoding of the firmware
    659   1.9       ad 	 * and BIOS versions.  The AMI version seems to have it as strings
    660   1.9       ad 	 * whereas the HP version does it with a leading uppercase character
    661   1.9       ad 	 * and two binary numbers.
    662   1.9       ad 	*/
    663   1.9       ad 	aa = &ae->ae_adapter;
    664   1.9       ad 
    665   1.9       ad 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    666   1.9       ad 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    667   1.9       ad 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    668   1.9       ad 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    669   1.9       ad 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    670   1.9       ad 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    671   1.9       ad 			prodstr = "HP NetRaid 3si";
    672   1.9       ad 		}
    673   1.9       ad 		ishp = 1;
    674   1.9       ad 	} else
    675   1.9       ad 		ishp = 0;
    676   1.9       ad 
    677   1.8  thorpej 	aprint_normal("<%s>\n", prodstr);
    678   1.1       ad 	if (intrstr != NULL)
    679   1.8  thorpej 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    680   1.1       ad 		    intrstr);
    681   1.1       ad 
    682   1.9       ad 	if (ishp)
    683   1.9       ad 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    684   1.9       ad 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    685   1.9       ad 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    686   1.9       ad 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    687   1.9       ad 	else
    688   1.9       ad 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    689   1.9       ad 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    690   1.9       ad 		    aa->aa_memorysize);
    691   1.9       ad 
    692   1.9       ad 	amr->amr_maxqueuecnt = aa->aa_maxio;
    693   1.1       ad 
    694   1.1       ad 	/*
    695   1.1       ad 	 * Record state of logical drives.
    696   1.1       ad 	 */
    697   1.1       ad 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    698   1.8  thorpej 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    699   1.1       ad 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    700   1.1       ad 		    AMR_MAX_UNITS);
    701   1.1       ad 		amr->amr_numdrives = AMR_MAX_UNITS;
    702   1.1       ad 	} else
    703   1.1       ad 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    704   1.1       ad 
    705   1.1       ad 	for (i = 0; i < AMR_MAX_UNITS; i++) {
    706   1.1       ad 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    707   1.1       ad 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    708   1.1       ad 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    709   1.1       ad 	}
    710   1.1       ad 
    711   1.1       ad 	return (0);
    712   1.1       ad }
    713   1.1       ad 
    714   1.1       ad /*
    715   1.1       ad  * Flush the internal cache on each configured controller.  Called at
    716   1.1       ad  * shutdown time.
    717   1.1       ad  */
    718   1.1       ad void
    719   1.1       ad amr_shutdown(void *cookie)
    720   1.1       ad {
    721   1.1       ad         extern struct cfdriver amr_cd;
    722   1.1       ad 	struct amr_softc *amr;
    723   1.1       ad 	struct amr_ccb *ac;
    724   1.9       ad 	int i, rv, s;
    725   1.1       ad 
    726   1.1       ad 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    727   1.1       ad 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    728   1.1       ad 			continue;
    729   1.1       ad 
    730   1.1       ad 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    731   1.9       ad 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    732   1.9       ad 			s = splbio();
    733   1.1       ad 			rv = amr_ccb_poll(amr, ac, 30000);
    734   1.9       ad 			splx(s);
    735   1.1       ad 			amr_ccb_free(amr, ac);
    736   1.1       ad 		}
    737   1.1       ad 		if (rv != 0)
    738   1.1       ad 			printf("%s: unable to flush cache (%d)\n",
    739   1.1       ad 			    amr->amr_dv.dv_xname, rv);
    740   1.1       ad 	}
    741   1.1       ad }
    742   1.1       ad 
    743   1.1       ad /*
    744   1.1       ad  * Interrupt service routine.
    745   1.1       ad  */
    746   1.1       ad int
    747   1.1       ad amr_intr(void *cookie)
    748   1.1       ad {
    749   1.1       ad 	struct amr_softc *amr;
    750   1.1       ad 	struct amr_ccb *ac;
    751   1.9       ad 	struct amr_mailbox_resp mbox;
    752   1.1       ad 	u_int i, forus, idx;
    753   1.1       ad 
    754   1.1       ad 	amr = cookie;
    755   1.1       ad 	forus = 0;
    756   1.1       ad 
    757   1.1       ad 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    758   1.1       ad 		/* Iterate over completed commands in this result. */
    759   1.1       ad 		for (i = 0; i < mbox.mb_nstatus; i++) {
    760   1.1       ad 			idx = mbox.mb_completed[i] - 1;
    761   1.1       ad 			ac = amr->amr_ccbs + idx;
    762   1.1       ad 
    763   1.1       ad 			if (idx >= amr->amr_maxqueuecnt) {
    764   1.1       ad 				printf("%s: bad status (bogus ID: %u=%u)\n",
    765   1.1       ad 				    amr->amr_dv.dv_xname, i, idx);
    766   1.1       ad 				continue;
    767   1.1       ad 			}
    768   1.1       ad 
    769   1.1       ad 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    770   1.1       ad 				printf("%s: bad status (not active; 0x04%x)\n",
    771   1.1       ad 				    amr->amr_dv.dv_xname, ac->ac_flags);
    772   1.1       ad 				continue;
    773   1.1       ad 			}
    774   1.1       ad 
    775   1.1       ad 			ac->ac_status = mbox.mb_status;
    776   1.1       ad 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    777   1.1       ad 			    AC_COMPLETE;
    778  1.10       ad 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    779  1.10       ad 
    780  1.10       ad 			if ((ac->ac_flags & AC_MOAN) != 0)
    781  1.10       ad 				printf("%s: ccb %d completed\n",
    782  1.10       ad 				    amr->amr_dv.dv_xname, ac->ac_ident);
    783   1.1       ad 
    784   1.1       ad 			/* Pass notification to upper layers. */
    785   1.1       ad 			if (ac->ac_handler != NULL)
    786   1.1       ad 				(*ac->ac_handler)(ac);
    787   1.9       ad 			else
    788   1.9       ad 				wakeup(ac);
    789   1.1       ad 		}
    790   1.1       ad 		forus = 1;
    791   1.1       ad 	}
    792   1.1       ad 
    793   1.1       ad 	if (forus)
    794   1.1       ad 		amr_ccb_enqueue(amr, NULL);
    795   1.9       ad 
    796   1.1       ad 	return (forus);
    797   1.1       ad }
    798   1.1       ad 
    799   1.1       ad /*
    800   1.9       ad  * Create the watchdog thread.
    801   1.9       ad  */
    802   1.9       ad void
    803   1.9       ad amr_thread_create(void *cookie)
    804   1.9       ad {
    805   1.9       ad 	struct amr_softc *amr;
    806   1.9       ad 	int rv;
    807   1.9       ad 
    808   1.9       ad 	amr = cookie;
    809   1.9       ad 
    810   1.9       ad 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    811   1.9       ad 		amr->amr_flags ^= AMRF_THREAD_EXIT;
    812   1.9       ad 		wakeup(&amr->amr_flags);
    813   1.9       ad 		return;
    814   1.9       ad 	}
    815   1.9       ad 
    816   1.9       ad 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
    817   1.9       ad 	    amr->amr_dv.dv_xname);
    818   1.9       ad  	if (rv != 0)
    819   1.9       ad 		aprint_error("%s: unable to create thread (%d)",
    820   1.9       ad  		    amr->amr_dv.dv_xname, rv);
    821   1.9       ad  	else
    822   1.9       ad  		amr->amr_flags |= AMRF_THREAD;
    823   1.9       ad }
    824   1.9       ad 
    825   1.9       ad /*
    826   1.9       ad  * Watchdog thread.
    827   1.9       ad  */
    828   1.9       ad void
    829   1.9       ad amr_thread(void *cookie)
    830   1.9       ad {
    831   1.9       ad 	struct amr_softc *amr;
    832   1.9       ad 	struct amr_ccb *ac;
    833   1.9       ad 	struct amr_logdrive *al;
    834   1.9       ad 	struct amr_enquiry *ae;
    835  1.10       ad 	time_t curtime;
    836   1.9       ad 	int rv, i, s;
    837   1.9       ad 
    838   1.9       ad 	amr = cookie;
    839   1.9       ad 	ae = amr->amr_enqbuf;
    840   1.9       ad 
    841   1.9       ad 	for (;;) {
    842   1.9       ad 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    843   1.9       ad 
    844   1.9       ad 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    845   1.9       ad 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    846   1.9       ad 			wakeup(&amr->amr_flags);
    847   1.9       ad 			kthread_exit(0);
    848   1.9       ad 		}
    849   1.9       ad 
    850   1.9       ad 		s = splbio();
    851   1.9       ad 		amr_intr(cookie);
    852  1.10       ad 		curtime = (time_t)mono_time.tv_sec;
    853  1.10       ad 		if ((ac = TAILQ_FIRST(&amr->amr_ccb_active)) != NULL) {
    854  1.10       ad 			if (ac->ac_start_time + AMR_TIMEOUT > curtime)
    855  1.10       ad 				break;
    856  1.10       ad 			if ((ac->ac_flags & AC_MOAN) == 0) {
    857  1.10       ad 				printf("%s: ccb %d timed out; mailbox:\n",
    858  1.10       ad 				    amr->amr_dv.dv_xname, ac->ac_ident);
    859  1.10       ad 				amr_ccb_dump(amr, ac);
    860  1.10       ad 				ac->ac_flags |= AC_MOAN;
    861  1.10       ad 			}
    862  1.10       ad 		}
    863   1.9       ad 		splx(s);
    864   1.9       ad 
    865   1.9       ad 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    866   1.9       ad 			printf("%s: ccb_alloc failed (%d)\n",
    867   1.9       ad  			    amr->amr_dv.dv_xname, rv);
    868   1.9       ad 			continue;
    869   1.9       ad 		}
    870   1.9       ad 
    871   1.9       ad 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    872   1.9       ad 
    873   1.9       ad 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    874   1.9       ad 		    AMR_ENQUIRY_BUFSIZE, 0);
    875   1.9       ad 		if (rv != 0) {
    876   1.9       ad 			printf("%s: ccb_map failed (%d)\n",
    877   1.9       ad  			    amr->amr_dv.dv_xname, rv);
    878   1.9       ad 			amr_ccb_free(amr, ac);
    879   1.9       ad 			continue;
    880   1.9       ad 		}
    881   1.9       ad 
    882   1.9       ad 		rv = amr_ccb_wait(amr, ac);
    883   1.9       ad 		amr_ccb_unmap(amr, ac);
    884   1.9       ad 		if (rv != 0) {
    885   1.9       ad 			printf("%s: enquiry failed (st=%d)\n",
    886   1.9       ad  			    amr->amr_dv.dv_xname, ac->ac_status);
    887   1.9       ad 			continue;
    888   1.9       ad 		}
    889   1.9       ad 		amr_ccb_free(amr, ac);
    890   1.9       ad 
    891   1.9       ad 		al = amr->amr_drive;
    892   1.9       ad 		for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
    893   1.9       ad 			if (al->al_dv == NULL)
    894   1.9       ad 				continue;
    895   1.9       ad 			if (al->al_state == ae->ae_ldrv.al_state[i])
    896   1.9       ad 				continue;
    897   1.9       ad 
    898   1.9       ad 			printf("%s: state changed: %s -> %s\n",
    899   1.9       ad 			    al->al_dv->dv_xname,
    900   1.9       ad 			    amr_drive_state(al->al_state, NULL),
    901   1.9       ad 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    902   1.9       ad 
    903   1.9       ad 			al->al_state = ae->ae_ldrv.al_state[i];
    904   1.9       ad 		}
    905   1.9       ad 	}
    906   1.9       ad }
    907   1.9       ad 
    908   1.9       ad /*
    909   1.9       ad  * Return a text description of a logical drive's current state.
    910   1.9       ad  */
    911   1.9       ad const char *
    912   1.9       ad amr_drive_state(int state, int *happy)
    913   1.9       ad {
    914   1.9       ad 	const char *str;
    915   1.9       ad 
    916   1.9       ad 	state = AMR_DRV_CURSTATE(state);
    917   1.9       ad 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    918   1.9       ad 		if (happy)
    919   1.9       ad 			*happy = 1;
    920   1.9       ad 		str = "status unknown";
    921   1.9       ad 	} else {
    922   1.9       ad 		if (happy)
    923   1.9       ad 			*happy = amr_dstate[state].ds_happy;
    924   1.9       ad 		str = amr_dstate[state].ds_descr;
    925   1.9       ad 	}
    926   1.9       ad 
    927   1.9       ad 	return (str);
    928   1.9       ad }
    929   1.9       ad 
    930   1.9       ad /*
    931   1.1       ad  * Run a generic enquiry-style command.
    932   1.1       ad  */
    933   1.1       ad void *
    934   1.1       ad amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    935   1.9       ad 	    u_int8_t cmdqual, void *buf)
    936   1.1       ad {
    937   1.1       ad 	struct amr_ccb *ac;
    938   1.1       ad 	u_int8_t *mb;
    939   1.1       ad 	int rv;
    940   1.1       ad 
    941   1.1       ad 	if (amr_ccb_alloc(amr, &ac) != 0)
    942   1.1       ad 		return (NULL);
    943   1.1       ad 
    944   1.1       ad 	/* Build the command proper. */
    945   1.9       ad 	mb = (u_int8_t *)&ac->ac_cmd;
    946   1.1       ad 	mb[0] = cmd;
    947   1.1       ad 	mb[2] = cmdsub;
    948   1.1       ad 	mb[3] = cmdqual;
    949   1.1       ad 
    950   1.9       ad 	rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
    951   1.9       ad 	if (rv == 0) {
    952   1.1       ad 		rv = amr_ccb_poll(amr, ac, 2000);
    953   1.1       ad 		amr_ccb_unmap(amr, ac);
    954   1.1       ad 	}
    955   1.1       ad 	amr_ccb_free(amr, ac);
    956   1.1       ad 
    957   1.9       ad 	return (rv ? NULL : buf);
    958   1.1       ad }
    959   1.1       ad 
    960   1.1       ad /*
    961   1.1       ad  * Allocate and initialise a CCB.
    962   1.1       ad  */
    963   1.1       ad int
    964   1.1       ad amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    965   1.1       ad {
    966   1.1       ad 	int s;
    967   1.1       ad 
    968   1.1       ad 	s = splbio();
    969   1.9       ad 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    970   1.1       ad 		splx(s);
    971   1.1       ad 		return (EAGAIN);
    972   1.1       ad 	}
    973   1.1       ad 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    974   1.1       ad 	splx(s);
    975   1.1       ad 
    976   1.1       ad 	return (0);
    977   1.1       ad }
    978   1.1       ad 
    979   1.1       ad /*
    980   1.1       ad  * Free a CCB.
    981   1.1       ad  */
    982   1.1       ad void
    983   1.1       ad amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    984   1.1       ad {
    985   1.1       ad 	int s;
    986   1.1       ad 
    987   1.9       ad 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    988   1.9       ad 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    989   1.9       ad 	ac->ac_cmd.mb_busy = 1;
    990   1.9       ad 	ac->ac_handler = NULL;
    991   1.1       ad 	ac->ac_flags = 0;
    992   1.1       ad 
    993   1.1       ad 	s = splbio();
    994   1.1       ad 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
    995   1.1       ad 	splx(s);
    996   1.1       ad }
    997   1.1       ad 
    998   1.1       ad /*
    999   1.1       ad  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1000   1.1       ad  * the order that they were enqueued and try to submit their command blocks
   1001   1.1       ad  * to the controller for execution.
   1002   1.1       ad  */
   1003   1.1       ad void
   1004   1.1       ad amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1005   1.1       ad {
   1006   1.1       ad 	int s;
   1007   1.1       ad 
   1008   1.1       ad 	s = splbio();
   1009   1.1       ad 
   1010   1.1       ad 	if (ac != NULL)
   1011   1.1       ad 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1012   1.1       ad 
   1013   1.1       ad 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1014   1.1       ad 		if ((*amr->amr_submit)(amr, ac) != 0)
   1015   1.1       ad 			break;
   1016   1.2    lukem 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1017  1.10       ad 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1018   1.1       ad 	}
   1019   1.1       ad 
   1020   1.1       ad 	splx(s);
   1021   1.1       ad }
   1022   1.1       ad 
   1023   1.1       ad /*
   1024   1.1       ad  * Map the specified CCB's data buffer onto the bus, and fill the
   1025   1.1       ad  * scatter-gather list.
   1026   1.1       ad  */
   1027   1.1       ad int
   1028   1.1       ad amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1029   1.1       ad 	    int out)
   1030   1.1       ad {
   1031   1.1       ad 	struct amr_sgentry *sge;
   1032   1.9       ad 	struct amr_mailbox_cmd *mb;
   1033   1.1       ad 	int nsegs, i, rv, sgloff;
   1034   1.1       ad 	bus_dmamap_t xfer;
   1035   1.1       ad 
   1036   1.1       ad 	xfer = ac->ac_xfer_map;
   1037   1.1       ad 
   1038   1.1       ad 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1039   1.1       ad 	    BUS_DMA_NOWAIT);
   1040   1.1       ad 	if (rv != 0)
   1041   1.1       ad 		return (rv);
   1042   1.1       ad 
   1043   1.9       ad 	mb = &ac->ac_cmd;
   1044   1.1       ad 	ac->ac_xfer_size = size;
   1045   1.1       ad 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
   1046   1.1       ad 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1047   1.1       ad 
   1048   1.1       ad 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1049   1.1       ad 	nsegs = xfer->dm_nsegs;
   1050   1.1       ad 	if (nsegs == 1) {
   1051   1.1       ad 		mb->mb_nsgelem = 0;
   1052   1.1       ad 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1053   1.1       ad 		ac->ac_flags |= AC_NOSGL;
   1054   1.1       ad 	} else {
   1055   1.1       ad 		mb->mb_nsgelem = nsegs;
   1056   1.1       ad 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1057   1.1       ad 
   1058   1.1       ad 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
   1059   1.1       ad 		for (i = 0; i < nsegs; i++, sge++) {
   1060   1.1       ad 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1061   1.1       ad 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1062   1.1       ad 		}
   1063   1.1       ad 	}
   1064   1.1       ad 
   1065   1.1       ad 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
   1066   1.1       ad 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
   1067   1.1       ad 
   1068   1.1       ad 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1069   1.1       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1070   1.1       ad 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1071   1.1       ad 
   1072   1.1       ad 	return (0);
   1073   1.1       ad }
   1074   1.1       ad 
   1075   1.1       ad /*
   1076   1.1       ad  * Unmap the specified CCB's data buffer.
   1077   1.1       ad  */
   1078   1.1       ad void
   1079   1.1       ad amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1080   1.1       ad {
   1081   1.1       ad 
   1082   1.1       ad 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1083   1.1       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1084   1.1       ad 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1085   1.1       ad 		    BUS_DMASYNC_POSTWRITE);
   1086   1.1       ad 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1087   1.1       ad 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
   1088   1.1       ad 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1089   1.1       ad 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1090   1.1       ad }
   1091   1.1       ad 
   1092   1.1       ad /*
   1093   1.1       ad  * Submit a command to the controller and poll on completion.  Return
   1094   1.1       ad  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1095   1.1       ad  */
   1096   1.1       ad int
   1097   1.1       ad amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1098   1.1       ad {
   1099   1.1       ad 	int rv;
   1100   1.1       ad 
   1101   1.1       ad 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1102   1.1       ad 		return (rv);
   1103  1.10       ad 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1104   1.1       ad 
   1105   1.1       ad 	for (timo *= 10; timo != 0; timo--) {
   1106   1.1       ad 		amr_intr(amr);
   1107   1.1       ad 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1108   1.1       ad 			break;
   1109   1.1       ad 		DELAY(100);
   1110   1.1       ad 	}
   1111   1.1       ad 
   1112   1.1       ad 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1113   1.1       ad }
   1114   1.1       ad 
   1115   1.1       ad /*
   1116   1.9       ad  * Submit a command to the controller and sleep on completion.  Return
   1117   1.9       ad  * non-zero on error.
   1118   1.9       ad  */
   1119   1.9       ad int
   1120   1.9       ad amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1121   1.9       ad {
   1122   1.9       ad 	int s;
   1123   1.9       ad 
   1124   1.9       ad 	s = splbio();
   1125   1.9       ad 	amr_ccb_enqueue(amr, ac);
   1126   1.9       ad 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1127   1.9       ad 	splx(s);
   1128   1.9       ad 
   1129   1.9       ad 	return (ac->ac_status != 0 ? EIO : 0);
   1130   1.9       ad }
   1131   1.9       ad 
   1132   1.9       ad /*
   1133   1.1       ad  * Wait for the mailbox to become available.
   1134   1.1       ad  */
   1135   1.1       ad int
   1136   1.1       ad amr_mbox_wait(struct amr_softc *amr)
   1137   1.1       ad {
   1138   1.1       ad 	int timo;
   1139   1.1       ad 
   1140   1.1       ad 	for (timo = 10000; timo != 0; timo--) {
   1141   1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1142   1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1143   1.9       ad 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1144   1.1       ad 			break;
   1145   1.1       ad 		DELAY(100);
   1146   1.1       ad 	}
   1147   1.1       ad 
   1148   1.9       ad 	if (timo == 0)
   1149   1.1       ad 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1150   1.1       ad 
   1151   1.9       ad 	return (timo != 0 ? 0 : EAGAIN);
   1152   1.1       ad }
   1153   1.1       ad 
   1154   1.1       ad /*
   1155   1.1       ad  * Tell the controller that the mailbox contains a valid command.  Must be
   1156   1.1       ad  * called with interrupts blocked.
   1157   1.1       ad  */
   1158   1.1       ad int
   1159   1.1       ad amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1160   1.1       ad {
   1161   1.1       ad 	u_int32_t v;
   1162   1.1       ad 
   1163   1.9       ad 	amr->amr_mbox->mb_poll = 0;
   1164   1.9       ad 	amr->amr_mbox->mb_ack = 0;
   1165   1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1166   1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1167   1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1168   1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1169   1.9       ad 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1170   1.9       ad 		return (EAGAIN);
   1171   1.9       ad 
   1172   1.1       ad 	v = amr_inl(amr, AMR_QREG_IDB);
   1173   1.9       ad 	if ((v & (AMR_QIDB_SUBMIT | AMR_QIDB_ACK)) != 0) {
   1174   1.9       ad 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1175   1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1176   1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1177   1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1178   1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1179   1.9       ad 		return (EAGAIN);
   1180   1.9       ad 	}
   1181   1.1       ad 
   1182  1.10       ad 	amr->amr_mbox->mb_segment = 0;
   1183  1.10       ad 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1184  1.10       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1185  1.10       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1186  1.10       ad 
   1187  1.10       ad 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1188   1.1       ad 	ac->ac_flags |= AC_ACTIVE;
   1189   1.1       ad 	amr_outl(amr, AMR_QREG_IDB, amr->amr_mbox_paddr | AMR_QIDB_SUBMIT);
   1190   1.1       ad 	return (0);
   1191   1.1       ad }
   1192   1.1       ad 
   1193   1.1       ad int
   1194   1.1       ad amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1195   1.1       ad {
   1196   1.1       ad 
   1197   1.9       ad 	amr->amr_mbox->mb_poll = 0;
   1198   1.9       ad 	amr->amr_mbox->mb_ack = 0;
   1199   1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1200   1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1201   1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1202   1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1203   1.9       ad 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1204   1.9       ad 		return (EAGAIN);
   1205   1.9       ad 
   1206   1.9       ad 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1207   1.9       ad 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1208   1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1209   1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1210   1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1211   1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1212   1.9       ad 		return (EAGAIN);
   1213   1.9       ad 	}
   1214   1.1       ad 
   1215  1.10       ad 	amr->amr_mbox->mb_segment = 0;
   1216  1.10       ad 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1217  1.10       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1218  1.10       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1219  1.10       ad 
   1220  1.10       ad 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1221   1.1       ad 	ac->ac_flags |= AC_ACTIVE;
   1222   1.1       ad 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1223   1.1       ad 	return (0);
   1224   1.1       ad }
   1225   1.1       ad 
   1226   1.1       ad /*
   1227   1.1       ad  * Claim any work that the controller has completed; acknowledge completion,
   1228   1.1       ad  * save details of the completion in (mbsave).  Must be called with
   1229   1.1       ad  * interrupts blocked.
   1230   1.1       ad  */
   1231   1.1       ad int
   1232   1.9       ad amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1233   1.1       ad {
   1234   1.1       ad 
   1235   1.1       ad 	/* Work waiting for us? */
   1236   1.1       ad 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1237   1.1       ad 		return (-1);
   1238   1.1       ad 
   1239   1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1240   1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1241   1.9       ad 
   1242   1.1       ad 	/* Save the mailbox, which contains a list of completed commands. */
   1243   1.9       ad 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1244   1.9       ad 
   1245   1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1246   1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1247   1.1       ad 
   1248   1.1       ad 	/* Ack the interrupt and mailbox transfer. */
   1249   1.1       ad 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1250   1.9       ad 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1251   1.1       ad 
   1252   1.1       ad 	/*
   1253   1.1       ad 	 * This waits for the controller to notice that we've taken the
   1254   1.1       ad 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1255   1.1       ad 	 * but if we remove this code, we stop completing commands under
   1256   1.1       ad 	 * load.
   1257   1.1       ad 	 *
   1258   1.1       ad 	 * Peter J says we shouldn't do this.  The documentation says we
   1259   1.1       ad 	 * should.  Who is right?
   1260   1.1       ad 	 */
   1261   1.1       ad 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1262   1.1       ad 		;
   1263   1.1       ad 
   1264   1.1       ad 	return (0);
   1265   1.1       ad }
   1266   1.1       ad 
   1267   1.1       ad int
   1268   1.9       ad amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1269   1.1       ad {
   1270   1.1       ad 	u_int8_t istat;
   1271   1.1       ad 
   1272   1.1       ad 	/* Check for valid interrupt status. */
   1273   1.1       ad 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1274   1.1       ad 		return (-1);
   1275   1.1       ad 
   1276   1.1       ad 	/* Ack the interrupt. */
   1277   1.1       ad 	amr_outb(amr, AMR_SREG_INTR, istat);
   1278   1.1       ad 
   1279   1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1280   1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1281   1.9       ad 
   1282   1.1       ad 	/* Save mailbox, which contains a list of completed commands. */
   1283   1.9       ad 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1284   1.9       ad 
   1285   1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1286   1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1287   1.1       ad 
   1288   1.1       ad 	/* Ack mailbox transfer. */
   1289   1.1       ad 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1290   1.1       ad 
   1291   1.1       ad 	return (0);
   1292  1.10       ad }
   1293  1.10       ad 
   1294  1.10       ad void
   1295  1.10       ad amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1296  1.10       ad {
   1297  1.10       ad 	int i;
   1298  1.10       ad 
   1299  1.10       ad 	printf("%s: ", amr->amr_dv.dv_xname);
   1300  1.10       ad 	for (i = 0; i < 4; i++)
   1301  1.10       ad 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1302  1.10       ad 	printf("\n");
   1303   1.1       ad }
   1304