amr.c revision 1.16 1 1.16 christos /* $NetBSD: amr.c,v 1.16 2003/10/25 18:31:11 christos Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.9 ad * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 ad * by Andrew Doran.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1 ad * must display the following acknowledgement:
20 1.1 ad * This product includes software developed by the NetBSD
21 1.1 ad * Foundation, Inc. and its contributors.
22 1.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 ad * contributors may be used to endorse or promote products derived
24 1.1 ad * from this software without specific prior written permission.
25 1.1 ad *
26 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1 ad */
38 1.1 ad
39 1.1 ad /*-
40 1.1 ad * Copyright (c) 1999,2000 Michael Smith
41 1.1 ad * Copyright (c) 2000 BSDi
42 1.1 ad * All rights reserved.
43 1.1 ad *
44 1.1 ad * Redistribution and use in source and binary forms, with or without
45 1.1 ad * modification, are permitted provided that the following conditions
46 1.1 ad * are met:
47 1.1 ad * 1. Redistributions of source code must retain the above copyright
48 1.1 ad * notice, this list of conditions and the following disclaimer.
49 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 ad * notice, this list of conditions and the following disclaimer in the
51 1.1 ad * documentation and/or other materials provided with the distribution.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 1.1 ad * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 1.1 ad */
68 1.1 ad
69 1.1 ad /*
70 1.1 ad * Driver for AMI RAID controllers.
71 1.1 ad */
72 1.1 ad
73 1.1 ad #include <sys/cdefs.h>
74 1.16 christos __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.16 2003/10/25 18:31:11 christos Exp $");
75 1.1 ad
76 1.1 ad #include <sys/param.h>
77 1.1 ad #include <sys/systm.h>
78 1.1 ad #include <sys/kernel.h>
79 1.1 ad #include <sys/device.h>
80 1.1 ad #include <sys/queue.h>
81 1.1 ad #include <sys/proc.h>
82 1.1 ad #include <sys/buf.h>
83 1.1 ad #include <sys/malloc.h>
84 1.9 ad #include <sys/kthread.h>
85 1.1 ad
86 1.1 ad #include <uvm/uvm_extern.h>
87 1.1 ad
88 1.1 ad #include <machine/endian.h>
89 1.1 ad #include <machine/bus.h>
90 1.1 ad
91 1.1 ad #include <dev/pci/pcidevs.h>
92 1.1 ad #include <dev/pci/pcivar.h>
93 1.1 ad #include <dev/pci/amrreg.h>
94 1.1 ad #include <dev/pci/amrvar.h>
95 1.1 ad
96 1.1 ad void amr_attach(struct device *, struct device *, void *);
97 1.10 ad void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
98 1.9 ad void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
99 1.1 ad int amr_init(struct amr_softc *, const char *,
100 1.1 ad struct pci_attach_args *pa);
101 1.1 ad int amr_intr(void *);
102 1.1 ad int amr_match(struct device *, struct cfdata *, void *);
103 1.1 ad int amr_print(void *, const char *);
104 1.1 ad void amr_shutdown(void *);
105 1.1 ad int amr_submatch(struct device *, struct cfdata *, void *);
106 1.9 ad void amr_teardown(struct amr_softc *);
107 1.9 ad void amr_thread(void *);
108 1.9 ad void amr_thread_create(void *);
109 1.1 ad
110 1.1 ad int amr_mbox_wait(struct amr_softc *);
111 1.9 ad int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
112 1.1 ad int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
113 1.9 ad int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
114 1.1 ad int amr_std_submit(struct amr_softc *, struct amr_ccb *);
115 1.1 ad
116 1.1 ad static inline u_int8_t amr_inb(struct amr_softc *, int);
117 1.1 ad static inline u_int32_t amr_inl(struct amr_softc *, int);
118 1.1 ad static inline void amr_outb(struct amr_softc *, int, u_int8_t);
119 1.1 ad static inline void amr_outl(struct amr_softc *, int, u_int32_t);
120 1.1 ad
121 1.5 thorpej CFATTACH_DECL(amr, sizeof(struct amr_softc),
122 1.6 thorpej amr_match, amr_attach, NULL, NULL);
123 1.1 ad
124 1.1 ad #define AT_QUARTZ 0x01 /* `Quartz' chipset */
125 1.1 ad #define AT_SIG 0x02 /* Check for signature */
126 1.1 ad
127 1.1 ad struct amr_pci_type {
128 1.1 ad u_short apt_vendor;
129 1.1 ad u_short apt_product;
130 1.1 ad u_short apt_flags;
131 1.9 ad } const amr_pci_type[] = {
132 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
133 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
134 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
135 1.12 matt { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
136 1.12 matt { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
137 1.14 martti { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
138 1.1 ad };
139 1.1 ad
140 1.1 ad struct amr_typestr {
141 1.1 ad const char *at_str;
142 1.1 ad int at_sig;
143 1.9 ad } const amr_typestr[] = {
144 1.1 ad { "Series 431", AMR_SIG_431 },
145 1.1 ad { "Series 438", AMR_SIG_438 },
146 1.1 ad { "Series 466", AMR_SIG_466 },
147 1.1 ad { "Series 467", AMR_SIG_467 },
148 1.1 ad { "Series 490", AMR_SIG_490 },
149 1.1 ad { "Series 762", AMR_SIG_762 },
150 1.1 ad { "HP NetRAID (T5)", AMR_SIG_T5 },
151 1.1 ad { "HP NetRAID (T7)", AMR_SIG_T7 },
152 1.1 ad };
153 1.1 ad
154 1.9 ad struct {
155 1.9 ad const char *ds_descr;
156 1.9 ad int ds_happy;
157 1.9 ad } const amr_dstate[] = {
158 1.9 ad { "offline", 0 },
159 1.9 ad { "degraded", 1 },
160 1.9 ad { "optimal", 1 },
161 1.9 ad { "online", 1 },
162 1.9 ad { "failed", 0 },
163 1.9 ad { "rebuilding", 1 },
164 1.9 ad { "hotspare", 0 },
165 1.9 ad };
166 1.9 ad
167 1.9 ad void *amr_sdh;
168 1.9 ad int amr_max_segs;
169 1.9 ad int amr_max_xfer;
170 1.1 ad
171 1.1 ad static inline u_int8_t
172 1.1 ad amr_inb(struct amr_softc *amr, int off)
173 1.1 ad {
174 1.1 ad
175 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
176 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
177 1.1 ad return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
178 1.1 ad }
179 1.1 ad
180 1.1 ad static inline u_int32_t
181 1.1 ad amr_inl(struct amr_softc *amr, int off)
182 1.1 ad {
183 1.1 ad
184 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
185 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
186 1.1 ad return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
187 1.1 ad }
188 1.1 ad
189 1.1 ad static inline void
190 1.1 ad amr_outb(struct amr_softc *amr, int off, u_int8_t val)
191 1.1 ad {
192 1.1 ad
193 1.1 ad bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
194 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
195 1.1 ad BUS_SPACE_BARRIER_WRITE);
196 1.1 ad }
197 1.1 ad
198 1.1 ad static inline void
199 1.1 ad amr_outl(struct amr_softc *amr, int off, u_int32_t val)
200 1.1 ad {
201 1.1 ad
202 1.1 ad bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
203 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
204 1.1 ad BUS_SPACE_BARRIER_WRITE);
205 1.1 ad }
206 1.1 ad
207 1.1 ad /*
208 1.1 ad * Match a supported device.
209 1.1 ad */
210 1.1 ad int
211 1.1 ad amr_match(struct device *parent, struct cfdata *match, void *aux)
212 1.1 ad {
213 1.1 ad struct pci_attach_args *pa;
214 1.1 ad pcireg_t s;
215 1.1 ad int i;
216 1.1 ad
217 1.1 ad pa = (struct pci_attach_args *)aux;
218 1.1 ad
219 1.1 ad /*
220 1.1 ad * Don't match the device if it's operating in I2O mode. In this
221 1.1 ad * case it should be handled by the `iop' driver.
222 1.1 ad */
223 1.1 ad if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
224 1.1 ad return (0);
225 1.1 ad
226 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
227 1.1 ad if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
228 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
229 1.1 ad break;
230 1.1 ad
231 1.1 ad if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
232 1.1 ad return (0);
233 1.1 ad
234 1.1 ad if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
235 1.1 ad return (1);
236 1.1 ad
237 1.1 ad s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
238 1.1 ad return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
239 1.1 ad }
240 1.1 ad
241 1.1 ad /*
242 1.9 ad * Attach a supported device.
243 1.1 ad */
244 1.1 ad void
245 1.1 ad amr_attach(struct device *parent, struct device *self, void *aux)
246 1.1 ad {
247 1.1 ad bus_space_tag_t memt, iot;
248 1.1 ad bus_space_handle_t memh, ioh;
249 1.1 ad struct pci_attach_args *pa;
250 1.1 ad struct amr_attach_args amra;
251 1.1 ad const struct amr_pci_type *apt;
252 1.1 ad struct amr_softc *amr;
253 1.1 ad pci_chipset_tag_t pc;
254 1.1 ad pci_intr_handle_t ih;
255 1.1 ad const char *intrstr;
256 1.1 ad pcireg_t reg;
257 1.9 ad int rseg, i, j, size, rv, memreg, ioreg;
258 1.16 christos bus_size_t memsize = 0, iosize = 0;
259 1.1 ad struct amr_ccb *ac;
260 1.1 ad
261 1.8 thorpej aprint_naive(": RAID controller\n");
262 1.8 thorpej
263 1.1 ad amr = (struct amr_softc *)self;
264 1.1 ad pa = (struct pci_attach_args *)aux;
265 1.1 ad pc = pa->pa_pc;
266 1.1 ad
267 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
268 1.1 ad if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
269 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
270 1.1 ad break;
271 1.1 ad apt = amr_pci_type + i;
272 1.1 ad
273 1.1 ad memreg = ioreg = 0;
274 1.1 ad for (i = 0x10; i <= 0x14; i += 4) {
275 1.1 ad reg = pci_conf_read(pc, pa->pa_tag, i);
276 1.1 ad switch (PCI_MAPREG_TYPE(reg)) {
277 1.1 ad case PCI_MAPREG_TYPE_MEM:
278 1.9 ad if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0)
279 1.1 ad memreg = i;
280 1.1 ad break;
281 1.1 ad case PCI_MAPREG_TYPE_IO:
282 1.9 ad if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0)
283 1.1 ad ioreg = i;
284 1.1 ad break;
285 1.16 christos
286 1.1 ad }
287 1.1 ad }
288 1.1 ad
289 1.1 ad if (memreg != 0)
290 1.1 ad if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
291 1.1 ad &memt, &memh, NULL, NULL))
292 1.1 ad memreg = 0;
293 1.1 ad if (ioreg != 0)
294 1.1 ad if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
295 1.1 ad &iot, &ioh, NULL, NULL))
296 1.1 ad ioreg = 0;
297 1.1 ad
298 1.1 ad if (memreg) {
299 1.1 ad amr->amr_iot = memt;
300 1.1 ad amr->amr_ioh = memh;
301 1.9 ad amr->amr_ios = memsize;
302 1.1 ad } else if (ioreg) {
303 1.1 ad amr->amr_iot = iot;
304 1.1 ad amr->amr_ioh = ioh;
305 1.9 ad amr->amr_ios = iosize;
306 1.1 ad } else {
307 1.8 thorpej aprint_error("can't map control registers\n");
308 1.9 ad amr_teardown(amr);
309 1.1 ad return;
310 1.1 ad }
311 1.1 ad
312 1.9 ad amr->amr_flags |= AMRF_PCI_REGS;
313 1.1 ad amr->amr_dmat = pa->pa_dmat;
314 1.9 ad amr->amr_pc = pa->pa_pc;
315 1.1 ad
316 1.1 ad /* Enable the device. */
317 1.1 ad reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
318 1.1 ad pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
319 1.1 ad reg | PCI_COMMAND_MASTER_ENABLE);
320 1.1 ad
321 1.1 ad /* Map and establish the interrupt. */
322 1.1 ad if (pci_intr_map(pa, &ih)) {
323 1.8 thorpej aprint_error("can't map interrupt\n");
324 1.9 ad amr_teardown(amr);
325 1.1 ad return;
326 1.1 ad }
327 1.1 ad intrstr = pci_intr_string(pc, ih);
328 1.1 ad amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
329 1.1 ad if (amr->amr_ih == NULL) {
330 1.8 thorpej aprint_error("can't establish interrupt");
331 1.1 ad if (intrstr != NULL)
332 1.8 thorpej aprint_normal(" at %s", intrstr);
333 1.8 thorpej aprint_normal("\n");
334 1.9 ad amr_teardown(amr);
335 1.1 ad return;
336 1.1 ad }
337 1.9 ad amr->amr_flags |= AMRF_PCI_INTR;
338 1.1 ad
339 1.1 ad /*
340 1.1 ad * Allocate space for the mailbox and S/G lists. Some controllers
341 1.1 ad * don't like S/G lists to be located below 0x2000, so we allocate
342 1.1 ad * enough slop to enable us to compensate.
343 1.1 ad *
344 1.1 ad * The standard mailbox structure needs to be aligned on a 16-byte
345 1.1 ad * boundary. The 64-bit mailbox has one extra field, 4 bytes in
346 1.1 ad * size, which preceeds the standard mailbox.
347 1.1 ad */
348 1.1 ad size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
349 1.9 ad amr->amr_dmasize = size;
350 1.1 ad
351 1.15 fvdl if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
352 1.9 ad &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
353 1.8 thorpej aprint_error("%s: unable to allocate buffer, rv = %d\n",
354 1.1 ad amr->amr_dv.dv_xname, rv);
355 1.9 ad amr_teardown(amr);
356 1.1 ad return;
357 1.1 ad }
358 1.9 ad amr->amr_flags |= AMRF_DMA_ALLOC;
359 1.1 ad
360 1.9 ad if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
361 1.1 ad (caddr_t *)&amr->amr_mbox,
362 1.1 ad BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
363 1.8 thorpej aprint_error("%s: unable to map buffer, rv = %d\n",
364 1.1 ad amr->amr_dv.dv_xname, rv);
365 1.9 ad amr_teardown(amr);
366 1.1 ad return;
367 1.1 ad }
368 1.9 ad amr->amr_flags |= AMRF_DMA_MAP;
369 1.1 ad
370 1.1 ad if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
371 1.1 ad BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
372 1.8 thorpej aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
373 1.1 ad amr->amr_dv.dv_xname, rv);
374 1.9 ad amr_teardown(amr);
375 1.1 ad return;
376 1.1 ad }
377 1.9 ad amr->amr_flags |= AMRF_DMA_CREATE;
378 1.1 ad
379 1.1 ad if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
380 1.1 ad amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
381 1.8 thorpej aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
382 1.1 ad amr->amr_dv.dv_xname, rv);
383 1.9 ad amr_teardown(amr);
384 1.1 ad return;
385 1.1 ad }
386 1.9 ad amr->amr_flags |= AMRF_DMA_LOAD;
387 1.1 ad
388 1.1 ad memset(amr->amr_mbox, 0, size);
389 1.1 ad
390 1.9 ad amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
391 1.1 ad amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
392 1.1 ad amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
393 1.1 ad amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
394 1.1 ad
395 1.1 ad /*
396 1.1 ad * Allocate and initalise the command control blocks.
397 1.1 ad */
398 1.1 ad ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
399 1.1 ad amr->amr_ccbs = ac;
400 1.1 ad SLIST_INIT(&amr->amr_ccb_freelist);
401 1.10 ad TAILQ_INIT(&amr->amr_ccb_active);
402 1.9 ad amr->amr_flags |= AMRF_CCBS;
403 1.9 ad
404 1.9 ad if (amr_max_xfer == 0) {
405 1.9 ad amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
406 1.9 ad amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
407 1.9 ad }
408 1.1 ad
409 1.1 ad for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
410 1.9 ad rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
411 1.9 ad amr_max_segs, amr_max_xfer, 0,
412 1.9 ad BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
413 1.1 ad if (rv != 0)
414 1.1 ad break;
415 1.1 ad
416 1.1 ad ac->ac_ident = i;
417 1.9 ad amr_ccb_free(amr, ac);
418 1.9 ad }
419 1.9 ad if (i != AMR_MAX_CMDS) {
420 1.9 ad aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
421 1.9 ad amr_teardown(amr);
422 1.9 ad return;
423 1.1 ad }
424 1.1 ad
425 1.1 ad /*
426 1.1 ad * Take care of model-specific tasks.
427 1.1 ad */
428 1.1 ad if ((apt->apt_flags & AT_QUARTZ) != 0) {
429 1.1 ad amr->amr_submit = amr_quartz_submit;
430 1.1 ad amr->amr_get_work = amr_quartz_get_work;
431 1.1 ad } else {
432 1.1 ad amr->amr_submit = amr_std_submit;
433 1.1 ad amr->amr_get_work = amr_std_get_work;
434 1.1 ad
435 1.1 ad /* Notify the controller of the mailbox location. */
436 1.9 ad amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
437 1.1 ad amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
438 1.1 ad
439 1.1 ad /* Clear outstanding interrupts and enable interrupts. */
440 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
441 1.1 ad amr_outb(amr, AMR_SREG_TOGL,
442 1.1 ad amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
443 1.1 ad }
444 1.1 ad
445 1.1 ad /*
446 1.1 ad * Retrieve parameters, and tell the world about us.
447 1.1 ad */
448 1.9 ad amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
449 1.9 ad amr->amr_flags |= AMRF_ENQBUF;
450 1.1 ad amr->amr_maxqueuecnt = i;
451 1.8 thorpej aprint_normal(": AMI RAID ");
452 1.9 ad if (amr_init(amr, intrstr, pa) != 0) {
453 1.9 ad amr_teardown(amr);
454 1.1 ad return;
455 1.9 ad }
456 1.1 ad
457 1.1 ad /*
458 1.1 ad * Cap the maximum number of outstanding commands. AMI's Linux
459 1.1 ad * driver doesn't trust the controller's reported value, and lockups
460 1.1 ad * have been seen when we do.
461 1.1 ad */
462 1.1 ad amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
463 1.1 ad if (amr->amr_maxqueuecnt > i)
464 1.1 ad amr->amr_maxqueuecnt = i;
465 1.1 ad
466 1.1 ad /* Set our `shutdownhook' before we start any device activity. */
467 1.1 ad if (amr_sdh == NULL)
468 1.1 ad amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
469 1.1 ad
470 1.1 ad /* Attach sub-devices. */
471 1.9 ad for (j = 0; j < amr->amr_numdrives; j++) {
472 1.9 ad if (amr->amr_drive[j].al_size == 0)
473 1.1 ad continue;
474 1.9 ad amra.amra_unit = j;
475 1.9 ad amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
476 1.9 ad amr_print, amr_submatch);
477 1.1 ad }
478 1.1 ad
479 1.1 ad SIMPLEQ_INIT(&amr->amr_ccb_queue);
480 1.13 ad
481 1.13 ad /* XXX This doesn't work for newer boards yet. */
482 1.13 ad if ((apt->apt_flags & AT_QUARTZ) == 0)
483 1.13 ad kthread_create(amr_thread_create, amr);
484 1.9 ad }
485 1.9 ad
486 1.9 ad /*
487 1.9 ad * Free up resources.
488 1.9 ad */
489 1.9 ad void
490 1.9 ad amr_teardown(struct amr_softc *amr)
491 1.9 ad {
492 1.9 ad struct amr_ccb *ac;
493 1.9 ad int fl;
494 1.9 ad
495 1.9 ad fl = amr->amr_flags;
496 1.9 ad
497 1.9 ad if ((fl & AMRF_THREAD) != 0) {
498 1.9 ad amr->amr_flags |= AMRF_THREAD_EXIT;
499 1.9 ad wakeup(amr_thread);
500 1.9 ad while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
501 1.9 ad tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
502 1.9 ad }
503 1.9 ad if ((fl & AMRF_CCBS) != 0) {
504 1.9 ad SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
505 1.9 ad bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
506 1.9 ad }
507 1.9 ad free(amr->amr_ccbs, M_DEVBUF);
508 1.9 ad }
509 1.9 ad if ((fl & AMRF_ENQBUF) != 0)
510 1.9 ad free(amr->amr_enqbuf, M_DEVBUF);
511 1.9 ad if ((fl & AMRF_DMA_LOAD) != 0)
512 1.9 ad bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
513 1.9 ad if ((fl & AMRF_DMA_MAP) != 0)
514 1.9 ad bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
515 1.9 ad amr->amr_dmasize);
516 1.9 ad if ((fl & AMRF_DMA_ALLOC) != 0)
517 1.9 ad bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
518 1.9 ad if ((fl & AMRF_DMA_CREATE) != 0)
519 1.9 ad bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
520 1.9 ad if ((fl & AMRF_PCI_INTR) != 0)
521 1.9 ad pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
522 1.9 ad if ((fl & AMRF_PCI_REGS) != 0)
523 1.11 fvdl bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
524 1.1 ad }
525 1.1 ad
526 1.1 ad /*
527 1.1 ad * Print autoconfiguration message for a sub-device.
528 1.1 ad */
529 1.1 ad int
530 1.1 ad amr_print(void *aux, const char *pnp)
531 1.1 ad {
532 1.1 ad struct amr_attach_args *amra;
533 1.1 ad
534 1.1 ad amra = (struct amr_attach_args *)aux;
535 1.1 ad
536 1.1 ad if (pnp != NULL)
537 1.7 thorpej aprint_normal("block device at %s", pnp);
538 1.7 thorpej aprint_normal(" unit %d", amra->amra_unit);
539 1.1 ad return (UNCONF);
540 1.1 ad }
541 1.1 ad
542 1.1 ad /*
543 1.1 ad * Match a sub-device.
544 1.1 ad */
545 1.1 ad int
546 1.1 ad amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
547 1.1 ad {
548 1.1 ad struct amr_attach_args *amra;
549 1.1 ad
550 1.1 ad amra = (struct amr_attach_args *)aux;
551 1.1 ad
552 1.1 ad if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
553 1.1 ad cf->amracf_unit != amra->amra_unit)
554 1.1 ad return (0);
555 1.1 ad
556 1.3 thorpej return (config_match(parent, cf, aux));
557 1.1 ad }
558 1.1 ad
559 1.1 ad /*
560 1.1 ad * Retrieve operational parameters and describe the controller.
561 1.1 ad */
562 1.1 ad int
563 1.1 ad amr_init(struct amr_softc *amr, const char *intrstr,
564 1.1 ad struct pci_attach_args *pa)
565 1.1 ad {
566 1.9 ad struct amr_adapter_info *aa;
567 1.1 ad struct amr_prodinfo *ap;
568 1.1 ad struct amr_enquiry *ae;
569 1.1 ad struct amr_enquiry3 *aex;
570 1.1 ad const char *prodstr;
571 1.9 ad u_int i, sig, ishp;
572 1.1 ad char buf[64];
573 1.1 ad
574 1.1 ad /*
575 1.1 ad * Try to get 40LD product info, which tells us what the card is
576 1.1 ad * labelled as.
577 1.1 ad */
578 1.9 ad ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
579 1.9 ad amr->amr_enqbuf);
580 1.1 ad if (ap != NULL) {
581 1.8 thorpej aprint_normal("<%.80s>\n", ap->ap_product);
582 1.1 ad if (intrstr != NULL)
583 1.8 thorpej aprint_normal("%s: interrupting at %s\n",
584 1.1 ad amr->amr_dv.dv_xname, intrstr);
585 1.8 thorpej aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
586 1.1 ad amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
587 1.1 ad le16toh(ap->ap_memsize));
588 1.1 ad
589 1.1 ad amr->amr_maxqueuecnt = ap->ap_maxio;
590 1.1 ad
591 1.1 ad /*
592 1.1 ad * Fetch and record state of logical drives.
593 1.1 ad */
594 1.1 ad aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
595 1.9 ad AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
596 1.1 ad if (aex == NULL) {
597 1.8 thorpej aprint_error("%s ENQUIRY3 failed\n",
598 1.8 thorpej amr->amr_dv.dv_xname);
599 1.1 ad return (-1);
600 1.1 ad }
601 1.1 ad
602 1.1 ad if (aex->ae_numldrives > AMR_MAX_UNITS) {
603 1.8 thorpej aprint_error(
604 1.8 thorpej "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
605 1.1 ad "\n", amr->amr_dv.dv_xname,
606 1.1 ad ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
607 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
608 1.1 ad } else
609 1.1 ad amr->amr_numdrives = aex->ae_numldrives;
610 1.1 ad
611 1.1 ad for (i = 0; i < amr->amr_numdrives; i++) {
612 1.1 ad amr->amr_drive[i].al_size =
613 1.1 ad le32toh(aex->ae_drivesize[i]);
614 1.1 ad amr->amr_drive[i].al_state = aex->ae_drivestate[i];
615 1.1 ad amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
616 1.1 ad }
617 1.1 ad
618 1.1 ad return (0);
619 1.1 ad }
620 1.1 ad
621 1.1 ad /*
622 1.1 ad * Try 8LD extended ENQUIRY to get the controller signature. Once
623 1.1 ad * found, search for a product description.
624 1.1 ad */
625 1.9 ad ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
626 1.9 ad if (ae != NULL) {
627 1.1 ad i = 0;
628 1.1 ad sig = le32toh(ae->ae_signature);
629 1.1 ad
630 1.1 ad while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
631 1.1 ad if (amr_typestr[i].at_sig == sig)
632 1.1 ad break;
633 1.1 ad i++;
634 1.1 ad }
635 1.1 ad if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
636 1.1 ad sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
637 1.1 ad prodstr = buf;
638 1.1 ad } else
639 1.1 ad prodstr = amr_typestr[i].at_str;
640 1.1 ad } else {
641 1.9 ad ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
642 1.9 ad if (ae == NULL) {
643 1.8 thorpej aprint_error("%s: unsupported controller\n",
644 1.1 ad amr->amr_dv.dv_xname);
645 1.1 ad return (-1);
646 1.1 ad }
647 1.1 ad
648 1.1 ad switch (PCI_PRODUCT(pa->pa_id)) {
649 1.1 ad case PCI_PRODUCT_AMI_MEGARAID:
650 1.1 ad prodstr = "Series 428";
651 1.1 ad break;
652 1.1 ad case PCI_PRODUCT_AMI_MEGARAID2:
653 1.1 ad prodstr = "Series 434";
654 1.1 ad break;
655 1.1 ad default:
656 1.1 ad sprintf(buf, "unknown PCI dev (0x%04x)",
657 1.1 ad PCI_PRODUCT(pa->pa_id));
658 1.1 ad prodstr = buf;
659 1.1 ad break;
660 1.1 ad }
661 1.1 ad }
662 1.1 ad
663 1.9 ad /*
664 1.9 ad * HP NetRaid controllers have a special encoding of the firmware
665 1.9 ad * and BIOS versions. The AMI version seems to have it as strings
666 1.9 ad * whereas the HP version does it with a leading uppercase character
667 1.9 ad * and two binary numbers.
668 1.9 ad */
669 1.9 ad aa = &ae->ae_adapter;
670 1.9 ad
671 1.9 ad if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
672 1.9 ad aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
673 1.9 ad aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
674 1.9 ad aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
675 1.9 ad if (le32toh(ae->ae_signature) == AMR_SIG_438) {
676 1.9 ad /* The AMI 438 is a NetRaid 3si in HP-land. */
677 1.9 ad prodstr = "HP NetRaid 3si";
678 1.9 ad }
679 1.9 ad ishp = 1;
680 1.9 ad } else
681 1.9 ad ishp = 0;
682 1.9 ad
683 1.8 thorpej aprint_normal("<%s>\n", prodstr);
684 1.1 ad if (intrstr != NULL)
685 1.8 thorpej aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
686 1.1 ad intrstr);
687 1.1 ad
688 1.9 ad if (ishp)
689 1.9 ad aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
690 1.9 ad ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
691 1.9 ad aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
692 1.9 ad aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
693 1.9 ad else
694 1.9 ad aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
695 1.9 ad amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
696 1.9 ad aa->aa_memorysize);
697 1.9 ad
698 1.9 ad amr->amr_maxqueuecnt = aa->aa_maxio;
699 1.1 ad
700 1.1 ad /*
701 1.1 ad * Record state of logical drives.
702 1.1 ad */
703 1.1 ad if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
704 1.8 thorpej aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
705 1.1 ad amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
706 1.1 ad AMR_MAX_UNITS);
707 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
708 1.1 ad } else
709 1.1 ad amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
710 1.1 ad
711 1.1 ad for (i = 0; i < AMR_MAX_UNITS; i++) {
712 1.1 ad amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
713 1.1 ad amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
714 1.1 ad amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
715 1.1 ad }
716 1.1 ad
717 1.1 ad return (0);
718 1.1 ad }
719 1.1 ad
720 1.1 ad /*
721 1.1 ad * Flush the internal cache on each configured controller. Called at
722 1.1 ad * shutdown time.
723 1.1 ad */
724 1.1 ad void
725 1.1 ad amr_shutdown(void *cookie)
726 1.1 ad {
727 1.1 ad extern struct cfdriver amr_cd;
728 1.1 ad struct amr_softc *amr;
729 1.1 ad struct amr_ccb *ac;
730 1.9 ad int i, rv, s;
731 1.1 ad
732 1.1 ad for (i = 0; i < amr_cd.cd_ndevs; i++) {
733 1.1 ad if ((amr = device_lookup(&amr_cd, i)) == NULL)
734 1.1 ad continue;
735 1.1 ad
736 1.1 ad if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
737 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
738 1.9 ad s = splbio();
739 1.1 ad rv = amr_ccb_poll(amr, ac, 30000);
740 1.9 ad splx(s);
741 1.1 ad amr_ccb_free(amr, ac);
742 1.1 ad }
743 1.1 ad if (rv != 0)
744 1.1 ad printf("%s: unable to flush cache (%d)\n",
745 1.1 ad amr->amr_dv.dv_xname, rv);
746 1.1 ad }
747 1.1 ad }
748 1.1 ad
749 1.1 ad /*
750 1.1 ad * Interrupt service routine.
751 1.1 ad */
752 1.1 ad int
753 1.1 ad amr_intr(void *cookie)
754 1.1 ad {
755 1.1 ad struct amr_softc *amr;
756 1.1 ad struct amr_ccb *ac;
757 1.9 ad struct amr_mailbox_resp mbox;
758 1.1 ad u_int i, forus, idx;
759 1.1 ad
760 1.1 ad amr = cookie;
761 1.1 ad forus = 0;
762 1.1 ad
763 1.1 ad while ((*amr->amr_get_work)(amr, &mbox) == 0) {
764 1.1 ad /* Iterate over completed commands in this result. */
765 1.1 ad for (i = 0; i < mbox.mb_nstatus; i++) {
766 1.1 ad idx = mbox.mb_completed[i] - 1;
767 1.1 ad ac = amr->amr_ccbs + idx;
768 1.1 ad
769 1.1 ad if (idx >= amr->amr_maxqueuecnt) {
770 1.1 ad printf("%s: bad status (bogus ID: %u=%u)\n",
771 1.1 ad amr->amr_dv.dv_xname, i, idx);
772 1.1 ad continue;
773 1.1 ad }
774 1.1 ad
775 1.1 ad if ((ac->ac_flags & AC_ACTIVE) == 0) {
776 1.1 ad printf("%s: bad status (not active; 0x04%x)\n",
777 1.1 ad amr->amr_dv.dv_xname, ac->ac_flags);
778 1.1 ad continue;
779 1.1 ad }
780 1.1 ad
781 1.1 ad ac->ac_status = mbox.mb_status;
782 1.1 ad ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
783 1.1 ad AC_COMPLETE;
784 1.10 ad TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
785 1.10 ad
786 1.10 ad if ((ac->ac_flags & AC_MOAN) != 0)
787 1.10 ad printf("%s: ccb %d completed\n",
788 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
789 1.1 ad
790 1.1 ad /* Pass notification to upper layers. */
791 1.1 ad if (ac->ac_handler != NULL)
792 1.1 ad (*ac->ac_handler)(ac);
793 1.9 ad else
794 1.9 ad wakeup(ac);
795 1.1 ad }
796 1.1 ad forus = 1;
797 1.1 ad }
798 1.1 ad
799 1.1 ad if (forus)
800 1.1 ad amr_ccb_enqueue(amr, NULL);
801 1.9 ad
802 1.1 ad return (forus);
803 1.1 ad }
804 1.1 ad
805 1.1 ad /*
806 1.9 ad * Create the watchdog thread.
807 1.9 ad */
808 1.9 ad void
809 1.9 ad amr_thread_create(void *cookie)
810 1.9 ad {
811 1.9 ad struct amr_softc *amr;
812 1.9 ad int rv;
813 1.9 ad
814 1.9 ad amr = cookie;
815 1.9 ad
816 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
817 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
818 1.9 ad wakeup(&amr->amr_flags);
819 1.9 ad return;
820 1.9 ad }
821 1.9 ad
822 1.9 ad rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
823 1.9 ad amr->amr_dv.dv_xname);
824 1.9 ad if (rv != 0)
825 1.9 ad aprint_error("%s: unable to create thread (%d)",
826 1.9 ad amr->amr_dv.dv_xname, rv);
827 1.9 ad else
828 1.9 ad amr->amr_flags |= AMRF_THREAD;
829 1.9 ad }
830 1.9 ad
831 1.9 ad /*
832 1.9 ad * Watchdog thread.
833 1.9 ad */
834 1.9 ad void
835 1.9 ad amr_thread(void *cookie)
836 1.9 ad {
837 1.9 ad struct amr_softc *amr;
838 1.9 ad struct amr_ccb *ac;
839 1.9 ad struct amr_logdrive *al;
840 1.9 ad struct amr_enquiry *ae;
841 1.10 ad time_t curtime;
842 1.9 ad int rv, i, s;
843 1.9 ad
844 1.9 ad amr = cookie;
845 1.9 ad ae = amr->amr_enqbuf;
846 1.9 ad
847 1.9 ad for (;;) {
848 1.9 ad tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
849 1.9 ad
850 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
851 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
852 1.9 ad wakeup(&amr->amr_flags);
853 1.9 ad kthread_exit(0);
854 1.9 ad }
855 1.9 ad
856 1.9 ad s = splbio();
857 1.9 ad amr_intr(cookie);
858 1.10 ad curtime = (time_t)mono_time.tv_sec;
859 1.13 ad ac = TAILQ_FIRST(&amr->amr_ccb_active);
860 1.13 ad while (ac != NULL) {
861 1.10 ad if (ac->ac_start_time + AMR_TIMEOUT > curtime)
862 1.10 ad break;
863 1.10 ad if ((ac->ac_flags & AC_MOAN) == 0) {
864 1.10 ad printf("%s: ccb %d timed out; mailbox:\n",
865 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
866 1.10 ad amr_ccb_dump(amr, ac);
867 1.10 ad ac->ac_flags |= AC_MOAN;
868 1.10 ad }
869 1.13 ad ac = TAILQ_NEXT(ac, ac_chain.tailq);
870 1.10 ad }
871 1.9 ad splx(s);
872 1.9 ad
873 1.9 ad if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
874 1.9 ad printf("%s: ccb_alloc failed (%d)\n",
875 1.9 ad amr->amr_dv.dv_xname, rv);
876 1.9 ad continue;
877 1.9 ad }
878 1.9 ad
879 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
880 1.9 ad
881 1.9 ad rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
882 1.9 ad AMR_ENQUIRY_BUFSIZE, 0);
883 1.9 ad if (rv != 0) {
884 1.9 ad printf("%s: ccb_map failed (%d)\n",
885 1.9 ad amr->amr_dv.dv_xname, rv);
886 1.9 ad amr_ccb_free(amr, ac);
887 1.9 ad continue;
888 1.9 ad }
889 1.9 ad
890 1.9 ad rv = amr_ccb_wait(amr, ac);
891 1.9 ad amr_ccb_unmap(amr, ac);
892 1.9 ad if (rv != 0) {
893 1.9 ad printf("%s: enquiry failed (st=%d)\n",
894 1.9 ad amr->amr_dv.dv_xname, ac->ac_status);
895 1.9 ad continue;
896 1.9 ad }
897 1.9 ad amr_ccb_free(amr, ac);
898 1.9 ad
899 1.9 ad al = amr->amr_drive;
900 1.9 ad for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
901 1.9 ad if (al->al_dv == NULL)
902 1.9 ad continue;
903 1.9 ad if (al->al_state == ae->ae_ldrv.al_state[i])
904 1.9 ad continue;
905 1.9 ad
906 1.9 ad printf("%s: state changed: %s -> %s\n",
907 1.9 ad al->al_dv->dv_xname,
908 1.9 ad amr_drive_state(al->al_state, NULL),
909 1.9 ad amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
910 1.9 ad
911 1.9 ad al->al_state = ae->ae_ldrv.al_state[i];
912 1.9 ad }
913 1.9 ad }
914 1.9 ad }
915 1.9 ad
916 1.9 ad /*
917 1.9 ad * Return a text description of a logical drive's current state.
918 1.9 ad */
919 1.9 ad const char *
920 1.9 ad amr_drive_state(int state, int *happy)
921 1.9 ad {
922 1.9 ad const char *str;
923 1.9 ad
924 1.9 ad state = AMR_DRV_CURSTATE(state);
925 1.9 ad if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
926 1.9 ad if (happy)
927 1.9 ad *happy = 1;
928 1.9 ad str = "status unknown";
929 1.9 ad } else {
930 1.9 ad if (happy)
931 1.9 ad *happy = amr_dstate[state].ds_happy;
932 1.9 ad str = amr_dstate[state].ds_descr;
933 1.9 ad }
934 1.9 ad
935 1.9 ad return (str);
936 1.9 ad }
937 1.9 ad
938 1.9 ad /*
939 1.1 ad * Run a generic enquiry-style command.
940 1.1 ad */
941 1.1 ad void *
942 1.1 ad amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
943 1.9 ad u_int8_t cmdqual, void *buf)
944 1.1 ad {
945 1.1 ad struct amr_ccb *ac;
946 1.1 ad u_int8_t *mb;
947 1.1 ad int rv;
948 1.1 ad
949 1.1 ad if (amr_ccb_alloc(amr, &ac) != 0)
950 1.1 ad return (NULL);
951 1.1 ad
952 1.1 ad /* Build the command proper. */
953 1.9 ad mb = (u_int8_t *)&ac->ac_cmd;
954 1.1 ad mb[0] = cmd;
955 1.1 ad mb[2] = cmdsub;
956 1.1 ad mb[3] = cmdqual;
957 1.1 ad
958 1.9 ad rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
959 1.9 ad if (rv == 0) {
960 1.1 ad rv = amr_ccb_poll(amr, ac, 2000);
961 1.1 ad amr_ccb_unmap(amr, ac);
962 1.1 ad }
963 1.1 ad amr_ccb_free(amr, ac);
964 1.1 ad
965 1.9 ad return (rv ? NULL : buf);
966 1.1 ad }
967 1.1 ad
968 1.1 ad /*
969 1.1 ad * Allocate and initialise a CCB.
970 1.1 ad */
971 1.1 ad int
972 1.1 ad amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
973 1.1 ad {
974 1.1 ad int s;
975 1.1 ad
976 1.1 ad s = splbio();
977 1.9 ad if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
978 1.1 ad splx(s);
979 1.1 ad return (EAGAIN);
980 1.1 ad }
981 1.1 ad SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
982 1.1 ad splx(s);
983 1.1 ad
984 1.1 ad return (0);
985 1.1 ad }
986 1.1 ad
987 1.1 ad /*
988 1.1 ad * Free a CCB.
989 1.1 ad */
990 1.1 ad void
991 1.1 ad amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
992 1.1 ad {
993 1.1 ad int s;
994 1.1 ad
995 1.9 ad memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
996 1.9 ad ac->ac_cmd.mb_ident = ac->ac_ident + 1;
997 1.9 ad ac->ac_cmd.mb_busy = 1;
998 1.9 ad ac->ac_handler = NULL;
999 1.1 ad ac->ac_flags = 0;
1000 1.1 ad
1001 1.1 ad s = splbio();
1002 1.1 ad SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1003 1.1 ad splx(s);
1004 1.1 ad }
1005 1.1 ad
1006 1.1 ad /*
1007 1.1 ad * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1008 1.1 ad * the order that they were enqueued and try to submit their command blocks
1009 1.1 ad * to the controller for execution.
1010 1.1 ad */
1011 1.1 ad void
1012 1.1 ad amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1013 1.1 ad {
1014 1.1 ad int s;
1015 1.1 ad
1016 1.1 ad s = splbio();
1017 1.1 ad
1018 1.1 ad if (ac != NULL)
1019 1.1 ad SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1020 1.1 ad
1021 1.1 ad while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1022 1.1 ad if ((*amr->amr_submit)(amr, ac) != 0)
1023 1.1 ad break;
1024 1.2 lukem SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1025 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1026 1.1 ad }
1027 1.1 ad
1028 1.1 ad splx(s);
1029 1.1 ad }
1030 1.1 ad
1031 1.1 ad /*
1032 1.1 ad * Map the specified CCB's data buffer onto the bus, and fill the
1033 1.1 ad * scatter-gather list.
1034 1.1 ad */
1035 1.1 ad int
1036 1.1 ad amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1037 1.1 ad int out)
1038 1.1 ad {
1039 1.1 ad struct amr_sgentry *sge;
1040 1.9 ad struct amr_mailbox_cmd *mb;
1041 1.1 ad int nsegs, i, rv, sgloff;
1042 1.1 ad bus_dmamap_t xfer;
1043 1.1 ad
1044 1.1 ad xfer = ac->ac_xfer_map;
1045 1.1 ad
1046 1.1 ad rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1047 1.1 ad BUS_DMA_NOWAIT);
1048 1.1 ad if (rv != 0)
1049 1.1 ad return (rv);
1050 1.1 ad
1051 1.9 ad mb = &ac->ac_cmd;
1052 1.1 ad ac->ac_xfer_size = size;
1053 1.1 ad ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1054 1.1 ad sgloff = AMR_SGL_SIZE * ac->ac_ident;
1055 1.1 ad
1056 1.1 ad /* We don't need to use a scatter/gather list for just 1 segment. */
1057 1.1 ad nsegs = xfer->dm_nsegs;
1058 1.1 ad if (nsegs == 1) {
1059 1.1 ad mb->mb_nsgelem = 0;
1060 1.1 ad mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1061 1.1 ad ac->ac_flags |= AC_NOSGL;
1062 1.1 ad } else {
1063 1.1 ad mb->mb_nsgelem = nsegs;
1064 1.1 ad mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1065 1.1 ad
1066 1.1 ad sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1067 1.1 ad for (i = 0; i < nsegs; i++, sge++) {
1068 1.1 ad sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1069 1.1 ad sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1070 1.1 ad }
1071 1.1 ad }
1072 1.1 ad
1073 1.1 ad bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1074 1.1 ad out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1075 1.1 ad
1076 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1077 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1078 1.1 ad AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1079 1.1 ad
1080 1.1 ad return (0);
1081 1.1 ad }
1082 1.1 ad
1083 1.1 ad /*
1084 1.1 ad * Unmap the specified CCB's data buffer.
1085 1.1 ad */
1086 1.1 ad void
1087 1.1 ad amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1088 1.1 ad {
1089 1.1 ad
1090 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1091 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1092 1.1 ad AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1093 1.1 ad BUS_DMASYNC_POSTWRITE);
1094 1.1 ad bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1095 1.1 ad (ac->ac_flags & AC_XFER_IN) != 0 ?
1096 1.1 ad BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1097 1.1 ad bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1098 1.1 ad }
1099 1.1 ad
1100 1.1 ad /*
1101 1.1 ad * Submit a command to the controller and poll on completion. Return
1102 1.1 ad * non-zero on timeout or error. Must be called with interrupts blocked.
1103 1.1 ad */
1104 1.1 ad int
1105 1.1 ad amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1106 1.1 ad {
1107 1.1 ad int rv;
1108 1.1 ad
1109 1.1 ad if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1110 1.1 ad return (rv);
1111 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1112 1.1 ad
1113 1.1 ad for (timo *= 10; timo != 0; timo--) {
1114 1.1 ad amr_intr(amr);
1115 1.1 ad if ((ac->ac_flags & AC_COMPLETE) != 0)
1116 1.1 ad break;
1117 1.1 ad DELAY(100);
1118 1.1 ad }
1119 1.1 ad
1120 1.1 ad return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1121 1.1 ad }
1122 1.1 ad
1123 1.1 ad /*
1124 1.9 ad * Submit a command to the controller and sleep on completion. Return
1125 1.9 ad * non-zero on error.
1126 1.9 ad */
1127 1.9 ad int
1128 1.9 ad amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1129 1.9 ad {
1130 1.9 ad int s;
1131 1.9 ad
1132 1.9 ad s = splbio();
1133 1.9 ad amr_ccb_enqueue(amr, ac);
1134 1.9 ad tsleep(ac, PRIBIO, "amrcmd", 0);
1135 1.9 ad splx(s);
1136 1.9 ad
1137 1.9 ad return (ac->ac_status != 0 ? EIO : 0);
1138 1.9 ad }
1139 1.9 ad
1140 1.9 ad /*
1141 1.1 ad * Wait for the mailbox to become available.
1142 1.1 ad */
1143 1.1 ad int
1144 1.1 ad amr_mbox_wait(struct amr_softc *amr)
1145 1.1 ad {
1146 1.1 ad int timo;
1147 1.1 ad
1148 1.1 ad for (timo = 10000; timo != 0; timo--) {
1149 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1150 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1151 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1152 1.1 ad break;
1153 1.1 ad DELAY(100);
1154 1.1 ad }
1155 1.1 ad
1156 1.9 ad if (timo == 0)
1157 1.1 ad printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1158 1.1 ad
1159 1.9 ad return (timo != 0 ? 0 : EAGAIN);
1160 1.1 ad }
1161 1.1 ad
1162 1.1 ad /*
1163 1.1 ad * Tell the controller that the mailbox contains a valid command. Must be
1164 1.1 ad * called with interrupts blocked.
1165 1.1 ad */
1166 1.1 ad int
1167 1.1 ad amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1168 1.1 ad {
1169 1.1 ad u_int32_t v;
1170 1.1 ad
1171 1.9 ad amr->amr_mbox->mb_poll = 0;
1172 1.9 ad amr->amr_mbox->mb_ack = 0;
1173 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1174 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1175 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1176 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1177 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1178 1.9 ad return (EAGAIN);
1179 1.9 ad
1180 1.1 ad v = amr_inl(amr, AMR_QREG_IDB);
1181 1.13 ad if ((v & AMR_QIDB_SUBMIT) != 0) {
1182 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1183 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1184 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1185 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1186 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1187 1.9 ad return (EAGAIN);
1188 1.9 ad }
1189 1.1 ad
1190 1.10 ad amr->amr_mbox->mb_segment = 0;
1191 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1192 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1193 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1194 1.10 ad
1195 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1196 1.1 ad ac->ac_flags |= AC_ACTIVE;
1197 1.13 ad amr_outl(amr, AMR_QREG_IDB,
1198 1.13 ad (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1199 1.1 ad return (0);
1200 1.1 ad }
1201 1.1 ad
1202 1.1 ad int
1203 1.1 ad amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1204 1.1 ad {
1205 1.1 ad
1206 1.9 ad amr->amr_mbox->mb_poll = 0;
1207 1.9 ad amr->amr_mbox->mb_ack = 0;
1208 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1209 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1210 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1211 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1212 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1213 1.9 ad return (EAGAIN);
1214 1.9 ad
1215 1.9 ad if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1216 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1217 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1218 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1219 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1220 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1221 1.9 ad return (EAGAIN);
1222 1.9 ad }
1223 1.1 ad
1224 1.10 ad amr->amr_mbox->mb_segment = 0;
1225 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1226 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1227 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1228 1.10 ad
1229 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1230 1.1 ad ac->ac_flags |= AC_ACTIVE;
1231 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1232 1.1 ad return (0);
1233 1.1 ad }
1234 1.1 ad
1235 1.1 ad /*
1236 1.1 ad * Claim any work that the controller has completed; acknowledge completion,
1237 1.1 ad * save details of the completion in (mbsave). Must be called with
1238 1.1 ad * interrupts blocked.
1239 1.1 ad */
1240 1.1 ad int
1241 1.9 ad amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1242 1.1 ad {
1243 1.1 ad
1244 1.1 ad /* Work waiting for us? */
1245 1.1 ad if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1246 1.1 ad return (-1);
1247 1.1 ad
1248 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1249 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1250 1.9 ad
1251 1.1 ad /* Save the mailbox, which contains a list of completed commands. */
1252 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1253 1.9 ad
1254 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1255 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1256 1.1 ad
1257 1.1 ad /* Ack the interrupt and mailbox transfer. */
1258 1.1 ad amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1259 1.9 ad amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1260 1.1 ad
1261 1.1 ad /*
1262 1.1 ad * This waits for the controller to notice that we've taken the
1263 1.1 ad * command from it. It's very inefficient, and we shouldn't do it,
1264 1.1 ad * but if we remove this code, we stop completing commands under
1265 1.1 ad * load.
1266 1.1 ad *
1267 1.1 ad * Peter J says we shouldn't do this. The documentation says we
1268 1.1 ad * should. Who is right?
1269 1.1 ad */
1270 1.1 ad while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1271 1.13 ad DELAY(10);
1272 1.1 ad
1273 1.1 ad return (0);
1274 1.1 ad }
1275 1.1 ad
1276 1.1 ad int
1277 1.9 ad amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1278 1.1 ad {
1279 1.1 ad u_int8_t istat;
1280 1.1 ad
1281 1.1 ad /* Check for valid interrupt status. */
1282 1.1 ad if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1283 1.1 ad return (-1);
1284 1.1 ad
1285 1.1 ad /* Ack the interrupt. */
1286 1.1 ad amr_outb(amr, AMR_SREG_INTR, istat);
1287 1.1 ad
1288 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1289 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1290 1.9 ad
1291 1.1 ad /* Save mailbox, which contains a list of completed commands. */
1292 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1293 1.9 ad
1294 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1295 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1296 1.1 ad
1297 1.1 ad /* Ack mailbox transfer. */
1298 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1299 1.1 ad
1300 1.1 ad return (0);
1301 1.10 ad }
1302 1.10 ad
1303 1.10 ad void
1304 1.10 ad amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1305 1.10 ad {
1306 1.10 ad int i;
1307 1.10 ad
1308 1.10 ad printf("%s: ", amr->amr_dv.dv_xname);
1309 1.10 ad for (i = 0; i < 4; i++)
1310 1.10 ad printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1311 1.10 ad printf("\n");
1312 1.1 ad }
1313