Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.16
      1  1.16  christos /*	$NetBSD: amr.c,v 1.16 2003/10/25 18:31:11 christos Exp $	*/
      2   1.1        ad 
      3   1.1        ad /*-
      4   1.9        ad  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1        ad  * by Andrew Doran.
      9   1.1        ad  *
     10   1.1        ad  * Redistribution and use in source and binary forms, with or without
     11   1.1        ad  * modification, are permitted provided that the following conditions
     12   1.1        ad  * are met:
     13   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ad  *    documentation and/or other materials provided with the distribution.
     18   1.1        ad  * 3. All advertising materials mentioning features or use of this software
     19   1.1        ad  *    must display the following acknowledgement:
     20   1.1        ad  *        This product includes software developed by the NetBSD
     21   1.1        ad  *        Foundation, Inc. and its contributors.
     22   1.1        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1        ad  *    contributors may be used to endorse or promote products derived
     24   1.1        ad  *    from this software without specific prior written permission.
     25   1.1        ad  *
     26   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1        ad  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1        ad  */
     38   1.1        ad 
     39   1.1        ad /*-
     40   1.1        ad  * Copyright (c) 1999,2000 Michael Smith
     41   1.1        ad  * Copyright (c) 2000 BSDi
     42   1.1        ad  * All rights reserved.
     43   1.1        ad  *
     44   1.1        ad  * Redistribution and use in source and binary forms, with or without
     45   1.1        ad  * modification, are permitted provided that the following conditions
     46   1.1        ad  * are met:
     47   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     48   1.1        ad  *    notice, this list of conditions and the following disclaimer.
     49   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     50   1.1        ad  *    notice, this list of conditions and the following disclaimer in the
     51   1.1        ad  *    documentation and/or other materials provided with the distribution.
     52   1.1        ad  *
     53   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54   1.1        ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56   1.1        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57   1.1        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58   1.1        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59   1.1        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60   1.1        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61   1.1        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62   1.1        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63   1.1        ad  * SUCH DAMAGE.
     64   1.1        ad  *
     65   1.1        ad  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66   1.1        ad  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67   1.1        ad  */
     68   1.1        ad 
     69   1.1        ad /*
     70   1.1        ad  * Driver for AMI RAID controllers.
     71   1.1        ad  */
     72   1.1        ad 
     73   1.1        ad #include <sys/cdefs.h>
     74  1.16  christos __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.16 2003/10/25 18:31:11 christos Exp $");
     75   1.1        ad 
     76   1.1        ad #include <sys/param.h>
     77   1.1        ad #include <sys/systm.h>
     78   1.1        ad #include <sys/kernel.h>
     79   1.1        ad #include <sys/device.h>
     80   1.1        ad #include <sys/queue.h>
     81   1.1        ad #include <sys/proc.h>
     82   1.1        ad #include <sys/buf.h>
     83   1.1        ad #include <sys/malloc.h>
     84   1.9        ad #include <sys/kthread.h>
     85   1.1        ad 
     86   1.1        ad #include <uvm/uvm_extern.h>
     87   1.1        ad 
     88   1.1        ad #include <machine/endian.h>
     89   1.1        ad #include <machine/bus.h>
     90   1.1        ad 
     91   1.1        ad #include <dev/pci/pcidevs.h>
     92   1.1        ad #include <dev/pci/pcivar.h>
     93   1.1        ad #include <dev/pci/amrreg.h>
     94   1.1        ad #include <dev/pci/amrvar.h>
     95   1.1        ad 
     96   1.1        ad void	amr_attach(struct device *, struct device *, void *);
     97  1.10        ad void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
     98   1.9        ad void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
     99   1.1        ad int	amr_init(struct amr_softc *, const char *,
    100   1.1        ad 			 struct pci_attach_args *pa);
    101   1.1        ad int	amr_intr(void *);
    102   1.1        ad int	amr_match(struct device *, struct cfdata *, void *);
    103   1.1        ad int	amr_print(void *, const char *);
    104   1.1        ad void	amr_shutdown(void *);
    105   1.1        ad int	amr_submatch(struct device *, struct cfdata *, void *);
    106   1.9        ad void	amr_teardown(struct amr_softc *);
    107   1.9        ad void	amr_thread(void *);
    108   1.9        ad void	amr_thread_create(void *);
    109   1.1        ad 
    110   1.1        ad int	amr_mbox_wait(struct amr_softc *);
    111   1.9        ad int	amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    112   1.1        ad int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    113   1.9        ad int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    114   1.1        ad int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    115   1.1        ad 
    116   1.1        ad static inline u_int8_t	amr_inb(struct amr_softc *, int);
    117   1.1        ad static inline u_int32_t	amr_inl(struct amr_softc *, int);
    118   1.1        ad static inline void	amr_outb(struct amr_softc *, int, u_int8_t);
    119   1.1        ad static inline void	amr_outl(struct amr_softc *, int, u_int32_t);
    120   1.1        ad 
    121   1.5   thorpej CFATTACH_DECL(amr, sizeof(struct amr_softc),
    122   1.6   thorpej     amr_match, amr_attach, NULL, NULL);
    123   1.1        ad 
    124   1.1        ad #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    125   1.1        ad #define	AT_SIG		0x02	/* Check for signature */
    126   1.1        ad 
    127   1.1        ad struct amr_pci_type {
    128   1.1        ad 	u_short	apt_vendor;
    129   1.1        ad 	u_short	apt_product;
    130   1.1        ad 	u_short	apt_flags;
    131   1.9        ad } const amr_pci_type[] = {
    132   1.1        ad 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    133   1.1        ad 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    134   1.1        ad 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    135  1.12      matt 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    136  1.12      matt 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    137  1.14    martti 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    138   1.1        ad };
    139   1.1        ad 
    140   1.1        ad struct amr_typestr {
    141   1.1        ad 	const char	*at_str;
    142   1.1        ad 	int		at_sig;
    143   1.9        ad } const amr_typestr[] = {
    144   1.1        ad 	{ "Series 431",			AMR_SIG_431 },
    145   1.1        ad 	{ "Series 438",			AMR_SIG_438 },
    146   1.1        ad 	{ "Series 466",			AMR_SIG_466 },
    147   1.1        ad 	{ "Series 467",			AMR_SIG_467 },
    148   1.1        ad 	{ "Series 490",			AMR_SIG_490 },
    149   1.1        ad 	{ "Series 762",			AMR_SIG_762 },
    150   1.1        ad 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    151   1.1        ad 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    152   1.1        ad };
    153   1.1        ad 
    154   1.9        ad struct {
    155   1.9        ad 	const char	*ds_descr;
    156   1.9        ad 	int	ds_happy;
    157   1.9        ad } const amr_dstate[] = {
    158   1.9        ad 	{ "offline",	0 },
    159   1.9        ad 	{ "degraded",	1 },
    160   1.9        ad 	{ "optimal",	1 },
    161   1.9        ad 	{ "online",	1 },
    162   1.9        ad 	{ "failed",	0 },
    163   1.9        ad 	{ "rebuilding",	1 },
    164   1.9        ad 	{ "hotspare",	0 },
    165   1.9        ad };
    166   1.9        ad 
    167   1.9        ad void	*amr_sdh;
    168   1.9        ad int	amr_max_segs;
    169   1.9        ad int	amr_max_xfer;
    170   1.1        ad 
    171   1.1        ad static inline u_int8_t
    172   1.1        ad amr_inb(struct amr_softc *amr, int off)
    173   1.1        ad {
    174   1.1        ad 
    175   1.1        ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    176   1.1        ad 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    177   1.1        ad 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    178   1.1        ad }
    179   1.1        ad 
    180   1.1        ad static inline u_int32_t
    181   1.1        ad amr_inl(struct amr_softc *amr, int off)
    182   1.1        ad {
    183   1.1        ad 
    184   1.1        ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    185   1.1        ad 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    186   1.1        ad 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    187   1.1        ad }
    188   1.1        ad 
    189   1.1        ad static inline void
    190   1.1        ad amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    191   1.1        ad {
    192   1.1        ad 
    193   1.1        ad 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    194   1.1        ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    195   1.1        ad 	    BUS_SPACE_BARRIER_WRITE);
    196   1.1        ad }
    197   1.1        ad 
    198   1.1        ad static inline void
    199   1.1        ad amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    200   1.1        ad {
    201   1.1        ad 
    202   1.1        ad 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    203   1.1        ad 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    204   1.1        ad 	    BUS_SPACE_BARRIER_WRITE);
    205   1.1        ad }
    206   1.1        ad 
    207   1.1        ad /*
    208   1.1        ad  * Match a supported device.
    209   1.1        ad  */
    210   1.1        ad int
    211   1.1        ad amr_match(struct device *parent, struct cfdata *match, void *aux)
    212   1.1        ad {
    213   1.1        ad 	struct pci_attach_args *pa;
    214   1.1        ad 	pcireg_t s;
    215   1.1        ad 	int i;
    216   1.1        ad 
    217   1.1        ad 	pa = (struct pci_attach_args *)aux;
    218   1.1        ad 
    219   1.1        ad 	/*
    220   1.1        ad 	 * Don't match the device if it's operating in I2O mode.  In this
    221   1.1        ad 	 * case it should be handled by the `iop' driver.
    222   1.1        ad 	 */
    223   1.1        ad 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    224   1.1        ad 		return (0);
    225   1.1        ad 
    226   1.1        ad 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    227   1.1        ad 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    228   1.1        ad 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    229   1.1        ad 		    	break;
    230   1.1        ad 
    231   1.1        ad 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    232   1.1        ad 		return (0);
    233   1.1        ad 
    234   1.1        ad 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    235   1.1        ad 		return (1);
    236   1.1        ad 
    237   1.1        ad 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    238   1.1        ad 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    239   1.1        ad }
    240   1.1        ad 
    241   1.1        ad /*
    242   1.9        ad  * Attach a supported device.
    243   1.1        ad  */
    244   1.1        ad void
    245   1.1        ad amr_attach(struct device *parent, struct device *self, void *aux)
    246   1.1        ad {
    247   1.1        ad 	bus_space_tag_t memt, iot;
    248   1.1        ad 	bus_space_handle_t memh, ioh;
    249   1.1        ad 	struct pci_attach_args *pa;
    250   1.1        ad 	struct amr_attach_args amra;
    251   1.1        ad 	const struct amr_pci_type *apt;
    252   1.1        ad 	struct amr_softc *amr;
    253   1.1        ad 	pci_chipset_tag_t pc;
    254   1.1        ad 	pci_intr_handle_t ih;
    255   1.1        ad 	const char *intrstr;
    256   1.1        ad 	pcireg_t reg;
    257   1.9        ad 	int rseg, i, j, size, rv, memreg, ioreg;
    258  1.16  christos 	bus_size_t memsize = 0, iosize = 0;
    259   1.1        ad         struct amr_ccb *ac;
    260   1.1        ad 
    261   1.8   thorpej 	aprint_naive(": RAID controller\n");
    262   1.8   thorpej 
    263   1.1        ad 	amr = (struct amr_softc *)self;
    264   1.1        ad 	pa = (struct pci_attach_args *)aux;
    265   1.1        ad 	pc = pa->pa_pc;
    266   1.1        ad 
    267   1.1        ad 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    268   1.1        ad 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    269   1.1        ad 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    270   1.1        ad 			break;
    271   1.1        ad 	apt = amr_pci_type + i;
    272   1.1        ad 
    273   1.1        ad 	memreg = ioreg = 0;
    274   1.1        ad 	for (i = 0x10; i <= 0x14; i += 4) {
    275   1.1        ad 		reg = pci_conf_read(pc, pa->pa_tag, i);
    276   1.1        ad 		switch (PCI_MAPREG_TYPE(reg)) {
    277   1.1        ad 		case PCI_MAPREG_TYPE_MEM:
    278   1.9        ad 			if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0)
    279   1.1        ad 				memreg = i;
    280   1.1        ad 			break;
    281   1.1        ad 		case PCI_MAPREG_TYPE_IO:
    282   1.9        ad 			if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0)
    283   1.1        ad 				ioreg = i;
    284   1.1        ad 			break;
    285  1.16  christos 
    286   1.1        ad 		}
    287   1.1        ad 	}
    288   1.1        ad 
    289   1.1        ad 	if (memreg != 0)
    290   1.1        ad 		if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    291   1.1        ad 		    &memt, &memh, NULL, NULL))
    292   1.1        ad 			memreg = 0;
    293   1.1        ad 	if (ioreg != 0)
    294   1.1        ad 		if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    295   1.1        ad 		    &iot, &ioh, NULL, NULL))
    296   1.1        ad 			ioreg = 0;
    297   1.1        ad 
    298   1.1        ad 	if (memreg) {
    299   1.1        ad 		amr->amr_iot = memt;
    300   1.1        ad 		amr->amr_ioh = memh;
    301   1.9        ad 		amr->amr_ios = memsize;
    302   1.1        ad 	} else if (ioreg) {
    303   1.1        ad 		amr->amr_iot = iot;
    304   1.1        ad 		amr->amr_ioh = ioh;
    305   1.9        ad 		amr->amr_ios = iosize;
    306   1.1        ad 	} else {
    307   1.8   thorpej 		aprint_error("can't map control registers\n");
    308   1.9        ad 		amr_teardown(amr);
    309   1.1        ad 		return;
    310   1.1        ad 	}
    311   1.1        ad 
    312   1.9        ad 	amr->amr_flags |= AMRF_PCI_REGS;
    313   1.1        ad 	amr->amr_dmat = pa->pa_dmat;
    314   1.9        ad 	amr->amr_pc = pa->pa_pc;
    315   1.1        ad 
    316   1.1        ad 	/* Enable the device. */
    317   1.1        ad 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    318   1.1        ad 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    319   1.1        ad 	    reg | PCI_COMMAND_MASTER_ENABLE);
    320   1.1        ad 
    321   1.1        ad 	/* Map and establish the interrupt. */
    322   1.1        ad 	if (pci_intr_map(pa, &ih)) {
    323   1.8   thorpej 		aprint_error("can't map interrupt\n");
    324   1.9        ad 		amr_teardown(amr);
    325   1.1        ad 		return;
    326   1.1        ad 	}
    327   1.1        ad 	intrstr = pci_intr_string(pc, ih);
    328   1.1        ad 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    329   1.1        ad 	if (amr->amr_ih == NULL) {
    330   1.8   thorpej 		aprint_error("can't establish interrupt");
    331   1.1        ad 		if (intrstr != NULL)
    332   1.8   thorpej 			aprint_normal(" at %s", intrstr);
    333   1.8   thorpej 		aprint_normal("\n");
    334   1.9        ad 		amr_teardown(amr);
    335   1.1        ad 		return;
    336   1.1        ad 	}
    337   1.9        ad 	amr->amr_flags |= AMRF_PCI_INTR;
    338   1.1        ad 
    339   1.1        ad 	/*
    340   1.1        ad 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    341   1.1        ad 	 * don't like S/G lists to be located below 0x2000, so we allocate
    342   1.1        ad 	 * enough slop to enable us to compensate.
    343   1.1        ad 	 *
    344   1.1        ad 	 * The standard mailbox structure needs to be aligned on a 16-byte
    345   1.1        ad 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    346   1.1        ad 	 * size, which preceeds the standard mailbox.
    347   1.1        ad 	 */
    348   1.1        ad 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    349   1.9        ad 	amr->amr_dmasize = size;
    350   1.1        ad 
    351  1.15      fvdl 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
    352   1.9        ad 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    353   1.8   thorpej 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    354   1.1        ad 		    amr->amr_dv.dv_xname, rv);
    355   1.9        ad 		amr_teardown(amr);
    356   1.1        ad 		return;
    357   1.1        ad 	}
    358   1.9        ad 	amr->amr_flags |= AMRF_DMA_ALLOC;
    359   1.1        ad 
    360   1.9        ad 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    361   1.1        ad 	    (caddr_t *)&amr->amr_mbox,
    362   1.1        ad 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    363   1.8   thorpej 		aprint_error("%s: unable to map buffer, rv = %d\n",
    364   1.1        ad 		    amr->amr_dv.dv_xname, rv);
    365   1.9        ad 		amr_teardown(amr);
    366   1.1        ad 		return;
    367   1.1        ad 	}
    368   1.9        ad 	amr->amr_flags |= AMRF_DMA_MAP;
    369   1.1        ad 
    370   1.1        ad 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    371   1.1        ad 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    372   1.8   thorpej 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    373   1.1        ad 		    amr->amr_dv.dv_xname, rv);
    374   1.9        ad 		amr_teardown(amr);
    375   1.1        ad 		return;
    376   1.1        ad 	}
    377   1.9        ad 	amr->amr_flags |= AMRF_DMA_CREATE;
    378   1.1        ad 
    379   1.1        ad 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    380   1.1        ad 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    381   1.8   thorpej 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    382   1.1        ad 		    amr->amr_dv.dv_xname, rv);
    383   1.9        ad 		amr_teardown(amr);
    384   1.1        ad 		return;
    385   1.1        ad 	}
    386   1.9        ad 	amr->amr_flags |= AMRF_DMA_LOAD;
    387   1.1        ad 
    388   1.1        ad 	memset(amr->amr_mbox, 0, size);
    389   1.1        ad 
    390   1.9        ad 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    391   1.1        ad 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    392   1.1        ad 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
    393   1.1        ad 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    394   1.1        ad 
    395   1.1        ad 	/*
    396   1.1        ad 	 * Allocate and initalise the command control blocks.
    397   1.1        ad 	 */
    398   1.1        ad 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    399   1.1        ad 	amr->amr_ccbs = ac;
    400   1.1        ad 	SLIST_INIT(&amr->amr_ccb_freelist);
    401  1.10        ad 	TAILQ_INIT(&amr->amr_ccb_active);
    402   1.9        ad 	amr->amr_flags |= AMRF_CCBS;
    403   1.9        ad 
    404   1.9        ad 	if (amr_max_xfer == 0) {
    405   1.9        ad 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    406   1.9        ad 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    407   1.9        ad 	}
    408   1.1        ad 
    409   1.1        ad 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    410   1.9        ad 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    411   1.9        ad 		    amr_max_segs, amr_max_xfer, 0,
    412   1.9        ad 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    413   1.1        ad 		if (rv != 0)
    414   1.1        ad 			break;
    415   1.1        ad 
    416   1.1        ad 		ac->ac_ident = i;
    417   1.9        ad 		amr_ccb_free(amr, ac);
    418   1.9        ad 	}
    419   1.9        ad 	if (i != AMR_MAX_CMDS) {
    420   1.9        ad 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    421   1.9        ad 		amr_teardown(amr);
    422   1.9        ad 		return;
    423   1.1        ad 	}
    424   1.1        ad 
    425   1.1        ad 	/*
    426   1.1        ad 	 * Take care of model-specific tasks.
    427   1.1        ad 	 */
    428   1.1        ad 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    429   1.1        ad 		amr->amr_submit = amr_quartz_submit;
    430   1.1        ad 		amr->amr_get_work = amr_quartz_get_work;
    431   1.1        ad 	} else {
    432   1.1        ad 		amr->amr_submit = amr_std_submit;
    433   1.1        ad 		amr->amr_get_work = amr_std_get_work;
    434   1.1        ad 
    435   1.1        ad 		/* Notify the controller of the mailbox location. */
    436   1.9        ad 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    437   1.1        ad 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    438   1.1        ad 
    439   1.1        ad 		/* Clear outstanding interrupts and enable interrupts. */
    440   1.1        ad 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    441   1.1        ad 		amr_outb(amr, AMR_SREG_TOGL,
    442   1.1        ad 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    443   1.1        ad 	}
    444   1.1        ad 
    445   1.1        ad 	/*
    446   1.1        ad 	 * Retrieve parameters, and tell the world about us.
    447   1.1        ad 	 */
    448   1.9        ad 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    449   1.9        ad 	amr->amr_flags |= AMRF_ENQBUF;
    450   1.1        ad 	amr->amr_maxqueuecnt = i;
    451   1.8   thorpej 	aprint_normal(": AMI RAID ");
    452   1.9        ad 	if (amr_init(amr, intrstr, pa) != 0) {
    453   1.9        ad 		amr_teardown(amr);
    454   1.1        ad 		return;
    455   1.9        ad 	}
    456   1.1        ad 
    457   1.1        ad 	/*
    458   1.1        ad 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    459   1.1        ad 	 * driver doesn't trust the controller's reported value, and lockups
    460   1.1        ad 	 * have been seen when we do.
    461   1.1        ad 	 */
    462   1.1        ad 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    463   1.1        ad 	if (amr->amr_maxqueuecnt > i)
    464   1.1        ad 		amr->amr_maxqueuecnt = i;
    465   1.1        ad 
    466   1.1        ad 	/* Set our `shutdownhook' before we start any device activity. */
    467   1.1        ad 	if (amr_sdh == NULL)
    468   1.1        ad 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    469   1.1        ad 
    470   1.1        ad 	/* Attach sub-devices. */
    471   1.9        ad 	for (j = 0; j < amr->amr_numdrives; j++) {
    472   1.9        ad 		if (amr->amr_drive[j].al_size == 0)
    473   1.1        ad 			continue;
    474   1.9        ad 		amra.amra_unit = j;
    475   1.9        ad 		amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
    476   1.9        ad 		    amr_print, amr_submatch);
    477   1.1        ad 	}
    478   1.1        ad 
    479   1.1        ad 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    480  1.13        ad 
    481  1.13        ad 	/* XXX This doesn't work for newer boards yet. */
    482  1.13        ad 	if ((apt->apt_flags & AT_QUARTZ) == 0)
    483  1.13        ad 		kthread_create(amr_thread_create, amr);
    484   1.9        ad }
    485   1.9        ad 
    486   1.9        ad /*
    487   1.9        ad  * Free up resources.
    488   1.9        ad  */
    489   1.9        ad void
    490   1.9        ad amr_teardown(struct amr_softc *amr)
    491   1.9        ad {
    492   1.9        ad 	struct amr_ccb *ac;
    493   1.9        ad 	int fl;
    494   1.9        ad 
    495   1.9        ad 	fl = amr->amr_flags;
    496   1.9        ad 
    497   1.9        ad 	if ((fl & AMRF_THREAD) != 0) {
    498   1.9        ad 		amr->amr_flags |= AMRF_THREAD_EXIT;
    499   1.9        ad 		wakeup(amr_thread);
    500   1.9        ad 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    501   1.9        ad 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    502   1.9        ad 	}
    503   1.9        ad 	if ((fl & AMRF_CCBS) != 0) {
    504   1.9        ad 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    505   1.9        ad 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    506   1.9        ad 		}
    507   1.9        ad 		free(amr->amr_ccbs, M_DEVBUF);
    508   1.9        ad 	}
    509   1.9        ad 	if ((fl & AMRF_ENQBUF) != 0)
    510   1.9        ad 		free(amr->amr_enqbuf, M_DEVBUF);
    511   1.9        ad 	if ((fl & AMRF_DMA_LOAD) != 0)
    512   1.9        ad 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    513   1.9        ad 	if ((fl & AMRF_DMA_MAP) != 0)
    514   1.9        ad 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
    515   1.9        ad 		    amr->amr_dmasize);
    516   1.9        ad 	if ((fl & AMRF_DMA_ALLOC) != 0)
    517   1.9        ad 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    518   1.9        ad 	if ((fl & AMRF_DMA_CREATE) != 0)
    519   1.9        ad 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    520   1.9        ad 	if ((fl & AMRF_PCI_INTR) != 0)
    521   1.9        ad 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    522   1.9        ad 	if ((fl & AMRF_PCI_REGS) != 0)
    523  1.11      fvdl 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    524   1.1        ad }
    525   1.1        ad 
    526   1.1        ad /*
    527   1.1        ad  * Print autoconfiguration message for a sub-device.
    528   1.1        ad  */
    529   1.1        ad int
    530   1.1        ad amr_print(void *aux, const char *pnp)
    531   1.1        ad {
    532   1.1        ad 	struct amr_attach_args *amra;
    533   1.1        ad 
    534   1.1        ad 	amra = (struct amr_attach_args *)aux;
    535   1.1        ad 
    536   1.1        ad 	if (pnp != NULL)
    537   1.7   thorpej 		aprint_normal("block device at %s", pnp);
    538   1.7   thorpej 	aprint_normal(" unit %d", amra->amra_unit);
    539   1.1        ad 	return (UNCONF);
    540   1.1        ad }
    541   1.1        ad 
    542   1.1        ad /*
    543   1.1        ad  * Match a sub-device.
    544   1.1        ad  */
    545   1.1        ad int
    546   1.1        ad amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
    547   1.1        ad {
    548   1.1        ad 	struct amr_attach_args *amra;
    549   1.1        ad 
    550   1.1        ad 	amra = (struct amr_attach_args *)aux;
    551   1.1        ad 
    552   1.1        ad 	if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
    553   1.1        ad 	    cf->amracf_unit != amra->amra_unit)
    554   1.1        ad 		return (0);
    555   1.1        ad 
    556   1.3   thorpej 	return (config_match(parent, cf, aux));
    557   1.1        ad }
    558   1.1        ad 
    559   1.1        ad /*
    560   1.1        ad  * Retrieve operational parameters and describe the controller.
    561   1.1        ad  */
    562   1.1        ad int
    563   1.1        ad amr_init(struct amr_softc *amr, const char *intrstr,
    564   1.1        ad 	 struct pci_attach_args *pa)
    565   1.1        ad {
    566   1.9        ad 	struct amr_adapter_info *aa;
    567   1.1        ad 	struct amr_prodinfo *ap;
    568   1.1        ad 	struct amr_enquiry *ae;
    569   1.1        ad 	struct amr_enquiry3 *aex;
    570   1.1        ad 	const char *prodstr;
    571   1.9        ad 	u_int i, sig, ishp;
    572   1.1        ad 	char buf[64];
    573   1.1        ad 
    574   1.1        ad 	/*
    575   1.1        ad 	 * Try to get 40LD product info, which tells us what the card is
    576   1.1        ad 	 * labelled as.
    577   1.1        ad 	 */
    578   1.9        ad 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    579   1.9        ad 	    amr->amr_enqbuf);
    580   1.1        ad 	if (ap != NULL) {
    581   1.8   thorpej 		aprint_normal("<%.80s>\n", ap->ap_product);
    582   1.1        ad 		if (intrstr != NULL)
    583   1.8   thorpej 			aprint_normal("%s: interrupting at %s\n",
    584   1.1        ad 			    amr->amr_dv.dv_xname, intrstr);
    585   1.8   thorpej 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    586   1.1        ad 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    587   1.1        ad 		    le16toh(ap->ap_memsize));
    588   1.1        ad 
    589   1.1        ad 		amr->amr_maxqueuecnt = ap->ap_maxio;
    590   1.1        ad 
    591   1.1        ad 		/*
    592   1.1        ad 		 * Fetch and record state of logical drives.
    593   1.1        ad 		 */
    594   1.1        ad 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    595   1.9        ad 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    596   1.1        ad 		if (aex == NULL) {
    597   1.8   thorpej 			aprint_error("%s ENQUIRY3 failed\n",
    598   1.8   thorpej 			    amr->amr_dv.dv_xname);
    599   1.1        ad 			return (-1);
    600   1.1        ad 		}
    601   1.1        ad 
    602   1.1        ad 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    603   1.8   thorpej 			aprint_error(
    604   1.8   thorpej 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    605   1.1        ad 			    "\n", amr->amr_dv.dv_xname,
    606   1.1        ad 			    ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
    607   1.1        ad 			amr->amr_numdrives = AMR_MAX_UNITS;
    608   1.1        ad 		} else
    609   1.1        ad 			amr->amr_numdrives = aex->ae_numldrives;
    610   1.1        ad 
    611   1.1        ad 		for (i = 0; i < amr->amr_numdrives; i++) {
    612   1.1        ad 			amr->amr_drive[i].al_size =
    613   1.1        ad 			    le32toh(aex->ae_drivesize[i]);
    614   1.1        ad 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    615   1.1        ad 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    616   1.1        ad 		}
    617   1.1        ad 
    618   1.1        ad 		return (0);
    619   1.1        ad 	}
    620   1.1        ad 
    621   1.1        ad 	/*
    622   1.1        ad 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    623   1.1        ad 	 * found, search for a product description.
    624   1.1        ad 	 */
    625   1.9        ad 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    626   1.9        ad 	if (ae != NULL) {
    627   1.1        ad 		i = 0;
    628   1.1        ad 		sig = le32toh(ae->ae_signature);
    629   1.1        ad 
    630   1.1        ad 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    631   1.1        ad 			if (amr_typestr[i].at_sig == sig)
    632   1.1        ad 				break;
    633   1.1        ad 			i++;
    634   1.1        ad 		}
    635   1.1        ad 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    636   1.1        ad 			sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
    637   1.1        ad 			prodstr = buf;
    638   1.1        ad 		} else
    639   1.1        ad 			prodstr = amr_typestr[i].at_str;
    640   1.1        ad 	} else {
    641   1.9        ad 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    642   1.9        ad 		if (ae == NULL) {
    643   1.8   thorpej 			aprint_error("%s: unsupported controller\n",
    644   1.1        ad 			    amr->amr_dv.dv_xname);
    645   1.1        ad 			return (-1);
    646   1.1        ad 		}
    647   1.1        ad 
    648   1.1        ad 		switch (PCI_PRODUCT(pa->pa_id)) {
    649   1.1        ad 		case PCI_PRODUCT_AMI_MEGARAID:
    650   1.1        ad 			prodstr = "Series 428";
    651   1.1        ad 			break;
    652   1.1        ad 		case PCI_PRODUCT_AMI_MEGARAID2:
    653   1.1        ad 			prodstr = "Series 434";
    654   1.1        ad 			break;
    655   1.1        ad 		default:
    656   1.1        ad 			sprintf(buf, "unknown PCI dev (0x%04x)",
    657   1.1        ad 			    PCI_PRODUCT(pa->pa_id));
    658   1.1        ad 			prodstr = buf;
    659   1.1        ad 			break;
    660   1.1        ad 		}
    661   1.1        ad 	}
    662   1.1        ad 
    663   1.9        ad 	/*
    664   1.9        ad 	 * HP NetRaid controllers have a special encoding of the firmware
    665   1.9        ad 	 * and BIOS versions.  The AMI version seems to have it as strings
    666   1.9        ad 	 * whereas the HP version does it with a leading uppercase character
    667   1.9        ad 	 * and two binary numbers.
    668   1.9        ad 	*/
    669   1.9        ad 	aa = &ae->ae_adapter;
    670   1.9        ad 
    671   1.9        ad 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    672   1.9        ad 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    673   1.9        ad 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    674   1.9        ad 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    675   1.9        ad 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    676   1.9        ad 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    677   1.9        ad 			prodstr = "HP NetRaid 3si";
    678   1.9        ad 		}
    679   1.9        ad 		ishp = 1;
    680   1.9        ad 	} else
    681   1.9        ad 		ishp = 0;
    682   1.9        ad 
    683   1.8   thorpej 	aprint_normal("<%s>\n", prodstr);
    684   1.1        ad 	if (intrstr != NULL)
    685   1.8   thorpej 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    686   1.1        ad 		    intrstr);
    687   1.1        ad 
    688   1.9        ad 	if (ishp)
    689   1.9        ad 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    690   1.9        ad 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    691   1.9        ad 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    692   1.9        ad 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    693   1.9        ad 	else
    694   1.9        ad 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    695   1.9        ad 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    696   1.9        ad 		    aa->aa_memorysize);
    697   1.9        ad 
    698   1.9        ad 	amr->amr_maxqueuecnt = aa->aa_maxio;
    699   1.1        ad 
    700   1.1        ad 	/*
    701   1.1        ad 	 * Record state of logical drives.
    702   1.1        ad 	 */
    703   1.1        ad 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    704   1.8   thorpej 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    705   1.1        ad 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    706   1.1        ad 		    AMR_MAX_UNITS);
    707   1.1        ad 		amr->amr_numdrives = AMR_MAX_UNITS;
    708   1.1        ad 	} else
    709   1.1        ad 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    710   1.1        ad 
    711   1.1        ad 	for (i = 0; i < AMR_MAX_UNITS; i++) {
    712   1.1        ad 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    713   1.1        ad 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    714   1.1        ad 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    715   1.1        ad 	}
    716   1.1        ad 
    717   1.1        ad 	return (0);
    718   1.1        ad }
    719   1.1        ad 
    720   1.1        ad /*
    721   1.1        ad  * Flush the internal cache on each configured controller.  Called at
    722   1.1        ad  * shutdown time.
    723   1.1        ad  */
    724   1.1        ad void
    725   1.1        ad amr_shutdown(void *cookie)
    726   1.1        ad {
    727   1.1        ad         extern struct cfdriver amr_cd;
    728   1.1        ad 	struct amr_softc *amr;
    729   1.1        ad 	struct amr_ccb *ac;
    730   1.9        ad 	int i, rv, s;
    731   1.1        ad 
    732   1.1        ad 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    733   1.1        ad 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    734   1.1        ad 			continue;
    735   1.1        ad 
    736   1.1        ad 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    737   1.9        ad 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    738   1.9        ad 			s = splbio();
    739   1.1        ad 			rv = amr_ccb_poll(amr, ac, 30000);
    740   1.9        ad 			splx(s);
    741   1.1        ad 			amr_ccb_free(amr, ac);
    742   1.1        ad 		}
    743   1.1        ad 		if (rv != 0)
    744   1.1        ad 			printf("%s: unable to flush cache (%d)\n",
    745   1.1        ad 			    amr->amr_dv.dv_xname, rv);
    746   1.1        ad 	}
    747   1.1        ad }
    748   1.1        ad 
    749   1.1        ad /*
    750   1.1        ad  * Interrupt service routine.
    751   1.1        ad  */
    752   1.1        ad int
    753   1.1        ad amr_intr(void *cookie)
    754   1.1        ad {
    755   1.1        ad 	struct amr_softc *amr;
    756   1.1        ad 	struct amr_ccb *ac;
    757   1.9        ad 	struct amr_mailbox_resp mbox;
    758   1.1        ad 	u_int i, forus, idx;
    759   1.1        ad 
    760   1.1        ad 	amr = cookie;
    761   1.1        ad 	forus = 0;
    762   1.1        ad 
    763   1.1        ad 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    764   1.1        ad 		/* Iterate over completed commands in this result. */
    765   1.1        ad 		for (i = 0; i < mbox.mb_nstatus; i++) {
    766   1.1        ad 			idx = mbox.mb_completed[i] - 1;
    767   1.1        ad 			ac = amr->amr_ccbs + idx;
    768   1.1        ad 
    769   1.1        ad 			if (idx >= amr->amr_maxqueuecnt) {
    770   1.1        ad 				printf("%s: bad status (bogus ID: %u=%u)\n",
    771   1.1        ad 				    amr->amr_dv.dv_xname, i, idx);
    772   1.1        ad 				continue;
    773   1.1        ad 			}
    774   1.1        ad 
    775   1.1        ad 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    776   1.1        ad 				printf("%s: bad status (not active; 0x04%x)\n",
    777   1.1        ad 				    amr->amr_dv.dv_xname, ac->ac_flags);
    778   1.1        ad 				continue;
    779   1.1        ad 			}
    780   1.1        ad 
    781   1.1        ad 			ac->ac_status = mbox.mb_status;
    782   1.1        ad 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    783   1.1        ad 			    AC_COMPLETE;
    784  1.10        ad 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    785  1.10        ad 
    786  1.10        ad 			if ((ac->ac_flags & AC_MOAN) != 0)
    787  1.10        ad 				printf("%s: ccb %d completed\n",
    788  1.10        ad 				    amr->amr_dv.dv_xname, ac->ac_ident);
    789   1.1        ad 
    790   1.1        ad 			/* Pass notification to upper layers. */
    791   1.1        ad 			if (ac->ac_handler != NULL)
    792   1.1        ad 				(*ac->ac_handler)(ac);
    793   1.9        ad 			else
    794   1.9        ad 				wakeup(ac);
    795   1.1        ad 		}
    796   1.1        ad 		forus = 1;
    797   1.1        ad 	}
    798   1.1        ad 
    799   1.1        ad 	if (forus)
    800   1.1        ad 		amr_ccb_enqueue(amr, NULL);
    801   1.9        ad 
    802   1.1        ad 	return (forus);
    803   1.1        ad }
    804   1.1        ad 
    805   1.1        ad /*
    806   1.9        ad  * Create the watchdog thread.
    807   1.9        ad  */
    808   1.9        ad void
    809   1.9        ad amr_thread_create(void *cookie)
    810   1.9        ad {
    811   1.9        ad 	struct amr_softc *amr;
    812   1.9        ad 	int rv;
    813   1.9        ad 
    814   1.9        ad 	amr = cookie;
    815   1.9        ad 
    816   1.9        ad 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    817   1.9        ad 		amr->amr_flags ^= AMRF_THREAD_EXIT;
    818   1.9        ad 		wakeup(&amr->amr_flags);
    819   1.9        ad 		return;
    820   1.9        ad 	}
    821   1.9        ad 
    822   1.9        ad 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
    823   1.9        ad 	    amr->amr_dv.dv_xname);
    824   1.9        ad  	if (rv != 0)
    825   1.9        ad 		aprint_error("%s: unable to create thread (%d)",
    826   1.9        ad  		    amr->amr_dv.dv_xname, rv);
    827   1.9        ad  	else
    828   1.9        ad  		amr->amr_flags |= AMRF_THREAD;
    829   1.9        ad }
    830   1.9        ad 
    831   1.9        ad /*
    832   1.9        ad  * Watchdog thread.
    833   1.9        ad  */
    834   1.9        ad void
    835   1.9        ad amr_thread(void *cookie)
    836   1.9        ad {
    837   1.9        ad 	struct amr_softc *amr;
    838   1.9        ad 	struct amr_ccb *ac;
    839   1.9        ad 	struct amr_logdrive *al;
    840   1.9        ad 	struct amr_enquiry *ae;
    841  1.10        ad 	time_t curtime;
    842   1.9        ad 	int rv, i, s;
    843   1.9        ad 
    844   1.9        ad 	amr = cookie;
    845   1.9        ad 	ae = amr->amr_enqbuf;
    846   1.9        ad 
    847   1.9        ad 	for (;;) {
    848   1.9        ad 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    849   1.9        ad 
    850   1.9        ad 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    851   1.9        ad 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    852   1.9        ad 			wakeup(&amr->amr_flags);
    853   1.9        ad 			kthread_exit(0);
    854   1.9        ad 		}
    855   1.9        ad 
    856   1.9        ad 		s = splbio();
    857   1.9        ad 		amr_intr(cookie);
    858  1.10        ad 		curtime = (time_t)mono_time.tv_sec;
    859  1.13        ad 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    860  1.13        ad 		while (ac != NULL) {
    861  1.10        ad 			if (ac->ac_start_time + AMR_TIMEOUT > curtime)
    862  1.10        ad 				break;
    863  1.10        ad 			if ((ac->ac_flags & AC_MOAN) == 0) {
    864  1.10        ad 				printf("%s: ccb %d timed out; mailbox:\n",
    865  1.10        ad 				    amr->amr_dv.dv_xname, ac->ac_ident);
    866  1.10        ad 				amr_ccb_dump(amr, ac);
    867  1.10        ad 				ac->ac_flags |= AC_MOAN;
    868  1.10        ad 			}
    869  1.13        ad 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    870  1.10        ad 		}
    871   1.9        ad 		splx(s);
    872   1.9        ad 
    873   1.9        ad 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    874   1.9        ad 			printf("%s: ccb_alloc failed (%d)\n",
    875   1.9        ad  			    amr->amr_dv.dv_xname, rv);
    876   1.9        ad 			continue;
    877   1.9        ad 		}
    878   1.9        ad 
    879   1.9        ad 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    880   1.9        ad 
    881   1.9        ad 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    882   1.9        ad 		    AMR_ENQUIRY_BUFSIZE, 0);
    883   1.9        ad 		if (rv != 0) {
    884   1.9        ad 			printf("%s: ccb_map failed (%d)\n",
    885   1.9        ad  			    amr->amr_dv.dv_xname, rv);
    886   1.9        ad 			amr_ccb_free(amr, ac);
    887   1.9        ad 			continue;
    888   1.9        ad 		}
    889   1.9        ad 
    890   1.9        ad 		rv = amr_ccb_wait(amr, ac);
    891   1.9        ad 		amr_ccb_unmap(amr, ac);
    892   1.9        ad 		if (rv != 0) {
    893   1.9        ad 			printf("%s: enquiry failed (st=%d)\n",
    894   1.9        ad  			    amr->amr_dv.dv_xname, ac->ac_status);
    895   1.9        ad 			continue;
    896   1.9        ad 		}
    897   1.9        ad 		amr_ccb_free(amr, ac);
    898   1.9        ad 
    899   1.9        ad 		al = amr->amr_drive;
    900   1.9        ad 		for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
    901   1.9        ad 			if (al->al_dv == NULL)
    902   1.9        ad 				continue;
    903   1.9        ad 			if (al->al_state == ae->ae_ldrv.al_state[i])
    904   1.9        ad 				continue;
    905   1.9        ad 
    906   1.9        ad 			printf("%s: state changed: %s -> %s\n",
    907   1.9        ad 			    al->al_dv->dv_xname,
    908   1.9        ad 			    amr_drive_state(al->al_state, NULL),
    909   1.9        ad 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    910   1.9        ad 
    911   1.9        ad 			al->al_state = ae->ae_ldrv.al_state[i];
    912   1.9        ad 		}
    913   1.9        ad 	}
    914   1.9        ad }
    915   1.9        ad 
    916   1.9        ad /*
    917   1.9        ad  * Return a text description of a logical drive's current state.
    918   1.9        ad  */
    919   1.9        ad const char *
    920   1.9        ad amr_drive_state(int state, int *happy)
    921   1.9        ad {
    922   1.9        ad 	const char *str;
    923   1.9        ad 
    924   1.9        ad 	state = AMR_DRV_CURSTATE(state);
    925   1.9        ad 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    926   1.9        ad 		if (happy)
    927   1.9        ad 			*happy = 1;
    928   1.9        ad 		str = "status unknown";
    929   1.9        ad 	} else {
    930   1.9        ad 		if (happy)
    931   1.9        ad 			*happy = amr_dstate[state].ds_happy;
    932   1.9        ad 		str = amr_dstate[state].ds_descr;
    933   1.9        ad 	}
    934   1.9        ad 
    935   1.9        ad 	return (str);
    936   1.9        ad }
    937   1.9        ad 
    938   1.9        ad /*
    939   1.1        ad  * Run a generic enquiry-style command.
    940   1.1        ad  */
    941   1.1        ad void *
    942   1.1        ad amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    943   1.9        ad 	    u_int8_t cmdqual, void *buf)
    944   1.1        ad {
    945   1.1        ad 	struct amr_ccb *ac;
    946   1.1        ad 	u_int8_t *mb;
    947   1.1        ad 	int rv;
    948   1.1        ad 
    949   1.1        ad 	if (amr_ccb_alloc(amr, &ac) != 0)
    950   1.1        ad 		return (NULL);
    951   1.1        ad 
    952   1.1        ad 	/* Build the command proper. */
    953   1.9        ad 	mb = (u_int8_t *)&ac->ac_cmd;
    954   1.1        ad 	mb[0] = cmd;
    955   1.1        ad 	mb[2] = cmdsub;
    956   1.1        ad 	mb[3] = cmdqual;
    957   1.1        ad 
    958   1.9        ad 	rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
    959   1.9        ad 	if (rv == 0) {
    960   1.1        ad 		rv = amr_ccb_poll(amr, ac, 2000);
    961   1.1        ad 		amr_ccb_unmap(amr, ac);
    962   1.1        ad 	}
    963   1.1        ad 	amr_ccb_free(amr, ac);
    964   1.1        ad 
    965   1.9        ad 	return (rv ? NULL : buf);
    966   1.1        ad }
    967   1.1        ad 
    968   1.1        ad /*
    969   1.1        ad  * Allocate and initialise a CCB.
    970   1.1        ad  */
    971   1.1        ad int
    972   1.1        ad amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    973   1.1        ad {
    974   1.1        ad 	int s;
    975   1.1        ad 
    976   1.1        ad 	s = splbio();
    977   1.9        ad 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    978   1.1        ad 		splx(s);
    979   1.1        ad 		return (EAGAIN);
    980   1.1        ad 	}
    981   1.1        ad 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    982   1.1        ad 	splx(s);
    983   1.1        ad 
    984   1.1        ad 	return (0);
    985   1.1        ad }
    986   1.1        ad 
    987   1.1        ad /*
    988   1.1        ad  * Free a CCB.
    989   1.1        ad  */
    990   1.1        ad void
    991   1.1        ad amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    992   1.1        ad {
    993   1.1        ad 	int s;
    994   1.1        ad 
    995   1.9        ad 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    996   1.9        ad 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    997   1.9        ad 	ac->ac_cmd.mb_busy = 1;
    998   1.9        ad 	ac->ac_handler = NULL;
    999   1.1        ad 	ac->ac_flags = 0;
   1000   1.1        ad 
   1001   1.1        ad 	s = splbio();
   1002   1.1        ad 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
   1003   1.1        ad 	splx(s);
   1004   1.1        ad }
   1005   1.1        ad 
   1006   1.1        ad /*
   1007   1.1        ad  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1008   1.1        ad  * the order that they were enqueued and try to submit their command blocks
   1009   1.1        ad  * to the controller for execution.
   1010   1.1        ad  */
   1011   1.1        ad void
   1012   1.1        ad amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1013   1.1        ad {
   1014   1.1        ad 	int s;
   1015   1.1        ad 
   1016   1.1        ad 	s = splbio();
   1017   1.1        ad 
   1018   1.1        ad 	if (ac != NULL)
   1019   1.1        ad 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1020   1.1        ad 
   1021   1.1        ad 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1022   1.1        ad 		if ((*amr->amr_submit)(amr, ac) != 0)
   1023   1.1        ad 			break;
   1024   1.2     lukem 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1025  1.10        ad 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1026   1.1        ad 	}
   1027   1.1        ad 
   1028   1.1        ad 	splx(s);
   1029   1.1        ad }
   1030   1.1        ad 
   1031   1.1        ad /*
   1032   1.1        ad  * Map the specified CCB's data buffer onto the bus, and fill the
   1033   1.1        ad  * scatter-gather list.
   1034   1.1        ad  */
   1035   1.1        ad int
   1036   1.1        ad amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1037   1.1        ad 	    int out)
   1038   1.1        ad {
   1039   1.1        ad 	struct amr_sgentry *sge;
   1040   1.9        ad 	struct amr_mailbox_cmd *mb;
   1041   1.1        ad 	int nsegs, i, rv, sgloff;
   1042   1.1        ad 	bus_dmamap_t xfer;
   1043   1.1        ad 
   1044   1.1        ad 	xfer = ac->ac_xfer_map;
   1045   1.1        ad 
   1046   1.1        ad 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1047   1.1        ad 	    BUS_DMA_NOWAIT);
   1048   1.1        ad 	if (rv != 0)
   1049   1.1        ad 		return (rv);
   1050   1.1        ad 
   1051   1.9        ad 	mb = &ac->ac_cmd;
   1052   1.1        ad 	ac->ac_xfer_size = size;
   1053   1.1        ad 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
   1054   1.1        ad 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1055   1.1        ad 
   1056   1.1        ad 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1057   1.1        ad 	nsegs = xfer->dm_nsegs;
   1058   1.1        ad 	if (nsegs == 1) {
   1059   1.1        ad 		mb->mb_nsgelem = 0;
   1060   1.1        ad 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1061   1.1        ad 		ac->ac_flags |= AC_NOSGL;
   1062   1.1        ad 	} else {
   1063   1.1        ad 		mb->mb_nsgelem = nsegs;
   1064   1.1        ad 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1065   1.1        ad 
   1066   1.1        ad 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
   1067   1.1        ad 		for (i = 0; i < nsegs; i++, sge++) {
   1068   1.1        ad 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1069   1.1        ad 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1070   1.1        ad 		}
   1071   1.1        ad 	}
   1072   1.1        ad 
   1073   1.1        ad 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
   1074   1.1        ad 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
   1075   1.1        ad 
   1076   1.1        ad 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1077   1.1        ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1078   1.1        ad 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1079   1.1        ad 
   1080   1.1        ad 	return (0);
   1081   1.1        ad }
   1082   1.1        ad 
   1083   1.1        ad /*
   1084   1.1        ad  * Unmap the specified CCB's data buffer.
   1085   1.1        ad  */
   1086   1.1        ad void
   1087   1.1        ad amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1088   1.1        ad {
   1089   1.1        ad 
   1090   1.1        ad 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1091   1.1        ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1092   1.1        ad 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1093   1.1        ad 		    BUS_DMASYNC_POSTWRITE);
   1094   1.1        ad 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1095   1.1        ad 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
   1096   1.1        ad 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1097   1.1        ad 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1098   1.1        ad }
   1099   1.1        ad 
   1100   1.1        ad /*
   1101   1.1        ad  * Submit a command to the controller and poll on completion.  Return
   1102   1.1        ad  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1103   1.1        ad  */
   1104   1.1        ad int
   1105   1.1        ad amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1106   1.1        ad {
   1107   1.1        ad 	int rv;
   1108   1.1        ad 
   1109   1.1        ad 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1110   1.1        ad 		return (rv);
   1111  1.10        ad 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1112   1.1        ad 
   1113   1.1        ad 	for (timo *= 10; timo != 0; timo--) {
   1114   1.1        ad 		amr_intr(amr);
   1115   1.1        ad 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1116   1.1        ad 			break;
   1117   1.1        ad 		DELAY(100);
   1118   1.1        ad 	}
   1119   1.1        ad 
   1120   1.1        ad 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1121   1.1        ad }
   1122   1.1        ad 
   1123   1.1        ad /*
   1124   1.9        ad  * Submit a command to the controller and sleep on completion.  Return
   1125   1.9        ad  * non-zero on error.
   1126   1.9        ad  */
   1127   1.9        ad int
   1128   1.9        ad amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1129   1.9        ad {
   1130   1.9        ad 	int s;
   1131   1.9        ad 
   1132   1.9        ad 	s = splbio();
   1133   1.9        ad 	amr_ccb_enqueue(amr, ac);
   1134   1.9        ad 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1135   1.9        ad 	splx(s);
   1136   1.9        ad 
   1137   1.9        ad 	return (ac->ac_status != 0 ? EIO : 0);
   1138   1.9        ad }
   1139   1.9        ad 
   1140   1.9        ad /*
   1141   1.1        ad  * Wait for the mailbox to become available.
   1142   1.1        ad  */
   1143   1.1        ad int
   1144   1.1        ad amr_mbox_wait(struct amr_softc *amr)
   1145   1.1        ad {
   1146   1.1        ad 	int timo;
   1147   1.1        ad 
   1148   1.1        ad 	for (timo = 10000; timo != 0; timo--) {
   1149   1.9        ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1150   1.9        ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1151   1.9        ad 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1152   1.1        ad 			break;
   1153   1.1        ad 		DELAY(100);
   1154   1.1        ad 	}
   1155   1.1        ad 
   1156   1.9        ad 	if (timo == 0)
   1157   1.1        ad 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1158   1.1        ad 
   1159   1.9        ad 	return (timo != 0 ? 0 : EAGAIN);
   1160   1.1        ad }
   1161   1.1        ad 
   1162   1.1        ad /*
   1163   1.1        ad  * Tell the controller that the mailbox contains a valid command.  Must be
   1164   1.1        ad  * called with interrupts blocked.
   1165   1.1        ad  */
   1166   1.1        ad int
   1167   1.1        ad amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1168   1.1        ad {
   1169   1.1        ad 	u_int32_t v;
   1170   1.1        ad 
   1171   1.9        ad 	amr->amr_mbox->mb_poll = 0;
   1172   1.9        ad 	amr->amr_mbox->mb_ack = 0;
   1173   1.9        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1174   1.9        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1175   1.9        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1176   1.9        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1177   1.9        ad 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1178   1.9        ad 		return (EAGAIN);
   1179   1.9        ad 
   1180   1.1        ad 	v = amr_inl(amr, AMR_QREG_IDB);
   1181  1.13        ad 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1182   1.9        ad 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1183   1.9        ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1184   1.9        ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1185   1.9        ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1186   1.9        ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1187   1.9        ad 		return (EAGAIN);
   1188   1.9        ad 	}
   1189   1.1        ad 
   1190  1.10        ad 	amr->amr_mbox->mb_segment = 0;
   1191  1.10        ad 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1192  1.10        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1193  1.10        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1194  1.10        ad 
   1195  1.10        ad 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1196   1.1        ad 	ac->ac_flags |= AC_ACTIVE;
   1197  1.13        ad 	amr_outl(amr, AMR_QREG_IDB,
   1198  1.13        ad 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1199   1.1        ad 	return (0);
   1200   1.1        ad }
   1201   1.1        ad 
   1202   1.1        ad int
   1203   1.1        ad amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1204   1.1        ad {
   1205   1.1        ad 
   1206   1.9        ad 	amr->amr_mbox->mb_poll = 0;
   1207   1.9        ad 	amr->amr_mbox->mb_ack = 0;
   1208   1.9        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1209   1.9        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1210   1.9        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1211   1.9        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1212   1.9        ad 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1213   1.9        ad 		return (EAGAIN);
   1214   1.9        ad 
   1215   1.9        ad 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1216   1.9        ad 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1217   1.9        ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1218   1.9        ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1219   1.9        ad 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1220   1.9        ad 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1221   1.9        ad 		return (EAGAIN);
   1222   1.9        ad 	}
   1223   1.1        ad 
   1224  1.10        ad 	amr->amr_mbox->mb_segment = 0;
   1225  1.10        ad 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1226  1.10        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1227  1.10        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1228  1.10        ad 
   1229  1.10        ad 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1230   1.1        ad 	ac->ac_flags |= AC_ACTIVE;
   1231   1.1        ad 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1232   1.1        ad 	return (0);
   1233   1.1        ad }
   1234   1.1        ad 
   1235   1.1        ad /*
   1236   1.1        ad  * Claim any work that the controller has completed; acknowledge completion,
   1237   1.1        ad  * save details of the completion in (mbsave).  Must be called with
   1238   1.1        ad  * interrupts blocked.
   1239   1.1        ad  */
   1240   1.1        ad int
   1241   1.9        ad amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1242   1.1        ad {
   1243   1.1        ad 
   1244   1.1        ad 	/* Work waiting for us? */
   1245   1.1        ad 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1246   1.1        ad 		return (-1);
   1247   1.1        ad 
   1248   1.9        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1249   1.9        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1250   1.9        ad 
   1251   1.1        ad 	/* Save the mailbox, which contains a list of completed commands. */
   1252   1.9        ad 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1253   1.9        ad 
   1254   1.9        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1255   1.9        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1256   1.1        ad 
   1257   1.1        ad 	/* Ack the interrupt and mailbox transfer. */
   1258   1.1        ad 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1259   1.9        ad 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1260   1.1        ad 
   1261   1.1        ad 	/*
   1262   1.1        ad 	 * This waits for the controller to notice that we've taken the
   1263   1.1        ad 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1264   1.1        ad 	 * but if we remove this code, we stop completing commands under
   1265   1.1        ad 	 * load.
   1266   1.1        ad 	 *
   1267   1.1        ad 	 * Peter J says we shouldn't do this.  The documentation says we
   1268   1.1        ad 	 * should.  Who is right?
   1269   1.1        ad 	 */
   1270   1.1        ad 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1271  1.13        ad 		DELAY(10);
   1272   1.1        ad 
   1273   1.1        ad 	return (0);
   1274   1.1        ad }
   1275   1.1        ad 
   1276   1.1        ad int
   1277   1.9        ad amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1278   1.1        ad {
   1279   1.1        ad 	u_int8_t istat;
   1280   1.1        ad 
   1281   1.1        ad 	/* Check for valid interrupt status. */
   1282   1.1        ad 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1283   1.1        ad 		return (-1);
   1284   1.1        ad 
   1285   1.1        ad 	/* Ack the interrupt. */
   1286   1.1        ad 	amr_outb(amr, AMR_SREG_INTR, istat);
   1287   1.1        ad 
   1288   1.9        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1289   1.9        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1290   1.9        ad 
   1291   1.1        ad 	/* Save mailbox, which contains a list of completed commands. */
   1292   1.9        ad 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1293   1.9        ad 
   1294   1.9        ad 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1295   1.9        ad 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1296   1.1        ad 
   1297   1.1        ad 	/* Ack mailbox transfer. */
   1298   1.1        ad 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1299   1.1        ad 
   1300   1.1        ad 	return (0);
   1301  1.10        ad }
   1302  1.10        ad 
   1303  1.10        ad void
   1304  1.10        ad amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1305  1.10        ad {
   1306  1.10        ad 	int i;
   1307  1.10        ad 
   1308  1.10        ad 	printf("%s: ", amr->amr_dv.dv_xname);
   1309  1.10        ad 	for (i = 0; i < 4; i++)
   1310  1.10        ad 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1311  1.10        ad 	printf("\n");
   1312   1.1        ad }
   1313