Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.11.2.3
      1  1.11.2.3    skrll /*	$NetBSD: amr.c,v 1.11.2.3 2004/09/18 14:49:02 skrll Exp $	*/
      2       1.1       ad 
      3       1.1       ad /*-
      4       1.9       ad  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5       1.1       ad  * All rights reserved.
      6       1.1       ad  *
      7       1.1       ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1       ad  * by Andrew Doran.
      9       1.1       ad  *
     10       1.1       ad  * Redistribution and use in source and binary forms, with or without
     11       1.1       ad  * modification, are permitted provided that the following conditions
     12       1.1       ad  * are met:
     13       1.1       ad  * 1. Redistributions of source code must retain the above copyright
     14       1.1       ad  *    notice, this list of conditions and the following disclaimer.
     15       1.1       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1       ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.1       ad  *    documentation and/or other materials provided with the distribution.
     18       1.1       ad  * 3. All advertising materials mentioning features or use of this software
     19       1.1       ad  *    must display the following acknowledgement:
     20       1.1       ad  *        This product includes software developed by the NetBSD
     21       1.1       ad  *        Foundation, Inc. and its contributors.
     22       1.1       ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1       ad  *    contributors may be used to endorse or promote products derived
     24       1.1       ad  *    from this software without specific prior written permission.
     25       1.1       ad  *
     26       1.1       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1       ad  * POSSIBILITY OF SUCH DAMAGE.
     37       1.1       ad  */
     38       1.1       ad 
     39       1.1       ad /*-
     40       1.1       ad  * Copyright (c) 1999,2000 Michael Smith
     41       1.1       ad  * Copyright (c) 2000 BSDi
     42       1.1       ad  * All rights reserved.
     43       1.1       ad  *
     44       1.1       ad  * Redistribution and use in source and binary forms, with or without
     45       1.1       ad  * modification, are permitted provided that the following conditions
     46       1.1       ad  * are met:
     47       1.1       ad  * 1. Redistributions of source code must retain the above copyright
     48       1.1       ad  *    notice, this list of conditions and the following disclaimer.
     49       1.1       ad  * 2. Redistributions in binary form must reproduce the above copyright
     50       1.1       ad  *    notice, this list of conditions and the following disclaimer in the
     51       1.1       ad  *    documentation and/or other materials provided with the distribution.
     52       1.1       ad  *
     53       1.1       ad  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54       1.1       ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55       1.1       ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56       1.1       ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57       1.1       ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58       1.1       ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59       1.1       ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60       1.1       ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61       1.1       ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62       1.1       ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63       1.1       ad  * SUCH DAMAGE.
     64       1.1       ad  *
     65       1.1       ad  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66       1.1       ad  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67       1.1       ad  */
     68       1.1       ad 
     69       1.1       ad /*
     70       1.1       ad  * Driver for AMI RAID controllers.
     71       1.1       ad  */
     72       1.1       ad 
     73       1.1       ad #include <sys/cdefs.h>
     74  1.11.2.3    skrll __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.11.2.3 2004/09/18 14:49:02 skrll Exp $");
     75       1.1       ad 
     76       1.1       ad #include <sys/param.h>
     77       1.1       ad #include <sys/systm.h>
     78       1.1       ad #include <sys/kernel.h>
     79       1.1       ad #include <sys/device.h>
     80       1.1       ad #include <sys/queue.h>
     81       1.1       ad #include <sys/proc.h>
     82       1.1       ad #include <sys/buf.h>
     83       1.1       ad #include <sys/malloc.h>
     84       1.9       ad #include <sys/kthread.h>
     85       1.1       ad 
     86       1.1       ad #include <uvm/uvm_extern.h>
     87       1.1       ad 
     88       1.1       ad #include <machine/endian.h>
     89       1.1       ad #include <machine/bus.h>
     90       1.1       ad 
     91       1.1       ad #include <dev/pci/pcidevs.h>
     92       1.1       ad #include <dev/pci/pcivar.h>
     93       1.1       ad #include <dev/pci/amrreg.h>
     94       1.1       ad #include <dev/pci/amrvar.h>
     95       1.1       ad 
     96  1.11.2.3    skrll #include "locators.h"
     97  1.11.2.3    skrll 
     98       1.1       ad void	amr_attach(struct device *, struct device *, void *);
     99      1.10       ad void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
    100       1.9       ad void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
    101       1.1       ad int	amr_init(struct amr_softc *, const char *,
    102       1.1       ad 			 struct pci_attach_args *pa);
    103       1.1       ad int	amr_intr(void *);
    104       1.1       ad int	amr_match(struct device *, struct cfdata *, void *);
    105       1.1       ad int	amr_print(void *, const char *);
    106       1.1       ad void	amr_shutdown(void *);
    107  1.11.2.3    skrll int	amr_submatch(struct device *, struct cfdata *,
    108  1.11.2.3    skrll 		     const locdesc_t *, void *);
    109       1.9       ad void	amr_teardown(struct amr_softc *);
    110       1.9       ad void	amr_thread(void *);
    111       1.9       ad void	amr_thread_create(void *);
    112       1.1       ad 
    113       1.1       ad int	amr_mbox_wait(struct amr_softc *);
    114       1.9       ad int	amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    115       1.1       ad int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    116       1.9       ad int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    117       1.1       ad int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    118       1.1       ad 
    119       1.1       ad static inline u_int8_t	amr_inb(struct amr_softc *, int);
    120       1.1       ad static inline u_int32_t	amr_inl(struct amr_softc *, int);
    121       1.1       ad static inline void	amr_outb(struct amr_softc *, int, u_int8_t);
    122       1.1       ad static inline void	amr_outl(struct amr_softc *, int, u_int32_t);
    123       1.1       ad 
    124       1.5  thorpej CFATTACH_DECL(amr, sizeof(struct amr_softc),
    125       1.6  thorpej     amr_match, amr_attach, NULL, NULL);
    126       1.1       ad 
    127       1.1       ad #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    128       1.1       ad #define	AT_SIG		0x02	/* Check for signature */
    129       1.1       ad 
    130       1.1       ad struct amr_pci_type {
    131       1.1       ad 	u_short	apt_vendor;
    132       1.1       ad 	u_short	apt_product;
    133       1.1       ad 	u_short	apt_flags;
    134       1.9       ad } const amr_pci_type[] = {
    135       1.1       ad 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    136       1.1       ad 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    137       1.1       ad 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    138  1.11.2.2    skrll 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    139  1.11.2.1    skrll 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    140  1.11.2.1    skrll 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    141  1.11.2.1    skrll 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    142       1.1       ad };
    143       1.1       ad 
    144       1.1       ad struct amr_typestr {
    145       1.1       ad 	const char	*at_str;
    146       1.1       ad 	int		at_sig;
    147       1.9       ad } const amr_typestr[] = {
    148       1.1       ad 	{ "Series 431",			AMR_SIG_431 },
    149       1.1       ad 	{ "Series 438",			AMR_SIG_438 },
    150       1.1       ad 	{ "Series 466",			AMR_SIG_466 },
    151       1.1       ad 	{ "Series 467",			AMR_SIG_467 },
    152       1.1       ad 	{ "Series 490",			AMR_SIG_490 },
    153       1.1       ad 	{ "Series 762",			AMR_SIG_762 },
    154       1.1       ad 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    155       1.1       ad 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    156       1.1       ad };
    157       1.1       ad 
    158       1.9       ad struct {
    159       1.9       ad 	const char	*ds_descr;
    160       1.9       ad 	int	ds_happy;
    161       1.9       ad } const amr_dstate[] = {
    162       1.9       ad 	{ "offline",	0 },
    163       1.9       ad 	{ "degraded",	1 },
    164       1.9       ad 	{ "optimal",	1 },
    165       1.9       ad 	{ "online",	1 },
    166       1.9       ad 	{ "failed",	0 },
    167       1.9       ad 	{ "rebuilding",	1 },
    168       1.9       ad 	{ "hotspare",	0 },
    169       1.9       ad };
    170       1.9       ad 
    171       1.9       ad void	*amr_sdh;
    172       1.9       ad int	amr_max_segs;
    173       1.9       ad int	amr_max_xfer;
    174       1.1       ad 
    175       1.1       ad static inline u_int8_t
    176       1.1       ad amr_inb(struct amr_softc *amr, int off)
    177       1.1       ad {
    178       1.1       ad 
    179       1.1       ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    180       1.1       ad 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    181       1.1       ad 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    182       1.1       ad }
    183       1.1       ad 
    184       1.1       ad static inline u_int32_t
    185       1.1       ad amr_inl(struct amr_softc *amr, int off)
    186       1.1       ad {
    187       1.1       ad 
    188       1.1       ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    189       1.1       ad 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    190       1.1       ad 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    191       1.1       ad }
    192       1.1       ad 
    193       1.1       ad static inline void
    194       1.1       ad amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    195       1.1       ad {
    196       1.1       ad 
    197       1.1       ad 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    198       1.1       ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    199       1.1       ad 	    BUS_SPACE_BARRIER_WRITE);
    200       1.1       ad }
    201       1.1       ad 
    202       1.1       ad static inline void
    203       1.1       ad amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    204       1.1       ad {
    205       1.1       ad 
    206       1.1       ad 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    207       1.1       ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    208       1.1       ad 	    BUS_SPACE_BARRIER_WRITE);
    209       1.1       ad }
    210       1.1       ad 
    211       1.1       ad /*
    212       1.1       ad  * Match a supported device.
    213       1.1       ad  */
    214       1.1       ad int
    215       1.1       ad amr_match(struct device *parent, struct cfdata *match, void *aux)
    216       1.1       ad {
    217       1.1       ad 	struct pci_attach_args *pa;
    218       1.1       ad 	pcireg_t s;
    219       1.1       ad 	int i;
    220       1.1       ad 
    221       1.1       ad 	pa = (struct pci_attach_args *)aux;
    222       1.1       ad 
    223       1.1       ad 	/*
    224       1.1       ad 	 * Don't match the device if it's operating in I2O mode.  In this
    225       1.1       ad 	 * case it should be handled by the `iop' driver.
    226       1.1       ad 	 */
    227       1.1       ad 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    228       1.1       ad 		return (0);
    229       1.1       ad 
    230       1.1       ad 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    231       1.1       ad 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    232       1.1       ad 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    233       1.1       ad 		    	break;
    234       1.1       ad 
    235       1.1       ad 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    236       1.1       ad 		return (0);
    237       1.1       ad 
    238       1.1       ad 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    239       1.1       ad 		return (1);
    240       1.1       ad 
    241       1.1       ad 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    242       1.1       ad 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    243       1.1       ad }
    244       1.1       ad 
    245       1.1       ad /*
    246       1.9       ad  * Attach a supported device.
    247       1.1       ad  */
    248       1.1       ad void
    249       1.1       ad amr_attach(struct device *parent, struct device *self, void *aux)
    250       1.1       ad {
    251       1.1       ad 	struct pci_attach_args *pa;
    252       1.1       ad 	struct amr_attach_args amra;
    253       1.1       ad 	const struct amr_pci_type *apt;
    254       1.1       ad 	struct amr_softc *amr;
    255       1.1       ad 	pci_chipset_tag_t pc;
    256       1.1       ad 	pci_intr_handle_t ih;
    257       1.1       ad 	const char *intrstr;
    258       1.1       ad 	pcireg_t reg;
    259       1.9       ad 	int rseg, i, j, size, rv, memreg, ioreg;
    260       1.1       ad         struct amr_ccb *ac;
    261  1.11.2.3    skrll 	int help[2];
    262  1.11.2.3    skrll 	locdesc_t *ldesc = (void *)help; /* XXX */
    263       1.1       ad 
    264       1.8  thorpej 	aprint_naive(": RAID controller\n");
    265       1.8  thorpej 
    266       1.1       ad 	amr = (struct amr_softc *)self;
    267       1.1       ad 	pa = (struct pci_attach_args *)aux;
    268       1.1       ad 	pc = pa->pa_pc;
    269       1.1       ad 
    270       1.1       ad 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    271       1.1       ad 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    272       1.1       ad 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    273       1.1       ad 			break;
    274       1.1       ad 	apt = amr_pci_type + i;
    275       1.1       ad 
    276       1.1       ad 	memreg = ioreg = 0;
    277       1.1       ad 	for (i = 0x10; i <= 0x14; i += 4) {
    278       1.1       ad 		reg = pci_conf_read(pc, pa->pa_tag, i);
    279       1.1       ad 		switch (PCI_MAPREG_TYPE(reg)) {
    280       1.1       ad 		case PCI_MAPREG_TYPE_MEM:
    281  1.11.2.1    skrll 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
    282       1.1       ad 				memreg = i;
    283       1.1       ad 			break;
    284       1.1       ad 		case PCI_MAPREG_TYPE_IO:
    285  1.11.2.1    skrll 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
    286       1.1       ad 				ioreg = i;
    287       1.1       ad 			break;
    288  1.11.2.1    skrll 
    289       1.1       ad 		}
    290       1.1       ad 	}
    291       1.1       ad 
    292  1.11.2.1    skrll 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    293  1.11.2.1    skrll 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    294  1.11.2.1    skrll 		;
    295  1.11.2.1    skrll 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    296  1.11.2.1    skrll 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    297  1.11.2.1    skrll 		;
    298  1.11.2.1    skrll 	else {
    299       1.8  thorpej 		aprint_error("can't map control registers\n");
    300       1.9       ad 		amr_teardown(amr);
    301       1.1       ad 		return;
    302       1.1       ad 	}
    303       1.1       ad 
    304       1.9       ad 	amr->amr_flags |= AMRF_PCI_REGS;
    305       1.1       ad 	amr->amr_dmat = pa->pa_dmat;
    306       1.9       ad 	amr->amr_pc = pa->pa_pc;
    307       1.1       ad 
    308       1.1       ad 	/* Enable the device. */
    309       1.1       ad 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    310       1.1       ad 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    311       1.1       ad 	    reg | PCI_COMMAND_MASTER_ENABLE);
    312       1.1       ad 
    313       1.1       ad 	/* Map and establish the interrupt. */
    314       1.1       ad 	if (pci_intr_map(pa, &ih)) {
    315       1.8  thorpej 		aprint_error("can't map interrupt\n");
    316       1.9       ad 		amr_teardown(amr);
    317       1.1       ad 		return;
    318       1.1       ad 	}
    319       1.1       ad 	intrstr = pci_intr_string(pc, ih);
    320       1.1       ad 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    321       1.1       ad 	if (amr->amr_ih == NULL) {
    322       1.8  thorpej 		aprint_error("can't establish interrupt");
    323       1.1       ad 		if (intrstr != NULL)
    324       1.8  thorpej 			aprint_normal(" at %s", intrstr);
    325       1.8  thorpej 		aprint_normal("\n");
    326       1.9       ad 		amr_teardown(amr);
    327       1.1       ad 		return;
    328       1.1       ad 	}
    329       1.9       ad 	amr->amr_flags |= AMRF_PCI_INTR;
    330       1.1       ad 
    331       1.1       ad 	/*
    332       1.1       ad 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    333       1.1       ad 	 * don't like S/G lists to be located below 0x2000, so we allocate
    334       1.1       ad 	 * enough slop to enable us to compensate.
    335       1.1       ad 	 *
    336       1.1       ad 	 * The standard mailbox structure needs to be aligned on a 16-byte
    337       1.1       ad 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    338       1.1       ad 	 * size, which preceeds the standard mailbox.
    339       1.1       ad 	 */
    340       1.1       ad 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    341       1.9       ad 	amr->amr_dmasize = size;
    342       1.1       ad 
    343  1.11.2.1    skrll 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
    344       1.9       ad 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    345       1.8  thorpej 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    346       1.1       ad 		    amr->amr_dv.dv_xname, rv);
    347       1.9       ad 		amr_teardown(amr);
    348       1.1       ad 		return;
    349       1.1       ad 	}
    350       1.9       ad 	amr->amr_flags |= AMRF_DMA_ALLOC;
    351       1.1       ad 
    352       1.9       ad 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    353       1.1       ad 	    (caddr_t *)&amr->amr_mbox,
    354       1.1       ad 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    355       1.8  thorpej 		aprint_error("%s: unable to map buffer, rv = %d\n",
    356       1.1       ad 		    amr->amr_dv.dv_xname, rv);
    357       1.9       ad 		amr_teardown(amr);
    358       1.1       ad 		return;
    359       1.1       ad 	}
    360       1.9       ad 	amr->amr_flags |= AMRF_DMA_MAP;
    361       1.1       ad 
    362       1.1       ad 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    363       1.1       ad 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    364       1.8  thorpej 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    365       1.1       ad 		    amr->amr_dv.dv_xname, rv);
    366       1.9       ad 		amr_teardown(amr);
    367       1.1       ad 		return;
    368       1.1       ad 	}
    369       1.9       ad 	amr->amr_flags |= AMRF_DMA_CREATE;
    370       1.1       ad 
    371       1.1       ad 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    372       1.1       ad 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    373       1.8  thorpej 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    374       1.1       ad 		    amr->amr_dv.dv_xname, rv);
    375       1.9       ad 		amr_teardown(amr);
    376       1.1       ad 		return;
    377       1.1       ad 	}
    378       1.9       ad 	amr->amr_flags |= AMRF_DMA_LOAD;
    379       1.1       ad 
    380       1.1       ad 	memset(amr->amr_mbox, 0, size);
    381       1.1       ad 
    382       1.9       ad 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    383       1.1       ad 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    384       1.1       ad 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
    385       1.1       ad 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    386       1.1       ad 
    387       1.1       ad 	/*
    388       1.1       ad 	 * Allocate and initalise the command control blocks.
    389       1.1       ad 	 */
    390       1.1       ad 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    391       1.1       ad 	amr->amr_ccbs = ac;
    392       1.1       ad 	SLIST_INIT(&amr->amr_ccb_freelist);
    393      1.10       ad 	TAILQ_INIT(&amr->amr_ccb_active);
    394       1.9       ad 	amr->amr_flags |= AMRF_CCBS;
    395       1.9       ad 
    396       1.9       ad 	if (amr_max_xfer == 0) {
    397       1.9       ad 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    398       1.9       ad 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    399       1.9       ad 	}
    400       1.1       ad 
    401       1.1       ad 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    402       1.9       ad 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    403       1.9       ad 		    amr_max_segs, amr_max_xfer, 0,
    404       1.9       ad 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    405       1.1       ad 		if (rv != 0)
    406       1.1       ad 			break;
    407       1.1       ad 
    408       1.1       ad 		ac->ac_ident = i;
    409       1.9       ad 		amr_ccb_free(amr, ac);
    410       1.9       ad 	}
    411       1.9       ad 	if (i != AMR_MAX_CMDS) {
    412       1.9       ad 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    413       1.9       ad 		amr_teardown(amr);
    414       1.9       ad 		return;
    415       1.1       ad 	}
    416       1.1       ad 
    417       1.1       ad 	/*
    418       1.1       ad 	 * Take care of model-specific tasks.
    419       1.1       ad 	 */
    420       1.1       ad 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    421       1.1       ad 		amr->amr_submit = amr_quartz_submit;
    422       1.1       ad 		amr->amr_get_work = amr_quartz_get_work;
    423       1.1       ad 	} else {
    424       1.1       ad 		amr->amr_submit = amr_std_submit;
    425       1.1       ad 		amr->amr_get_work = amr_std_get_work;
    426       1.1       ad 
    427       1.1       ad 		/* Notify the controller of the mailbox location. */
    428       1.9       ad 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    429       1.1       ad 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    430       1.1       ad 
    431       1.1       ad 		/* Clear outstanding interrupts and enable interrupts. */
    432       1.1       ad 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    433       1.1       ad 		amr_outb(amr, AMR_SREG_TOGL,
    434       1.1       ad 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    435       1.1       ad 	}
    436       1.1       ad 
    437       1.1       ad 	/*
    438       1.1       ad 	 * Retrieve parameters, and tell the world about us.
    439       1.1       ad 	 */
    440       1.9       ad 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    441       1.9       ad 	amr->amr_flags |= AMRF_ENQBUF;
    442       1.1       ad 	amr->amr_maxqueuecnt = i;
    443       1.8  thorpej 	aprint_normal(": AMI RAID ");
    444       1.9       ad 	if (amr_init(amr, intrstr, pa) != 0) {
    445       1.9       ad 		amr_teardown(amr);
    446       1.1       ad 		return;
    447       1.9       ad 	}
    448       1.1       ad 
    449       1.1       ad 	/*
    450       1.1       ad 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    451       1.1       ad 	 * driver doesn't trust the controller's reported value, and lockups
    452       1.1       ad 	 * have been seen when we do.
    453       1.1       ad 	 */
    454       1.1       ad 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    455       1.1       ad 	if (amr->amr_maxqueuecnt > i)
    456       1.1       ad 		amr->amr_maxqueuecnt = i;
    457       1.1       ad 
    458       1.1       ad 	/* Set our `shutdownhook' before we start any device activity. */
    459       1.1       ad 	if (amr_sdh == NULL)
    460       1.1       ad 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    461       1.1       ad 
    462       1.1       ad 	/* Attach sub-devices. */
    463       1.9       ad 	for (j = 0; j < amr->amr_numdrives; j++) {
    464       1.9       ad 		if (amr->amr_drive[j].al_size == 0)
    465       1.1       ad 			continue;
    466       1.9       ad 		amra.amra_unit = j;
    467  1.11.2.3    skrll 
    468  1.11.2.3    skrll 		ldesc->len = 1;
    469  1.11.2.3    skrll 		ldesc->locs[AMRCF_UNIT] = j;
    470  1.11.2.3    skrll 
    471  1.11.2.3    skrll 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
    472  1.11.2.3    skrll 			"amr", ldesc, &amra, amr_print, amr_submatch);
    473       1.1       ad 	}
    474       1.1       ad 
    475       1.1       ad 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    476  1.11.2.1    skrll 
    477  1.11.2.1    skrll 	/* XXX This doesn't work for newer boards yet. */
    478  1.11.2.1    skrll 	if ((apt->apt_flags & AT_QUARTZ) == 0)
    479  1.11.2.1    skrll 		kthread_create(amr_thread_create, amr);
    480       1.9       ad }
    481       1.9       ad 
    482       1.9       ad /*
    483       1.9       ad  * Free up resources.
    484       1.9       ad  */
    485       1.9       ad void
    486       1.9       ad amr_teardown(struct amr_softc *amr)
    487       1.9       ad {
    488       1.9       ad 	struct amr_ccb *ac;
    489       1.9       ad 	int fl;
    490       1.9       ad 
    491       1.9       ad 	fl = amr->amr_flags;
    492       1.9       ad 
    493       1.9       ad 	if ((fl & AMRF_THREAD) != 0) {
    494       1.9       ad 		amr->amr_flags |= AMRF_THREAD_EXIT;
    495       1.9       ad 		wakeup(amr_thread);
    496       1.9       ad 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    497       1.9       ad 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    498       1.9       ad 	}
    499       1.9       ad 	if ((fl & AMRF_CCBS) != 0) {
    500       1.9       ad 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    501       1.9       ad 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    502       1.9       ad 		}
    503       1.9       ad 		free(amr->amr_ccbs, M_DEVBUF);
    504       1.9       ad 	}
    505       1.9       ad 	if ((fl & AMRF_ENQBUF) != 0)
    506       1.9       ad 		free(amr->amr_enqbuf, M_DEVBUF);
    507       1.9       ad 	if ((fl & AMRF_DMA_LOAD) != 0)
    508       1.9       ad 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    509       1.9       ad 	if ((fl & AMRF_DMA_MAP) != 0)
    510       1.9       ad 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
    511       1.9       ad 		    amr->amr_dmasize);
    512       1.9       ad 	if ((fl & AMRF_DMA_ALLOC) != 0)
    513       1.9       ad 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    514       1.9       ad 	if ((fl & AMRF_DMA_CREATE) != 0)
    515       1.9       ad 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    516       1.9       ad 	if ((fl & AMRF_PCI_INTR) != 0)
    517       1.9       ad 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    518       1.9       ad 	if ((fl & AMRF_PCI_REGS) != 0)
    519      1.11     fvdl 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    520       1.1       ad }
    521       1.1       ad 
    522       1.1       ad /*
    523       1.1       ad  * Print autoconfiguration message for a sub-device.
    524       1.1       ad  */
    525       1.1       ad int
    526       1.1       ad amr_print(void *aux, const char *pnp)
    527       1.1       ad {
    528       1.1       ad 	struct amr_attach_args *amra;
    529       1.1       ad 
    530       1.1       ad 	amra = (struct amr_attach_args *)aux;
    531       1.1       ad 
    532       1.1       ad 	if (pnp != NULL)
    533       1.7  thorpej 		aprint_normal("block device at %s", pnp);
    534       1.7  thorpej 	aprint_normal(" unit %d", amra->amra_unit);
    535       1.1       ad 	return (UNCONF);
    536       1.1       ad }
    537       1.1       ad 
    538       1.1       ad /*
    539       1.1       ad  * Match a sub-device.
    540       1.1       ad  */
    541       1.1       ad int
    542  1.11.2.3    skrll amr_submatch(struct device *parent, struct cfdata *cf,
    543  1.11.2.3    skrll 	     const locdesc_t *ldesc, void *aux)
    544       1.1       ad {
    545       1.1       ad 	struct amr_attach_args *amra;
    546       1.1       ad 
    547       1.1       ad 	amra = (struct amr_attach_args *)aux;
    548       1.1       ad 
    549  1.11.2.3    skrll 	if (cf->cf_loc[AMRCF_UNIT] != AMRCF_UNIT_DEFAULT &&
    550  1.11.2.3    skrll 	    cf->cf_loc[AMRCF_UNIT] != ldesc->locs[AMRCF_UNIT])
    551       1.1       ad 		return (0);
    552       1.1       ad 
    553       1.3  thorpej 	return (config_match(parent, cf, aux));
    554       1.1       ad }
    555       1.1       ad 
    556       1.1       ad /*
    557       1.1       ad  * Retrieve operational parameters and describe the controller.
    558       1.1       ad  */
    559       1.1       ad int
    560       1.1       ad amr_init(struct amr_softc *amr, const char *intrstr,
    561       1.1       ad 	 struct pci_attach_args *pa)
    562       1.1       ad {
    563       1.9       ad 	struct amr_adapter_info *aa;
    564       1.1       ad 	struct amr_prodinfo *ap;
    565       1.1       ad 	struct amr_enquiry *ae;
    566       1.1       ad 	struct amr_enquiry3 *aex;
    567       1.1       ad 	const char *prodstr;
    568       1.9       ad 	u_int i, sig, ishp;
    569       1.1       ad 	char buf[64];
    570       1.1       ad 
    571       1.1       ad 	/*
    572       1.1       ad 	 * Try to get 40LD product info, which tells us what the card is
    573       1.1       ad 	 * labelled as.
    574       1.1       ad 	 */
    575       1.9       ad 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    576       1.9       ad 	    amr->amr_enqbuf);
    577       1.1       ad 	if (ap != NULL) {
    578       1.8  thorpej 		aprint_normal("<%.80s>\n", ap->ap_product);
    579       1.1       ad 		if (intrstr != NULL)
    580       1.8  thorpej 			aprint_normal("%s: interrupting at %s\n",
    581       1.1       ad 			    amr->amr_dv.dv_xname, intrstr);
    582       1.8  thorpej 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    583       1.1       ad 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    584       1.1       ad 		    le16toh(ap->ap_memsize));
    585       1.1       ad 
    586       1.1       ad 		amr->amr_maxqueuecnt = ap->ap_maxio;
    587       1.1       ad 
    588       1.1       ad 		/*
    589       1.1       ad 		 * Fetch and record state of logical drives.
    590       1.1       ad 		 */
    591       1.1       ad 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    592       1.9       ad 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    593       1.1       ad 		if (aex == NULL) {
    594       1.8  thorpej 			aprint_error("%s ENQUIRY3 failed\n",
    595       1.8  thorpej 			    amr->amr_dv.dv_xname);
    596       1.1       ad 			return (-1);
    597       1.1       ad 		}
    598       1.1       ad 
    599       1.1       ad 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    600       1.8  thorpej 			aprint_error(
    601       1.8  thorpej 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    602  1.11.2.1    skrll 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
    603  1.11.2.1    skrll 			    amr->amr_numdrives);
    604       1.1       ad 			amr->amr_numdrives = AMR_MAX_UNITS;
    605       1.1       ad 		} else
    606       1.1       ad 			amr->amr_numdrives = aex->ae_numldrives;
    607       1.1       ad 
    608       1.1       ad 		for (i = 0; i < amr->amr_numdrives; i++) {
    609       1.1       ad 			amr->amr_drive[i].al_size =
    610       1.1       ad 			    le32toh(aex->ae_drivesize[i]);
    611       1.1       ad 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    612       1.1       ad 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    613       1.1       ad 		}
    614       1.1       ad 
    615       1.1       ad 		return (0);
    616       1.1       ad 	}
    617       1.1       ad 
    618       1.1       ad 	/*
    619       1.1       ad 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    620       1.1       ad 	 * found, search for a product description.
    621       1.1       ad 	 */
    622       1.9       ad 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    623       1.9       ad 	if (ae != NULL) {
    624       1.1       ad 		i = 0;
    625       1.1       ad 		sig = le32toh(ae->ae_signature);
    626       1.1       ad 
    627       1.1       ad 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    628       1.1       ad 			if (amr_typestr[i].at_sig == sig)
    629       1.1       ad 				break;
    630       1.1       ad 			i++;
    631       1.1       ad 		}
    632       1.1       ad 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    633  1.11.2.1    skrll 			snprintf(buf, sizeof(buf),
    634  1.11.2.1    skrll 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
    635       1.1       ad 			prodstr = buf;
    636       1.1       ad 		} else
    637       1.1       ad 			prodstr = amr_typestr[i].at_str;
    638       1.1       ad 	} else {
    639       1.9       ad 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    640       1.9       ad 		if (ae == NULL) {
    641       1.8  thorpej 			aprint_error("%s: unsupported controller\n",
    642       1.1       ad 			    amr->amr_dv.dv_xname);
    643       1.1       ad 			return (-1);
    644       1.1       ad 		}
    645       1.1       ad 
    646       1.1       ad 		switch (PCI_PRODUCT(pa->pa_id)) {
    647       1.1       ad 		case PCI_PRODUCT_AMI_MEGARAID:
    648       1.1       ad 			prodstr = "Series 428";
    649       1.1       ad 			break;
    650       1.1       ad 		case PCI_PRODUCT_AMI_MEGARAID2:
    651       1.1       ad 			prodstr = "Series 434";
    652       1.1       ad 			break;
    653       1.1       ad 		default:
    654  1.11.2.1    skrll 			snprintf(buf, sizeof(buf), "unknown PCI dev (0x%04x)",
    655       1.1       ad 			    PCI_PRODUCT(pa->pa_id));
    656       1.1       ad 			prodstr = buf;
    657       1.1       ad 			break;
    658       1.1       ad 		}
    659       1.1       ad 	}
    660       1.1       ad 
    661       1.9       ad 	/*
    662       1.9       ad 	 * HP NetRaid controllers have a special encoding of the firmware
    663       1.9       ad 	 * and BIOS versions.  The AMI version seems to have it as strings
    664       1.9       ad 	 * whereas the HP version does it with a leading uppercase character
    665       1.9       ad 	 * and two binary numbers.
    666       1.9       ad 	*/
    667       1.9       ad 	aa = &ae->ae_adapter;
    668       1.9       ad 
    669       1.9       ad 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    670       1.9       ad 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    671       1.9       ad 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    672       1.9       ad 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    673       1.9       ad 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    674       1.9       ad 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    675       1.9       ad 			prodstr = "HP NetRaid 3si";
    676       1.9       ad 		}
    677       1.9       ad 		ishp = 1;
    678       1.9       ad 	} else
    679       1.9       ad 		ishp = 0;
    680       1.9       ad 
    681       1.8  thorpej 	aprint_normal("<%s>\n", prodstr);
    682       1.1       ad 	if (intrstr != NULL)
    683       1.8  thorpej 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    684       1.1       ad 		    intrstr);
    685       1.1       ad 
    686       1.9       ad 	if (ishp)
    687       1.9       ad 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    688       1.9       ad 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    689       1.9       ad 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    690       1.9       ad 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    691       1.9       ad 	else
    692       1.9       ad 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    693       1.9       ad 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    694       1.9       ad 		    aa->aa_memorysize);
    695       1.9       ad 
    696       1.9       ad 	amr->amr_maxqueuecnt = aa->aa_maxio;
    697       1.1       ad 
    698       1.1       ad 	/*
    699       1.1       ad 	 * Record state of logical drives.
    700       1.1       ad 	 */
    701       1.1       ad 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    702       1.8  thorpej 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    703       1.1       ad 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    704       1.1       ad 		    AMR_MAX_UNITS);
    705       1.1       ad 		amr->amr_numdrives = AMR_MAX_UNITS;
    706       1.1       ad 	} else
    707       1.1       ad 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    708       1.1       ad 
    709       1.1       ad 	for (i = 0; i < AMR_MAX_UNITS; i++) {
    710       1.1       ad 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    711       1.1       ad 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    712       1.1       ad 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    713       1.1       ad 	}
    714       1.1       ad 
    715       1.1       ad 	return (0);
    716       1.1       ad }
    717       1.1       ad 
    718       1.1       ad /*
    719       1.1       ad  * Flush the internal cache on each configured controller.  Called at
    720       1.1       ad  * shutdown time.
    721       1.1       ad  */
    722       1.1       ad void
    723       1.1       ad amr_shutdown(void *cookie)
    724       1.1       ad {
    725       1.1       ad         extern struct cfdriver amr_cd;
    726       1.1       ad 	struct amr_softc *amr;
    727       1.1       ad 	struct amr_ccb *ac;
    728       1.9       ad 	int i, rv, s;
    729       1.1       ad 
    730       1.1       ad 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    731       1.1       ad 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    732       1.1       ad 			continue;
    733       1.1       ad 
    734       1.1       ad 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    735       1.9       ad 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    736       1.9       ad 			s = splbio();
    737       1.1       ad 			rv = amr_ccb_poll(amr, ac, 30000);
    738       1.9       ad 			splx(s);
    739       1.1       ad 			amr_ccb_free(amr, ac);
    740       1.1       ad 		}
    741       1.1       ad 		if (rv != 0)
    742       1.1       ad 			printf("%s: unable to flush cache (%d)\n",
    743       1.1       ad 			    amr->amr_dv.dv_xname, rv);
    744       1.1       ad 	}
    745       1.1       ad }
    746       1.1       ad 
    747       1.1       ad /*
    748       1.1       ad  * Interrupt service routine.
    749       1.1       ad  */
    750       1.1       ad int
    751       1.1       ad amr_intr(void *cookie)
    752       1.1       ad {
    753       1.1       ad 	struct amr_softc *amr;
    754       1.1       ad 	struct amr_ccb *ac;
    755       1.9       ad 	struct amr_mailbox_resp mbox;
    756       1.1       ad 	u_int i, forus, idx;
    757       1.1       ad 
    758       1.1       ad 	amr = cookie;
    759       1.1       ad 	forus = 0;
    760       1.1       ad 
    761       1.1       ad 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    762       1.1       ad 		/* Iterate over completed commands in this result. */
    763       1.1       ad 		for (i = 0; i < mbox.mb_nstatus; i++) {
    764       1.1       ad 			idx = mbox.mb_completed[i] - 1;
    765       1.1       ad 			ac = amr->amr_ccbs + idx;
    766       1.1       ad 
    767       1.1       ad 			if (idx >= amr->amr_maxqueuecnt) {
    768       1.1       ad 				printf("%s: bad status (bogus ID: %u=%u)\n",
    769       1.1       ad 				    amr->amr_dv.dv_xname, i, idx);
    770       1.1       ad 				continue;
    771       1.1       ad 			}
    772       1.1       ad 
    773       1.1       ad 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    774       1.1       ad 				printf("%s: bad status (not active; 0x04%x)\n",
    775       1.1       ad 				    amr->amr_dv.dv_xname, ac->ac_flags);
    776       1.1       ad 				continue;
    777       1.1       ad 			}
    778       1.1       ad 
    779       1.1       ad 			ac->ac_status = mbox.mb_status;
    780       1.1       ad 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    781       1.1       ad 			    AC_COMPLETE;
    782      1.10       ad 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    783      1.10       ad 
    784      1.10       ad 			if ((ac->ac_flags & AC_MOAN) != 0)
    785      1.10       ad 				printf("%s: ccb %d completed\n",
    786      1.10       ad 				    amr->amr_dv.dv_xname, ac->ac_ident);
    787       1.1       ad 
    788       1.1       ad 			/* Pass notification to upper layers. */
    789       1.1       ad 			if (ac->ac_handler != NULL)
    790       1.1       ad 				(*ac->ac_handler)(ac);
    791       1.9       ad 			else
    792       1.9       ad 				wakeup(ac);
    793       1.1       ad 		}
    794       1.1       ad 		forus = 1;
    795       1.1       ad 	}
    796       1.1       ad 
    797       1.1       ad 	if (forus)
    798       1.1       ad 		amr_ccb_enqueue(amr, NULL);
    799       1.9       ad 
    800       1.1       ad 	return (forus);
    801       1.1       ad }
    802       1.1       ad 
    803       1.1       ad /*
    804       1.9       ad  * Create the watchdog thread.
    805       1.9       ad  */
    806       1.9       ad void
    807       1.9       ad amr_thread_create(void *cookie)
    808       1.9       ad {
    809       1.9       ad 	struct amr_softc *amr;
    810       1.9       ad 	int rv;
    811       1.9       ad 
    812       1.9       ad 	amr = cookie;
    813       1.9       ad 
    814       1.9       ad 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    815       1.9       ad 		amr->amr_flags ^= AMRF_THREAD_EXIT;
    816       1.9       ad 		wakeup(&amr->amr_flags);
    817       1.9       ad 		return;
    818       1.9       ad 	}
    819       1.9       ad 
    820       1.9       ad 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
    821       1.9       ad 	    amr->amr_dv.dv_xname);
    822       1.9       ad  	if (rv != 0)
    823       1.9       ad 		aprint_error("%s: unable to create thread (%d)",
    824       1.9       ad  		    amr->amr_dv.dv_xname, rv);
    825       1.9       ad  	else
    826       1.9       ad  		amr->amr_flags |= AMRF_THREAD;
    827       1.9       ad }
    828       1.9       ad 
    829       1.9       ad /*
    830       1.9       ad  * Watchdog thread.
    831       1.9       ad  */
    832       1.9       ad void
    833       1.9       ad amr_thread(void *cookie)
    834       1.9       ad {
    835       1.9       ad 	struct amr_softc *amr;
    836       1.9       ad 	struct amr_ccb *ac;
    837       1.9       ad 	struct amr_logdrive *al;
    838       1.9       ad 	struct amr_enquiry *ae;
    839      1.10       ad 	time_t curtime;
    840       1.9       ad 	int rv, i, s;
    841       1.9       ad 
    842       1.9       ad 	amr = cookie;
    843       1.9       ad 	ae = amr->amr_enqbuf;
    844       1.9       ad 
    845       1.9       ad 	for (;;) {
    846       1.9       ad 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    847       1.9       ad 
    848       1.9       ad 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    849       1.9       ad 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    850       1.9       ad 			wakeup(&amr->amr_flags);
    851       1.9       ad 			kthread_exit(0);
    852       1.9       ad 		}
    853       1.9       ad 
    854       1.9       ad 		s = splbio();
    855       1.9       ad 		amr_intr(cookie);
    856      1.10       ad 		curtime = (time_t)mono_time.tv_sec;
    857  1.11.2.1    skrll 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    858  1.11.2.1    skrll 		while (ac != NULL) {
    859      1.10       ad 			if (ac->ac_start_time + AMR_TIMEOUT > curtime)
    860      1.10       ad 				break;
    861      1.10       ad 			if ((ac->ac_flags & AC_MOAN) == 0) {
    862      1.10       ad 				printf("%s: ccb %d timed out; mailbox:\n",
    863      1.10       ad 				    amr->amr_dv.dv_xname, ac->ac_ident);
    864      1.10       ad 				amr_ccb_dump(amr, ac);
    865      1.10       ad 				ac->ac_flags |= AC_MOAN;
    866      1.10       ad 			}
    867  1.11.2.1    skrll 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    868      1.10       ad 		}
    869       1.9       ad 		splx(s);
    870       1.9       ad 
    871       1.9       ad 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    872       1.9       ad 			printf("%s: ccb_alloc failed (%d)\n",
    873       1.9       ad  			    amr->amr_dv.dv_xname, rv);
    874       1.9       ad 			continue;
    875       1.9       ad 		}
    876       1.9       ad 
    877       1.9       ad 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    878       1.9       ad 
    879       1.9       ad 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    880       1.9       ad 		    AMR_ENQUIRY_BUFSIZE, 0);
    881       1.9       ad 		if (rv != 0) {
    882       1.9       ad 			printf("%s: ccb_map failed (%d)\n",
    883       1.9       ad  			    amr->amr_dv.dv_xname, rv);
    884       1.9       ad 			amr_ccb_free(amr, ac);
    885       1.9       ad 			continue;
    886       1.9       ad 		}
    887       1.9       ad 
    888       1.9       ad 		rv = amr_ccb_wait(amr, ac);
    889       1.9       ad 		amr_ccb_unmap(amr, ac);
    890       1.9       ad 		if (rv != 0) {
    891       1.9       ad 			printf("%s: enquiry failed (st=%d)\n",
    892       1.9       ad  			    amr->amr_dv.dv_xname, ac->ac_status);
    893       1.9       ad 			continue;
    894       1.9       ad 		}
    895       1.9       ad 		amr_ccb_free(amr, ac);
    896       1.9       ad 
    897       1.9       ad 		al = amr->amr_drive;
    898       1.9       ad 		for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
    899       1.9       ad 			if (al->al_dv == NULL)
    900       1.9       ad 				continue;
    901       1.9       ad 			if (al->al_state == ae->ae_ldrv.al_state[i])
    902       1.9       ad 				continue;
    903       1.9       ad 
    904       1.9       ad 			printf("%s: state changed: %s -> %s\n",
    905       1.9       ad 			    al->al_dv->dv_xname,
    906       1.9       ad 			    amr_drive_state(al->al_state, NULL),
    907       1.9       ad 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    908       1.9       ad 
    909       1.9       ad 			al->al_state = ae->ae_ldrv.al_state[i];
    910       1.9       ad 		}
    911       1.9       ad 	}
    912       1.9       ad }
    913       1.9       ad 
    914       1.9       ad /*
    915       1.9       ad  * Return a text description of a logical drive's current state.
    916       1.9       ad  */
    917       1.9       ad const char *
    918       1.9       ad amr_drive_state(int state, int *happy)
    919       1.9       ad {
    920       1.9       ad 	const char *str;
    921       1.9       ad 
    922       1.9       ad 	state = AMR_DRV_CURSTATE(state);
    923       1.9       ad 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    924       1.9       ad 		if (happy)
    925       1.9       ad 			*happy = 1;
    926       1.9       ad 		str = "status unknown";
    927       1.9       ad 	} else {
    928       1.9       ad 		if (happy)
    929       1.9       ad 			*happy = amr_dstate[state].ds_happy;
    930       1.9       ad 		str = amr_dstate[state].ds_descr;
    931       1.9       ad 	}
    932       1.9       ad 
    933       1.9       ad 	return (str);
    934       1.9       ad }
    935       1.9       ad 
    936       1.9       ad /*
    937       1.1       ad  * Run a generic enquiry-style command.
    938       1.1       ad  */
    939       1.1       ad void *
    940       1.1       ad amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    941       1.9       ad 	    u_int8_t cmdqual, void *buf)
    942       1.1       ad {
    943       1.1       ad 	struct amr_ccb *ac;
    944       1.1       ad 	u_int8_t *mb;
    945       1.1       ad 	int rv;
    946       1.1       ad 
    947       1.1       ad 	if (amr_ccb_alloc(amr, &ac) != 0)
    948       1.1       ad 		return (NULL);
    949       1.1       ad 
    950       1.1       ad 	/* Build the command proper. */
    951       1.9       ad 	mb = (u_int8_t *)&ac->ac_cmd;
    952       1.1       ad 	mb[0] = cmd;
    953       1.1       ad 	mb[2] = cmdsub;
    954       1.1       ad 	mb[3] = cmdqual;
    955       1.1       ad 
    956       1.9       ad 	rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
    957       1.9       ad 	if (rv == 0) {
    958       1.1       ad 		rv = amr_ccb_poll(amr, ac, 2000);
    959       1.1       ad 		amr_ccb_unmap(amr, ac);
    960       1.1       ad 	}
    961       1.1       ad 	amr_ccb_free(amr, ac);
    962       1.1       ad 
    963       1.9       ad 	return (rv ? NULL : buf);
    964       1.1       ad }
    965       1.1       ad 
    966       1.1       ad /*
    967       1.1       ad  * Allocate and initialise a CCB.
    968       1.1       ad  */
    969       1.1       ad int
    970       1.1       ad amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    971       1.1       ad {
    972       1.1       ad 	int s;
    973       1.1       ad 
    974       1.1       ad 	s = splbio();
    975       1.9       ad 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    976       1.1       ad 		splx(s);
    977       1.1       ad 		return (EAGAIN);
    978       1.1       ad 	}
    979       1.1       ad 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    980       1.1       ad 	splx(s);
    981       1.1       ad 
    982       1.1       ad 	return (0);
    983       1.1       ad }
    984       1.1       ad 
    985       1.1       ad /*
    986       1.1       ad  * Free a CCB.
    987       1.1       ad  */
    988       1.1       ad void
    989       1.1       ad amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    990       1.1       ad {
    991       1.1       ad 	int s;
    992       1.1       ad 
    993       1.9       ad 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    994       1.9       ad 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    995       1.9       ad 	ac->ac_cmd.mb_busy = 1;
    996       1.9       ad 	ac->ac_handler = NULL;
    997       1.1       ad 	ac->ac_flags = 0;
    998       1.1       ad 
    999       1.1       ad 	s = splbio();
   1000       1.1       ad 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
   1001       1.1       ad 	splx(s);
   1002       1.1       ad }
   1003       1.1       ad 
   1004       1.1       ad /*
   1005       1.1       ad  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1006       1.1       ad  * the order that they were enqueued and try to submit their command blocks
   1007       1.1       ad  * to the controller for execution.
   1008       1.1       ad  */
   1009       1.1       ad void
   1010       1.1       ad amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1011       1.1       ad {
   1012       1.1       ad 	int s;
   1013       1.1       ad 
   1014       1.1       ad 	s = splbio();
   1015       1.1       ad 
   1016       1.1       ad 	if (ac != NULL)
   1017       1.1       ad 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1018       1.1       ad 
   1019       1.1       ad 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1020       1.1       ad 		if ((*amr->amr_submit)(amr, ac) != 0)
   1021       1.1       ad 			break;
   1022       1.2    lukem 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1023      1.10       ad 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1024       1.1       ad 	}
   1025       1.1       ad 
   1026       1.1       ad 	splx(s);
   1027       1.1       ad }
   1028       1.1       ad 
   1029       1.1       ad /*
   1030       1.1       ad  * Map the specified CCB's data buffer onto the bus, and fill the
   1031       1.1       ad  * scatter-gather list.
   1032       1.1       ad  */
   1033       1.1       ad int
   1034       1.1       ad amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1035       1.1       ad 	    int out)
   1036       1.1       ad {
   1037       1.1       ad 	struct amr_sgentry *sge;
   1038       1.9       ad 	struct amr_mailbox_cmd *mb;
   1039       1.1       ad 	int nsegs, i, rv, sgloff;
   1040       1.1       ad 	bus_dmamap_t xfer;
   1041       1.1       ad 
   1042       1.1       ad 	xfer = ac->ac_xfer_map;
   1043       1.1       ad 
   1044       1.1       ad 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1045       1.1       ad 	    BUS_DMA_NOWAIT);
   1046       1.1       ad 	if (rv != 0)
   1047       1.1       ad 		return (rv);
   1048       1.1       ad 
   1049       1.9       ad 	mb = &ac->ac_cmd;
   1050       1.1       ad 	ac->ac_xfer_size = size;
   1051       1.1       ad 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
   1052       1.1       ad 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1053       1.1       ad 
   1054       1.1       ad 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1055       1.1       ad 	nsegs = xfer->dm_nsegs;
   1056       1.1       ad 	if (nsegs == 1) {
   1057       1.1       ad 		mb->mb_nsgelem = 0;
   1058       1.1       ad 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1059       1.1       ad 		ac->ac_flags |= AC_NOSGL;
   1060       1.1       ad 	} else {
   1061       1.1       ad 		mb->mb_nsgelem = nsegs;
   1062       1.1       ad 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1063       1.1       ad 
   1064       1.1       ad 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
   1065       1.1       ad 		for (i = 0; i < nsegs; i++, sge++) {
   1066       1.1       ad 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1067       1.1       ad 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1068       1.1       ad 		}
   1069       1.1       ad 	}
   1070       1.1       ad 
   1071       1.1       ad 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
   1072       1.1       ad 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
   1073       1.1       ad 
   1074       1.1       ad 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1075       1.1       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1076       1.1       ad 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1077       1.1       ad 
   1078       1.1       ad 	return (0);
   1079       1.1       ad }
   1080       1.1       ad 
   1081       1.1       ad /*
   1082       1.1       ad  * Unmap the specified CCB's data buffer.
   1083       1.1       ad  */
   1084       1.1       ad void
   1085       1.1       ad amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1086       1.1       ad {
   1087       1.1       ad 
   1088       1.1       ad 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1089       1.1       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1090       1.1       ad 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1091       1.1       ad 		    BUS_DMASYNC_POSTWRITE);
   1092       1.1       ad 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1093       1.1       ad 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
   1094       1.1       ad 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1095       1.1       ad 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1096       1.1       ad }
   1097       1.1       ad 
   1098       1.1       ad /*
   1099       1.1       ad  * Submit a command to the controller and poll on completion.  Return
   1100       1.1       ad  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1101       1.1       ad  */
   1102       1.1       ad int
   1103       1.1       ad amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1104       1.1       ad {
   1105       1.1       ad 	int rv;
   1106       1.1       ad 
   1107       1.1       ad 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1108       1.1       ad 		return (rv);
   1109      1.10       ad 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1110       1.1       ad 
   1111       1.1       ad 	for (timo *= 10; timo != 0; timo--) {
   1112       1.1       ad 		amr_intr(amr);
   1113       1.1       ad 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1114       1.1       ad 			break;
   1115       1.1       ad 		DELAY(100);
   1116       1.1       ad 	}
   1117       1.1       ad 
   1118       1.1       ad 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1119       1.1       ad }
   1120       1.1       ad 
   1121       1.1       ad /*
   1122       1.9       ad  * Submit a command to the controller and sleep on completion.  Return
   1123       1.9       ad  * non-zero on error.
   1124       1.9       ad  */
   1125       1.9       ad int
   1126       1.9       ad amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1127       1.9       ad {
   1128       1.9       ad 	int s;
   1129       1.9       ad 
   1130       1.9       ad 	s = splbio();
   1131       1.9       ad 	amr_ccb_enqueue(amr, ac);
   1132       1.9       ad 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1133       1.9       ad 	splx(s);
   1134       1.9       ad 
   1135       1.9       ad 	return (ac->ac_status != 0 ? EIO : 0);
   1136       1.9       ad }
   1137       1.9       ad 
   1138       1.9       ad /*
   1139       1.1       ad  * Wait for the mailbox to become available.
   1140       1.1       ad  */
   1141       1.1       ad int
   1142       1.1       ad amr_mbox_wait(struct amr_softc *amr)
   1143       1.1       ad {
   1144       1.1       ad 	int timo;
   1145       1.1       ad 
   1146       1.1       ad 	for (timo = 10000; timo != 0; timo--) {
   1147       1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1148       1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1149       1.9       ad 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1150       1.1       ad 			break;
   1151       1.1       ad 		DELAY(100);
   1152       1.1       ad 	}
   1153       1.1       ad 
   1154       1.9       ad 	if (timo == 0)
   1155       1.1       ad 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1156       1.1       ad 
   1157       1.9       ad 	return (timo != 0 ? 0 : EAGAIN);
   1158       1.1       ad }
   1159       1.1       ad 
   1160       1.1       ad /*
   1161       1.1       ad  * Tell the controller that the mailbox contains a valid command.  Must be
   1162       1.1       ad  * called with interrupts blocked.
   1163       1.1       ad  */
   1164       1.1       ad int
   1165       1.1       ad amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1166       1.1       ad {
   1167       1.1       ad 	u_int32_t v;
   1168       1.1       ad 
   1169       1.9       ad 	amr->amr_mbox->mb_poll = 0;
   1170       1.9       ad 	amr->amr_mbox->mb_ack = 0;
   1171       1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1172       1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1173       1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1174       1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1175       1.9       ad 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1176       1.9       ad 		return (EAGAIN);
   1177       1.9       ad 
   1178       1.1       ad 	v = amr_inl(amr, AMR_QREG_IDB);
   1179  1.11.2.1    skrll 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1180       1.9       ad 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1181       1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1182       1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1183       1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1184       1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1185       1.9       ad 		return (EAGAIN);
   1186       1.9       ad 	}
   1187       1.1       ad 
   1188      1.10       ad 	amr->amr_mbox->mb_segment = 0;
   1189      1.10       ad 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1190      1.10       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1191      1.10       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1192      1.10       ad 
   1193      1.10       ad 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1194       1.1       ad 	ac->ac_flags |= AC_ACTIVE;
   1195  1.11.2.1    skrll 	amr_outl(amr, AMR_QREG_IDB,
   1196  1.11.2.1    skrll 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1197       1.1       ad 	return (0);
   1198       1.1       ad }
   1199       1.1       ad 
   1200       1.1       ad int
   1201       1.1       ad amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1202       1.1       ad {
   1203       1.1       ad 
   1204       1.9       ad 	amr->amr_mbox->mb_poll = 0;
   1205       1.9       ad 	amr->amr_mbox->mb_ack = 0;
   1206       1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1207       1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1208       1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1209       1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1210       1.9       ad 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1211       1.9       ad 		return (EAGAIN);
   1212       1.9       ad 
   1213       1.9       ad 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1214       1.9       ad 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1215       1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1216       1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1217       1.9       ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1218       1.9       ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1219       1.9       ad 		return (EAGAIN);
   1220       1.9       ad 	}
   1221       1.1       ad 
   1222      1.10       ad 	amr->amr_mbox->mb_segment = 0;
   1223      1.10       ad 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1224      1.10       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1225      1.10       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1226      1.10       ad 
   1227      1.10       ad 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1228       1.1       ad 	ac->ac_flags |= AC_ACTIVE;
   1229       1.1       ad 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1230       1.1       ad 	return (0);
   1231       1.1       ad }
   1232       1.1       ad 
   1233       1.1       ad /*
   1234       1.1       ad  * Claim any work that the controller has completed; acknowledge completion,
   1235       1.1       ad  * save details of the completion in (mbsave).  Must be called with
   1236       1.1       ad  * interrupts blocked.
   1237       1.1       ad  */
   1238       1.1       ad int
   1239       1.9       ad amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1240       1.1       ad {
   1241       1.1       ad 
   1242       1.1       ad 	/* Work waiting for us? */
   1243       1.1       ad 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1244       1.1       ad 		return (-1);
   1245       1.1       ad 
   1246       1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1247       1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1248       1.9       ad 
   1249       1.1       ad 	/* Save the mailbox, which contains a list of completed commands. */
   1250       1.9       ad 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1251       1.9       ad 
   1252       1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1253       1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1254       1.1       ad 
   1255       1.1       ad 	/* Ack the interrupt and mailbox transfer. */
   1256       1.1       ad 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1257       1.9       ad 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1258       1.1       ad 
   1259       1.1       ad 	/*
   1260       1.1       ad 	 * This waits for the controller to notice that we've taken the
   1261       1.1       ad 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1262       1.1       ad 	 * but if we remove this code, we stop completing commands under
   1263       1.1       ad 	 * load.
   1264       1.1       ad 	 *
   1265       1.1       ad 	 * Peter J says we shouldn't do this.  The documentation says we
   1266       1.1       ad 	 * should.  Who is right?
   1267       1.1       ad 	 */
   1268       1.1       ad 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1269  1.11.2.1    skrll 		DELAY(10);
   1270       1.1       ad 
   1271       1.1       ad 	return (0);
   1272       1.1       ad }
   1273       1.1       ad 
   1274       1.1       ad int
   1275       1.9       ad amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1276       1.1       ad {
   1277       1.1       ad 	u_int8_t istat;
   1278       1.1       ad 
   1279       1.1       ad 	/* Check for valid interrupt status. */
   1280       1.1       ad 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1281       1.1       ad 		return (-1);
   1282       1.1       ad 
   1283       1.1       ad 	/* Ack the interrupt. */
   1284       1.1       ad 	amr_outb(amr, AMR_SREG_INTR, istat);
   1285       1.1       ad 
   1286       1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1287       1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1288       1.9       ad 
   1289       1.1       ad 	/* Save mailbox, which contains a list of completed commands. */
   1290       1.9       ad 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1291       1.9       ad 
   1292       1.9       ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1293       1.9       ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1294       1.1       ad 
   1295       1.1       ad 	/* Ack mailbox transfer. */
   1296       1.1       ad 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1297       1.1       ad 
   1298       1.1       ad 	return (0);
   1299      1.10       ad }
   1300      1.10       ad 
   1301      1.10       ad void
   1302      1.10       ad amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1303      1.10       ad {
   1304      1.10       ad 	int i;
   1305      1.10       ad 
   1306      1.10       ad 	printf("%s: ", amr->amr_dv.dv_xname);
   1307      1.10       ad 	for (i = 0; i < 4; i++)
   1308      1.10       ad 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1309      1.10       ad 	printf("\n");
   1310       1.1       ad }
   1311