amr.c revision 1.19.2.1 1 1.19.2.1 tron /* $NetBSD: amr.c,v 1.19.2.1 2004/09/11 13:27:29 tron Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.9 ad * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 ad * by Andrew Doran.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1 ad * must display the following acknowledgement:
20 1.1 ad * This product includes software developed by the NetBSD
21 1.1 ad * Foundation, Inc. and its contributors.
22 1.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 ad * contributors may be used to endorse or promote products derived
24 1.1 ad * from this software without specific prior written permission.
25 1.1 ad *
26 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1 ad */
38 1.1 ad
39 1.1 ad /*-
40 1.1 ad * Copyright (c) 1999,2000 Michael Smith
41 1.1 ad * Copyright (c) 2000 BSDi
42 1.1 ad * All rights reserved.
43 1.1 ad *
44 1.1 ad * Redistribution and use in source and binary forms, with or without
45 1.1 ad * modification, are permitted provided that the following conditions
46 1.1 ad * are met:
47 1.1 ad * 1. Redistributions of source code must retain the above copyright
48 1.1 ad * notice, this list of conditions and the following disclaimer.
49 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 ad * notice, this list of conditions and the following disclaimer in the
51 1.1 ad * documentation and/or other materials provided with the distribution.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 1.1 ad * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 1.1 ad */
68 1.1 ad
69 1.1 ad /*
70 1.1 ad * Driver for AMI RAID controllers.
71 1.1 ad */
72 1.1 ad
73 1.1 ad #include <sys/cdefs.h>
74 1.19.2.1 tron __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.19.2.1 2004/09/11 13:27:29 tron Exp $");
75 1.1 ad
76 1.1 ad #include <sys/param.h>
77 1.1 ad #include <sys/systm.h>
78 1.1 ad #include <sys/kernel.h>
79 1.1 ad #include <sys/device.h>
80 1.1 ad #include <sys/queue.h>
81 1.1 ad #include <sys/proc.h>
82 1.1 ad #include <sys/buf.h>
83 1.1 ad #include <sys/malloc.h>
84 1.9 ad #include <sys/kthread.h>
85 1.1 ad
86 1.1 ad #include <uvm/uvm_extern.h>
87 1.1 ad
88 1.1 ad #include <machine/endian.h>
89 1.1 ad #include <machine/bus.h>
90 1.1 ad
91 1.1 ad #include <dev/pci/pcidevs.h>
92 1.1 ad #include <dev/pci/pcivar.h>
93 1.1 ad #include <dev/pci/amrreg.h>
94 1.1 ad #include <dev/pci/amrvar.h>
95 1.1 ad
96 1.1 ad void amr_attach(struct device *, struct device *, void *);
97 1.10 ad void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
98 1.9 ad void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
99 1.1 ad int amr_init(struct amr_softc *, const char *,
100 1.1 ad struct pci_attach_args *pa);
101 1.1 ad int amr_intr(void *);
102 1.1 ad int amr_match(struct device *, struct cfdata *, void *);
103 1.1 ad int amr_print(void *, const char *);
104 1.1 ad void amr_shutdown(void *);
105 1.1 ad int amr_submatch(struct device *, struct cfdata *, void *);
106 1.9 ad void amr_teardown(struct amr_softc *);
107 1.9 ad void amr_thread(void *);
108 1.9 ad void amr_thread_create(void *);
109 1.1 ad
110 1.1 ad int amr_mbox_wait(struct amr_softc *);
111 1.9 ad int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
112 1.1 ad int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
113 1.9 ad int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
114 1.1 ad int amr_std_submit(struct amr_softc *, struct amr_ccb *);
115 1.1 ad
116 1.1 ad static inline u_int8_t amr_inb(struct amr_softc *, int);
117 1.1 ad static inline u_int32_t amr_inl(struct amr_softc *, int);
118 1.1 ad static inline void amr_outb(struct amr_softc *, int, u_int8_t);
119 1.1 ad static inline void amr_outl(struct amr_softc *, int, u_int32_t);
120 1.1 ad
121 1.5 thorpej CFATTACH_DECL(amr, sizeof(struct amr_softc),
122 1.6 thorpej amr_match, amr_attach, NULL, NULL);
123 1.1 ad
124 1.1 ad #define AT_QUARTZ 0x01 /* `Quartz' chipset */
125 1.1 ad #define AT_SIG 0x02 /* Check for signature */
126 1.1 ad
127 1.1 ad struct amr_pci_type {
128 1.1 ad u_short apt_vendor;
129 1.1 ad u_short apt_product;
130 1.1 ad u_short apt_flags;
131 1.9 ad } const amr_pci_type[] = {
132 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
133 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
134 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
135 1.19.2.1 tron { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
136 1.12 matt { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
137 1.12 matt { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
138 1.14 martti { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
139 1.1 ad };
140 1.1 ad
141 1.1 ad struct amr_typestr {
142 1.1 ad const char *at_str;
143 1.1 ad int at_sig;
144 1.9 ad } const amr_typestr[] = {
145 1.1 ad { "Series 431", AMR_SIG_431 },
146 1.1 ad { "Series 438", AMR_SIG_438 },
147 1.1 ad { "Series 466", AMR_SIG_466 },
148 1.1 ad { "Series 467", AMR_SIG_467 },
149 1.1 ad { "Series 490", AMR_SIG_490 },
150 1.1 ad { "Series 762", AMR_SIG_762 },
151 1.1 ad { "HP NetRAID (T5)", AMR_SIG_T5 },
152 1.1 ad { "HP NetRAID (T7)", AMR_SIG_T7 },
153 1.1 ad };
154 1.1 ad
155 1.9 ad struct {
156 1.9 ad const char *ds_descr;
157 1.9 ad int ds_happy;
158 1.9 ad } const amr_dstate[] = {
159 1.9 ad { "offline", 0 },
160 1.9 ad { "degraded", 1 },
161 1.9 ad { "optimal", 1 },
162 1.9 ad { "online", 1 },
163 1.9 ad { "failed", 0 },
164 1.9 ad { "rebuilding", 1 },
165 1.9 ad { "hotspare", 0 },
166 1.9 ad };
167 1.9 ad
168 1.9 ad void *amr_sdh;
169 1.9 ad int amr_max_segs;
170 1.9 ad int amr_max_xfer;
171 1.1 ad
172 1.1 ad static inline u_int8_t
173 1.1 ad amr_inb(struct amr_softc *amr, int off)
174 1.1 ad {
175 1.1 ad
176 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
177 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
178 1.1 ad return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
179 1.1 ad }
180 1.1 ad
181 1.1 ad static inline u_int32_t
182 1.1 ad amr_inl(struct amr_softc *amr, int off)
183 1.1 ad {
184 1.1 ad
185 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
186 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
187 1.1 ad return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
188 1.1 ad }
189 1.1 ad
190 1.1 ad static inline void
191 1.1 ad amr_outb(struct amr_softc *amr, int off, u_int8_t val)
192 1.1 ad {
193 1.1 ad
194 1.1 ad bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
195 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
196 1.1 ad BUS_SPACE_BARRIER_WRITE);
197 1.1 ad }
198 1.1 ad
199 1.1 ad static inline void
200 1.1 ad amr_outl(struct amr_softc *amr, int off, u_int32_t val)
201 1.1 ad {
202 1.1 ad
203 1.1 ad bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
204 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
205 1.1 ad BUS_SPACE_BARRIER_WRITE);
206 1.1 ad }
207 1.1 ad
208 1.1 ad /*
209 1.1 ad * Match a supported device.
210 1.1 ad */
211 1.1 ad int
212 1.1 ad amr_match(struct device *parent, struct cfdata *match, void *aux)
213 1.1 ad {
214 1.1 ad struct pci_attach_args *pa;
215 1.1 ad pcireg_t s;
216 1.1 ad int i;
217 1.1 ad
218 1.1 ad pa = (struct pci_attach_args *)aux;
219 1.1 ad
220 1.1 ad /*
221 1.1 ad * Don't match the device if it's operating in I2O mode. In this
222 1.1 ad * case it should be handled by the `iop' driver.
223 1.1 ad */
224 1.1 ad if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
225 1.1 ad return (0);
226 1.1 ad
227 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
228 1.1 ad if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
229 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
230 1.1 ad break;
231 1.1 ad
232 1.1 ad if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
233 1.1 ad return (0);
234 1.1 ad
235 1.1 ad if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
236 1.1 ad return (1);
237 1.1 ad
238 1.1 ad s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
239 1.1 ad return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
240 1.1 ad }
241 1.1 ad
242 1.1 ad /*
243 1.9 ad * Attach a supported device.
244 1.1 ad */
245 1.1 ad void
246 1.1 ad amr_attach(struct device *parent, struct device *self, void *aux)
247 1.1 ad {
248 1.1 ad struct pci_attach_args *pa;
249 1.1 ad struct amr_attach_args amra;
250 1.1 ad const struct amr_pci_type *apt;
251 1.1 ad struct amr_softc *amr;
252 1.1 ad pci_chipset_tag_t pc;
253 1.1 ad pci_intr_handle_t ih;
254 1.1 ad const char *intrstr;
255 1.1 ad pcireg_t reg;
256 1.9 ad int rseg, i, j, size, rv, memreg, ioreg;
257 1.1 ad struct amr_ccb *ac;
258 1.1 ad
259 1.8 thorpej aprint_naive(": RAID controller\n");
260 1.8 thorpej
261 1.1 ad amr = (struct amr_softc *)self;
262 1.1 ad pa = (struct pci_attach_args *)aux;
263 1.1 ad pc = pa->pa_pc;
264 1.1 ad
265 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
266 1.1 ad if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
267 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
268 1.1 ad break;
269 1.1 ad apt = amr_pci_type + i;
270 1.1 ad
271 1.1 ad memreg = ioreg = 0;
272 1.1 ad for (i = 0x10; i <= 0x14; i += 4) {
273 1.1 ad reg = pci_conf_read(pc, pa->pa_tag, i);
274 1.1 ad switch (PCI_MAPREG_TYPE(reg)) {
275 1.1 ad case PCI_MAPREG_TYPE_MEM:
276 1.19 fvdl if (PCI_MAPREG_MEM_SIZE(reg) != 0)
277 1.19 fvdl memreg = i;
278 1.1 ad break;
279 1.1 ad case PCI_MAPREG_TYPE_IO:
280 1.19 fvdl if (PCI_MAPREG_IO_SIZE(reg) != 0)
281 1.19 fvdl ioreg = i;
282 1.1 ad break;
283 1.16 christos
284 1.1 ad }
285 1.1 ad }
286 1.1 ad
287 1.18 mycroft if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
288 1.18 mycroft &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
289 1.18 mycroft ;
290 1.18 mycroft else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
291 1.18 mycroft &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
292 1.18 mycroft ;
293 1.18 mycroft else {
294 1.8 thorpej aprint_error("can't map control registers\n");
295 1.9 ad amr_teardown(amr);
296 1.1 ad return;
297 1.1 ad }
298 1.1 ad
299 1.9 ad amr->amr_flags |= AMRF_PCI_REGS;
300 1.1 ad amr->amr_dmat = pa->pa_dmat;
301 1.9 ad amr->amr_pc = pa->pa_pc;
302 1.1 ad
303 1.1 ad /* Enable the device. */
304 1.1 ad reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
305 1.1 ad pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
306 1.1 ad reg | PCI_COMMAND_MASTER_ENABLE);
307 1.1 ad
308 1.1 ad /* Map and establish the interrupt. */
309 1.1 ad if (pci_intr_map(pa, &ih)) {
310 1.8 thorpej aprint_error("can't map interrupt\n");
311 1.9 ad amr_teardown(amr);
312 1.1 ad return;
313 1.1 ad }
314 1.1 ad intrstr = pci_intr_string(pc, ih);
315 1.1 ad amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
316 1.1 ad if (amr->amr_ih == NULL) {
317 1.8 thorpej aprint_error("can't establish interrupt");
318 1.1 ad if (intrstr != NULL)
319 1.8 thorpej aprint_normal(" at %s", intrstr);
320 1.8 thorpej aprint_normal("\n");
321 1.9 ad amr_teardown(amr);
322 1.1 ad return;
323 1.1 ad }
324 1.9 ad amr->amr_flags |= AMRF_PCI_INTR;
325 1.1 ad
326 1.1 ad /*
327 1.1 ad * Allocate space for the mailbox and S/G lists. Some controllers
328 1.1 ad * don't like S/G lists to be located below 0x2000, so we allocate
329 1.1 ad * enough slop to enable us to compensate.
330 1.1 ad *
331 1.1 ad * The standard mailbox structure needs to be aligned on a 16-byte
332 1.1 ad * boundary. The 64-bit mailbox has one extra field, 4 bytes in
333 1.1 ad * size, which preceeds the standard mailbox.
334 1.1 ad */
335 1.1 ad size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
336 1.9 ad amr->amr_dmasize = size;
337 1.1 ad
338 1.15 fvdl if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
339 1.9 ad &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
340 1.8 thorpej aprint_error("%s: unable to allocate buffer, rv = %d\n",
341 1.1 ad amr->amr_dv.dv_xname, rv);
342 1.9 ad amr_teardown(amr);
343 1.1 ad return;
344 1.1 ad }
345 1.9 ad amr->amr_flags |= AMRF_DMA_ALLOC;
346 1.1 ad
347 1.9 ad if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
348 1.1 ad (caddr_t *)&amr->amr_mbox,
349 1.1 ad BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
350 1.8 thorpej aprint_error("%s: unable to map buffer, rv = %d\n",
351 1.1 ad amr->amr_dv.dv_xname, rv);
352 1.9 ad amr_teardown(amr);
353 1.1 ad return;
354 1.1 ad }
355 1.9 ad amr->amr_flags |= AMRF_DMA_MAP;
356 1.1 ad
357 1.1 ad if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
358 1.1 ad BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
359 1.8 thorpej aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
360 1.1 ad amr->amr_dv.dv_xname, rv);
361 1.9 ad amr_teardown(amr);
362 1.1 ad return;
363 1.1 ad }
364 1.9 ad amr->amr_flags |= AMRF_DMA_CREATE;
365 1.1 ad
366 1.1 ad if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
367 1.1 ad amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
368 1.8 thorpej aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
369 1.1 ad amr->amr_dv.dv_xname, rv);
370 1.9 ad amr_teardown(amr);
371 1.1 ad return;
372 1.1 ad }
373 1.9 ad amr->amr_flags |= AMRF_DMA_LOAD;
374 1.1 ad
375 1.1 ad memset(amr->amr_mbox, 0, size);
376 1.1 ad
377 1.9 ad amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
378 1.1 ad amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
379 1.1 ad amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
380 1.1 ad amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
381 1.1 ad
382 1.1 ad /*
383 1.1 ad * Allocate and initalise the command control blocks.
384 1.1 ad */
385 1.1 ad ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
386 1.1 ad amr->amr_ccbs = ac;
387 1.1 ad SLIST_INIT(&amr->amr_ccb_freelist);
388 1.10 ad TAILQ_INIT(&amr->amr_ccb_active);
389 1.9 ad amr->amr_flags |= AMRF_CCBS;
390 1.9 ad
391 1.9 ad if (amr_max_xfer == 0) {
392 1.9 ad amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
393 1.9 ad amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
394 1.9 ad }
395 1.1 ad
396 1.1 ad for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
397 1.9 ad rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
398 1.9 ad amr_max_segs, amr_max_xfer, 0,
399 1.9 ad BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
400 1.1 ad if (rv != 0)
401 1.1 ad break;
402 1.1 ad
403 1.1 ad ac->ac_ident = i;
404 1.9 ad amr_ccb_free(amr, ac);
405 1.9 ad }
406 1.9 ad if (i != AMR_MAX_CMDS) {
407 1.9 ad aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
408 1.9 ad amr_teardown(amr);
409 1.9 ad return;
410 1.1 ad }
411 1.1 ad
412 1.1 ad /*
413 1.1 ad * Take care of model-specific tasks.
414 1.1 ad */
415 1.1 ad if ((apt->apt_flags & AT_QUARTZ) != 0) {
416 1.1 ad amr->amr_submit = amr_quartz_submit;
417 1.1 ad amr->amr_get_work = amr_quartz_get_work;
418 1.1 ad } else {
419 1.1 ad amr->amr_submit = amr_std_submit;
420 1.1 ad amr->amr_get_work = amr_std_get_work;
421 1.1 ad
422 1.1 ad /* Notify the controller of the mailbox location. */
423 1.9 ad amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
424 1.1 ad amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
425 1.1 ad
426 1.1 ad /* Clear outstanding interrupts and enable interrupts. */
427 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
428 1.1 ad amr_outb(amr, AMR_SREG_TOGL,
429 1.1 ad amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
430 1.1 ad }
431 1.1 ad
432 1.1 ad /*
433 1.1 ad * Retrieve parameters, and tell the world about us.
434 1.1 ad */
435 1.9 ad amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
436 1.9 ad amr->amr_flags |= AMRF_ENQBUF;
437 1.1 ad amr->amr_maxqueuecnt = i;
438 1.8 thorpej aprint_normal(": AMI RAID ");
439 1.9 ad if (amr_init(amr, intrstr, pa) != 0) {
440 1.9 ad amr_teardown(amr);
441 1.1 ad return;
442 1.9 ad }
443 1.1 ad
444 1.1 ad /*
445 1.1 ad * Cap the maximum number of outstanding commands. AMI's Linux
446 1.1 ad * driver doesn't trust the controller's reported value, and lockups
447 1.1 ad * have been seen when we do.
448 1.1 ad */
449 1.1 ad amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
450 1.1 ad if (amr->amr_maxqueuecnt > i)
451 1.1 ad amr->amr_maxqueuecnt = i;
452 1.1 ad
453 1.1 ad /* Set our `shutdownhook' before we start any device activity. */
454 1.1 ad if (amr_sdh == NULL)
455 1.1 ad amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
456 1.1 ad
457 1.1 ad /* Attach sub-devices. */
458 1.9 ad for (j = 0; j < amr->amr_numdrives; j++) {
459 1.9 ad if (amr->amr_drive[j].al_size == 0)
460 1.1 ad continue;
461 1.9 ad amra.amra_unit = j;
462 1.9 ad amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
463 1.9 ad amr_print, amr_submatch);
464 1.1 ad }
465 1.1 ad
466 1.1 ad SIMPLEQ_INIT(&amr->amr_ccb_queue);
467 1.13 ad
468 1.13 ad /* XXX This doesn't work for newer boards yet. */
469 1.13 ad if ((apt->apt_flags & AT_QUARTZ) == 0)
470 1.13 ad kthread_create(amr_thread_create, amr);
471 1.9 ad }
472 1.9 ad
473 1.9 ad /*
474 1.9 ad * Free up resources.
475 1.9 ad */
476 1.9 ad void
477 1.9 ad amr_teardown(struct amr_softc *amr)
478 1.9 ad {
479 1.9 ad struct amr_ccb *ac;
480 1.9 ad int fl;
481 1.9 ad
482 1.9 ad fl = amr->amr_flags;
483 1.9 ad
484 1.9 ad if ((fl & AMRF_THREAD) != 0) {
485 1.9 ad amr->amr_flags |= AMRF_THREAD_EXIT;
486 1.9 ad wakeup(amr_thread);
487 1.9 ad while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
488 1.9 ad tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
489 1.9 ad }
490 1.9 ad if ((fl & AMRF_CCBS) != 0) {
491 1.9 ad SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
492 1.9 ad bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
493 1.9 ad }
494 1.9 ad free(amr->amr_ccbs, M_DEVBUF);
495 1.9 ad }
496 1.9 ad if ((fl & AMRF_ENQBUF) != 0)
497 1.9 ad free(amr->amr_enqbuf, M_DEVBUF);
498 1.9 ad if ((fl & AMRF_DMA_LOAD) != 0)
499 1.9 ad bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
500 1.9 ad if ((fl & AMRF_DMA_MAP) != 0)
501 1.9 ad bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
502 1.9 ad amr->amr_dmasize);
503 1.9 ad if ((fl & AMRF_DMA_ALLOC) != 0)
504 1.9 ad bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
505 1.9 ad if ((fl & AMRF_DMA_CREATE) != 0)
506 1.9 ad bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
507 1.9 ad if ((fl & AMRF_PCI_INTR) != 0)
508 1.9 ad pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
509 1.9 ad if ((fl & AMRF_PCI_REGS) != 0)
510 1.11 fvdl bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
511 1.1 ad }
512 1.1 ad
513 1.1 ad /*
514 1.1 ad * Print autoconfiguration message for a sub-device.
515 1.1 ad */
516 1.1 ad int
517 1.1 ad amr_print(void *aux, const char *pnp)
518 1.1 ad {
519 1.1 ad struct amr_attach_args *amra;
520 1.1 ad
521 1.1 ad amra = (struct amr_attach_args *)aux;
522 1.1 ad
523 1.1 ad if (pnp != NULL)
524 1.7 thorpej aprint_normal("block device at %s", pnp);
525 1.7 thorpej aprint_normal(" unit %d", amra->amra_unit);
526 1.1 ad return (UNCONF);
527 1.1 ad }
528 1.1 ad
529 1.1 ad /*
530 1.1 ad * Match a sub-device.
531 1.1 ad */
532 1.1 ad int
533 1.1 ad amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
534 1.1 ad {
535 1.1 ad struct amr_attach_args *amra;
536 1.1 ad
537 1.1 ad amra = (struct amr_attach_args *)aux;
538 1.1 ad
539 1.1 ad if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
540 1.1 ad cf->amracf_unit != amra->amra_unit)
541 1.1 ad return (0);
542 1.1 ad
543 1.3 thorpej return (config_match(parent, cf, aux));
544 1.1 ad }
545 1.1 ad
546 1.1 ad /*
547 1.1 ad * Retrieve operational parameters and describe the controller.
548 1.1 ad */
549 1.1 ad int
550 1.1 ad amr_init(struct amr_softc *amr, const char *intrstr,
551 1.1 ad struct pci_attach_args *pa)
552 1.1 ad {
553 1.9 ad struct amr_adapter_info *aa;
554 1.1 ad struct amr_prodinfo *ap;
555 1.1 ad struct amr_enquiry *ae;
556 1.1 ad struct amr_enquiry3 *aex;
557 1.1 ad const char *prodstr;
558 1.9 ad u_int i, sig, ishp;
559 1.1 ad char buf[64];
560 1.1 ad
561 1.1 ad /*
562 1.1 ad * Try to get 40LD product info, which tells us what the card is
563 1.1 ad * labelled as.
564 1.1 ad */
565 1.9 ad ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
566 1.9 ad amr->amr_enqbuf);
567 1.1 ad if (ap != NULL) {
568 1.8 thorpej aprint_normal("<%.80s>\n", ap->ap_product);
569 1.1 ad if (intrstr != NULL)
570 1.8 thorpej aprint_normal("%s: interrupting at %s\n",
571 1.1 ad amr->amr_dv.dv_xname, intrstr);
572 1.8 thorpej aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
573 1.1 ad amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
574 1.1 ad le16toh(ap->ap_memsize));
575 1.1 ad
576 1.1 ad amr->amr_maxqueuecnt = ap->ap_maxio;
577 1.1 ad
578 1.1 ad /*
579 1.1 ad * Fetch and record state of logical drives.
580 1.1 ad */
581 1.1 ad aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
582 1.9 ad AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
583 1.1 ad if (aex == NULL) {
584 1.8 thorpej aprint_error("%s ENQUIRY3 failed\n",
585 1.8 thorpej amr->amr_dv.dv_xname);
586 1.1 ad return (-1);
587 1.1 ad }
588 1.1 ad
589 1.1 ad if (aex->ae_numldrives > AMR_MAX_UNITS) {
590 1.8 thorpej aprint_error(
591 1.8 thorpej "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
592 1.17 christos "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
593 1.17 christos amr->amr_numdrives);
594 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
595 1.1 ad } else
596 1.1 ad amr->amr_numdrives = aex->ae_numldrives;
597 1.1 ad
598 1.1 ad for (i = 0; i < amr->amr_numdrives; i++) {
599 1.1 ad amr->amr_drive[i].al_size =
600 1.1 ad le32toh(aex->ae_drivesize[i]);
601 1.1 ad amr->amr_drive[i].al_state = aex->ae_drivestate[i];
602 1.1 ad amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
603 1.1 ad }
604 1.1 ad
605 1.1 ad return (0);
606 1.1 ad }
607 1.1 ad
608 1.1 ad /*
609 1.1 ad * Try 8LD extended ENQUIRY to get the controller signature. Once
610 1.1 ad * found, search for a product description.
611 1.1 ad */
612 1.9 ad ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
613 1.9 ad if (ae != NULL) {
614 1.1 ad i = 0;
615 1.1 ad sig = le32toh(ae->ae_signature);
616 1.1 ad
617 1.1 ad while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
618 1.1 ad if (amr_typestr[i].at_sig == sig)
619 1.1 ad break;
620 1.1 ad i++;
621 1.1 ad }
622 1.1 ad if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
623 1.1 ad sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
624 1.1 ad prodstr = buf;
625 1.1 ad } else
626 1.1 ad prodstr = amr_typestr[i].at_str;
627 1.1 ad } else {
628 1.9 ad ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
629 1.9 ad if (ae == NULL) {
630 1.8 thorpej aprint_error("%s: unsupported controller\n",
631 1.1 ad amr->amr_dv.dv_xname);
632 1.1 ad return (-1);
633 1.1 ad }
634 1.1 ad
635 1.1 ad switch (PCI_PRODUCT(pa->pa_id)) {
636 1.1 ad case PCI_PRODUCT_AMI_MEGARAID:
637 1.1 ad prodstr = "Series 428";
638 1.1 ad break;
639 1.1 ad case PCI_PRODUCT_AMI_MEGARAID2:
640 1.1 ad prodstr = "Series 434";
641 1.1 ad break;
642 1.1 ad default:
643 1.1 ad sprintf(buf, "unknown PCI dev (0x%04x)",
644 1.1 ad PCI_PRODUCT(pa->pa_id));
645 1.1 ad prodstr = buf;
646 1.1 ad break;
647 1.1 ad }
648 1.1 ad }
649 1.1 ad
650 1.9 ad /*
651 1.9 ad * HP NetRaid controllers have a special encoding of the firmware
652 1.9 ad * and BIOS versions. The AMI version seems to have it as strings
653 1.9 ad * whereas the HP version does it with a leading uppercase character
654 1.9 ad * and two binary numbers.
655 1.9 ad */
656 1.9 ad aa = &ae->ae_adapter;
657 1.9 ad
658 1.9 ad if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
659 1.9 ad aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
660 1.9 ad aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
661 1.9 ad aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
662 1.9 ad if (le32toh(ae->ae_signature) == AMR_SIG_438) {
663 1.9 ad /* The AMI 438 is a NetRaid 3si in HP-land. */
664 1.9 ad prodstr = "HP NetRaid 3si";
665 1.9 ad }
666 1.9 ad ishp = 1;
667 1.9 ad } else
668 1.9 ad ishp = 0;
669 1.9 ad
670 1.8 thorpej aprint_normal("<%s>\n", prodstr);
671 1.1 ad if (intrstr != NULL)
672 1.8 thorpej aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
673 1.1 ad intrstr);
674 1.1 ad
675 1.9 ad if (ishp)
676 1.9 ad aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
677 1.9 ad ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
678 1.9 ad aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
679 1.9 ad aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
680 1.9 ad else
681 1.9 ad aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
682 1.9 ad amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
683 1.9 ad aa->aa_memorysize);
684 1.9 ad
685 1.9 ad amr->amr_maxqueuecnt = aa->aa_maxio;
686 1.1 ad
687 1.1 ad /*
688 1.1 ad * Record state of logical drives.
689 1.1 ad */
690 1.1 ad if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
691 1.8 thorpej aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
692 1.1 ad amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
693 1.1 ad AMR_MAX_UNITS);
694 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
695 1.1 ad } else
696 1.1 ad amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
697 1.1 ad
698 1.1 ad for (i = 0; i < AMR_MAX_UNITS; i++) {
699 1.1 ad amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
700 1.1 ad amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
701 1.1 ad amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
702 1.1 ad }
703 1.1 ad
704 1.1 ad return (0);
705 1.1 ad }
706 1.1 ad
707 1.1 ad /*
708 1.1 ad * Flush the internal cache on each configured controller. Called at
709 1.1 ad * shutdown time.
710 1.1 ad */
711 1.1 ad void
712 1.1 ad amr_shutdown(void *cookie)
713 1.1 ad {
714 1.1 ad extern struct cfdriver amr_cd;
715 1.1 ad struct amr_softc *amr;
716 1.1 ad struct amr_ccb *ac;
717 1.9 ad int i, rv, s;
718 1.1 ad
719 1.1 ad for (i = 0; i < amr_cd.cd_ndevs; i++) {
720 1.1 ad if ((amr = device_lookup(&amr_cd, i)) == NULL)
721 1.1 ad continue;
722 1.1 ad
723 1.1 ad if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
724 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
725 1.9 ad s = splbio();
726 1.1 ad rv = amr_ccb_poll(amr, ac, 30000);
727 1.9 ad splx(s);
728 1.1 ad amr_ccb_free(amr, ac);
729 1.1 ad }
730 1.1 ad if (rv != 0)
731 1.1 ad printf("%s: unable to flush cache (%d)\n",
732 1.1 ad amr->amr_dv.dv_xname, rv);
733 1.1 ad }
734 1.1 ad }
735 1.1 ad
736 1.1 ad /*
737 1.1 ad * Interrupt service routine.
738 1.1 ad */
739 1.1 ad int
740 1.1 ad amr_intr(void *cookie)
741 1.1 ad {
742 1.1 ad struct amr_softc *amr;
743 1.1 ad struct amr_ccb *ac;
744 1.9 ad struct amr_mailbox_resp mbox;
745 1.1 ad u_int i, forus, idx;
746 1.1 ad
747 1.1 ad amr = cookie;
748 1.1 ad forus = 0;
749 1.1 ad
750 1.1 ad while ((*amr->amr_get_work)(amr, &mbox) == 0) {
751 1.1 ad /* Iterate over completed commands in this result. */
752 1.1 ad for (i = 0; i < mbox.mb_nstatus; i++) {
753 1.1 ad idx = mbox.mb_completed[i] - 1;
754 1.1 ad ac = amr->amr_ccbs + idx;
755 1.1 ad
756 1.1 ad if (idx >= amr->amr_maxqueuecnt) {
757 1.1 ad printf("%s: bad status (bogus ID: %u=%u)\n",
758 1.1 ad amr->amr_dv.dv_xname, i, idx);
759 1.1 ad continue;
760 1.1 ad }
761 1.1 ad
762 1.1 ad if ((ac->ac_flags & AC_ACTIVE) == 0) {
763 1.1 ad printf("%s: bad status (not active; 0x04%x)\n",
764 1.1 ad amr->amr_dv.dv_xname, ac->ac_flags);
765 1.1 ad continue;
766 1.1 ad }
767 1.1 ad
768 1.1 ad ac->ac_status = mbox.mb_status;
769 1.1 ad ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
770 1.1 ad AC_COMPLETE;
771 1.10 ad TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
772 1.10 ad
773 1.10 ad if ((ac->ac_flags & AC_MOAN) != 0)
774 1.10 ad printf("%s: ccb %d completed\n",
775 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
776 1.1 ad
777 1.1 ad /* Pass notification to upper layers. */
778 1.1 ad if (ac->ac_handler != NULL)
779 1.1 ad (*ac->ac_handler)(ac);
780 1.9 ad else
781 1.9 ad wakeup(ac);
782 1.1 ad }
783 1.1 ad forus = 1;
784 1.1 ad }
785 1.1 ad
786 1.1 ad if (forus)
787 1.1 ad amr_ccb_enqueue(amr, NULL);
788 1.9 ad
789 1.1 ad return (forus);
790 1.1 ad }
791 1.1 ad
792 1.1 ad /*
793 1.9 ad * Create the watchdog thread.
794 1.9 ad */
795 1.9 ad void
796 1.9 ad amr_thread_create(void *cookie)
797 1.9 ad {
798 1.9 ad struct amr_softc *amr;
799 1.9 ad int rv;
800 1.9 ad
801 1.9 ad amr = cookie;
802 1.9 ad
803 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
804 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
805 1.9 ad wakeup(&amr->amr_flags);
806 1.9 ad return;
807 1.9 ad }
808 1.9 ad
809 1.9 ad rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
810 1.9 ad amr->amr_dv.dv_xname);
811 1.9 ad if (rv != 0)
812 1.9 ad aprint_error("%s: unable to create thread (%d)",
813 1.9 ad amr->amr_dv.dv_xname, rv);
814 1.9 ad else
815 1.9 ad amr->amr_flags |= AMRF_THREAD;
816 1.9 ad }
817 1.9 ad
818 1.9 ad /*
819 1.9 ad * Watchdog thread.
820 1.9 ad */
821 1.9 ad void
822 1.9 ad amr_thread(void *cookie)
823 1.9 ad {
824 1.9 ad struct amr_softc *amr;
825 1.9 ad struct amr_ccb *ac;
826 1.9 ad struct amr_logdrive *al;
827 1.9 ad struct amr_enquiry *ae;
828 1.10 ad time_t curtime;
829 1.9 ad int rv, i, s;
830 1.9 ad
831 1.9 ad amr = cookie;
832 1.9 ad ae = amr->amr_enqbuf;
833 1.9 ad
834 1.9 ad for (;;) {
835 1.9 ad tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
836 1.9 ad
837 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
838 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
839 1.9 ad wakeup(&amr->amr_flags);
840 1.9 ad kthread_exit(0);
841 1.9 ad }
842 1.9 ad
843 1.9 ad s = splbio();
844 1.9 ad amr_intr(cookie);
845 1.10 ad curtime = (time_t)mono_time.tv_sec;
846 1.13 ad ac = TAILQ_FIRST(&amr->amr_ccb_active);
847 1.13 ad while (ac != NULL) {
848 1.10 ad if (ac->ac_start_time + AMR_TIMEOUT > curtime)
849 1.10 ad break;
850 1.10 ad if ((ac->ac_flags & AC_MOAN) == 0) {
851 1.10 ad printf("%s: ccb %d timed out; mailbox:\n",
852 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
853 1.10 ad amr_ccb_dump(amr, ac);
854 1.10 ad ac->ac_flags |= AC_MOAN;
855 1.10 ad }
856 1.13 ad ac = TAILQ_NEXT(ac, ac_chain.tailq);
857 1.10 ad }
858 1.9 ad splx(s);
859 1.9 ad
860 1.9 ad if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
861 1.9 ad printf("%s: ccb_alloc failed (%d)\n",
862 1.9 ad amr->amr_dv.dv_xname, rv);
863 1.9 ad continue;
864 1.9 ad }
865 1.9 ad
866 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
867 1.9 ad
868 1.9 ad rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
869 1.9 ad AMR_ENQUIRY_BUFSIZE, 0);
870 1.9 ad if (rv != 0) {
871 1.9 ad printf("%s: ccb_map failed (%d)\n",
872 1.9 ad amr->amr_dv.dv_xname, rv);
873 1.9 ad amr_ccb_free(amr, ac);
874 1.9 ad continue;
875 1.9 ad }
876 1.9 ad
877 1.9 ad rv = amr_ccb_wait(amr, ac);
878 1.9 ad amr_ccb_unmap(amr, ac);
879 1.9 ad if (rv != 0) {
880 1.9 ad printf("%s: enquiry failed (st=%d)\n",
881 1.9 ad amr->amr_dv.dv_xname, ac->ac_status);
882 1.9 ad continue;
883 1.9 ad }
884 1.9 ad amr_ccb_free(amr, ac);
885 1.9 ad
886 1.9 ad al = amr->amr_drive;
887 1.9 ad for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
888 1.9 ad if (al->al_dv == NULL)
889 1.9 ad continue;
890 1.9 ad if (al->al_state == ae->ae_ldrv.al_state[i])
891 1.9 ad continue;
892 1.9 ad
893 1.9 ad printf("%s: state changed: %s -> %s\n",
894 1.9 ad al->al_dv->dv_xname,
895 1.9 ad amr_drive_state(al->al_state, NULL),
896 1.9 ad amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
897 1.9 ad
898 1.9 ad al->al_state = ae->ae_ldrv.al_state[i];
899 1.9 ad }
900 1.9 ad }
901 1.9 ad }
902 1.9 ad
903 1.9 ad /*
904 1.9 ad * Return a text description of a logical drive's current state.
905 1.9 ad */
906 1.9 ad const char *
907 1.9 ad amr_drive_state(int state, int *happy)
908 1.9 ad {
909 1.9 ad const char *str;
910 1.9 ad
911 1.9 ad state = AMR_DRV_CURSTATE(state);
912 1.9 ad if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
913 1.9 ad if (happy)
914 1.9 ad *happy = 1;
915 1.9 ad str = "status unknown";
916 1.9 ad } else {
917 1.9 ad if (happy)
918 1.9 ad *happy = amr_dstate[state].ds_happy;
919 1.9 ad str = amr_dstate[state].ds_descr;
920 1.9 ad }
921 1.9 ad
922 1.9 ad return (str);
923 1.9 ad }
924 1.9 ad
925 1.9 ad /*
926 1.1 ad * Run a generic enquiry-style command.
927 1.1 ad */
928 1.1 ad void *
929 1.1 ad amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
930 1.9 ad u_int8_t cmdqual, void *buf)
931 1.1 ad {
932 1.1 ad struct amr_ccb *ac;
933 1.1 ad u_int8_t *mb;
934 1.1 ad int rv;
935 1.1 ad
936 1.1 ad if (amr_ccb_alloc(amr, &ac) != 0)
937 1.1 ad return (NULL);
938 1.1 ad
939 1.1 ad /* Build the command proper. */
940 1.9 ad mb = (u_int8_t *)&ac->ac_cmd;
941 1.1 ad mb[0] = cmd;
942 1.1 ad mb[2] = cmdsub;
943 1.1 ad mb[3] = cmdqual;
944 1.1 ad
945 1.9 ad rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
946 1.9 ad if (rv == 0) {
947 1.1 ad rv = amr_ccb_poll(amr, ac, 2000);
948 1.1 ad amr_ccb_unmap(amr, ac);
949 1.1 ad }
950 1.1 ad amr_ccb_free(amr, ac);
951 1.1 ad
952 1.9 ad return (rv ? NULL : buf);
953 1.1 ad }
954 1.1 ad
955 1.1 ad /*
956 1.1 ad * Allocate and initialise a CCB.
957 1.1 ad */
958 1.1 ad int
959 1.1 ad amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
960 1.1 ad {
961 1.1 ad int s;
962 1.1 ad
963 1.1 ad s = splbio();
964 1.9 ad if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
965 1.1 ad splx(s);
966 1.1 ad return (EAGAIN);
967 1.1 ad }
968 1.1 ad SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
969 1.1 ad splx(s);
970 1.1 ad
971 1.1 ad return (0);
972 1.1 ad }
973 1.1 ad
974 1.1 ad /*
975 1.1 ad * Free a CCB.
976 1.1 ad */
977 1.1 ad void
978 1.1 ad amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
979 1.1 ad {
980 1.1 ad int s;
981 1.1 ad
982 1.9 ad memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
983 1.9 ad ac->ac_cmd.mb_ident = ac->ac_ident + 1;
984 1.9 ad ac->ac_cmd.mb_busy = 1;
985 1.9 ad ac->ac_handler = NULL;
986 1.1 ad ac->ac_flags = 0;
987 1.1 ad
988 1.1 ad s = splbio();
989 1.1 ad SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
990 1.1 ad splx(s);
991 1.1 ad }
992 1.1 ad
993 1.1 ad /*
994 1.1 ad * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
995 1.1 ad * the order that they were enqueued and try to submit their command blocks
996 1.1 ad * to the controller for execution.
997 1.1 ad */
998 1.1 ad void
999 1.1 ad amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1000 1.1 ad {
1001 1.1 ad int s;
1002 1.1 ad
1003 1.1 ad s = splbio();
1004 1.1 ad
1005 1.1 ad if (ac != NULL)
1006 1.1 ad SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1007 1.1 ad
1008 1.1 ad while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1009 1.1 ad if ((*amr->amr_submit)(amr, ac) != 0)
1010 1.1 ad break;
1011 1.2 lukem SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1012 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1013 1.1 ad }
1014 1.1 ad
1015 1.1 ad splx(s);
1016 1.1 ad }
1017 1.1 ad
1018 1.1 ad /*
1019 1.1 ad * Map the specified CCB's data buffer onto the bus, and fill the
1020 1.1 ad * scatter-gather list.
1021 1.1 ad */
1022 1.1 ad int
1023 1.1 ad amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1024 1.1 ad int out)
1025 1.1 ad {
1026 1.1 ad struct amr_sgentry *sge;
1027 1.9 ad struct amr_mailbox_cmd *mb;
1028 1.1 ad int nsegs, i, rv, sgloff;
1029 1.1 ad bus_dmamap_t xfer;
1030 1.1 ad
1031 1.1 ad xfer = ac->ac_xfer_map;
1032 1.1 ad
1033 1.1 ad rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1034 1.1 ad BUS_DMA_NOWAIT);
1035 1.1 ad if (rv != 0)
1036 1.1 ad return (rv);
1037 1.1 ad
1038 1.9 ad mb = &ac->ac_cmd;
1039 1.1 ad ac->ac_xfer_size = size;
1040 1.1 ad ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1041 1.1 ad sgloff = AMR_SGL_SIZE * ac->ac_ident;
1042 1.1 ad
1043 1.1 ad /* We don't need to use a scatter/gather list for just 1 segment. */
1044 1.1 ad nsegs = xfer->dm_nsegs;
1045 1.1 ad if (nsegs == 1) {
1046 1.1 ad mb->mb_nsgelem = 0;
1047 1.1 ad mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1048 1.1 ad ac->ac_flags |= AC_NOSGL;
1049 1.1 ad } else {
1050 1.1 ad mb->mb_nsgelem = nsegs;
1051 1.1 ad mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1052 1.1 ad
1053 1.1 ad sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1054 1.1 ad for (i = 0; i < nsegs; i++, sge++) {
1055 1.1 ad sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1056 1.1 ad sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1057 1.1 ad }
1058 1.1 ad }
1059 1.1 ad
1060 1.1 ad bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1061 1.1 ad out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1062 1.1 ad
1063 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1064 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1065 1.1 ad AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1066 1.1 ad
1067 1.1 ad return (0);
1068 1.1 ad }
1069 1.1 ad
1070 1.1 ad /*
1071 1.1 ad * Unmap the specified CCB's data buffer.
1072 1.1 ad */
1073 1.1 ad void
1074 1.1 ad amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1075 1.1 ad {
1076 1.1 ad
1077 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1078 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1079 1.1 ad AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1080 1.1 ad BUS_DMASYNC_POSTWRITE);
1081 1.1 ad bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1082 1.1 ad (ac->ac_flags & AC_XFER_IN) != 0 ?
1083 1.1 ad BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1084 1.1 ad bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1085 1.1 ad }
1086 1.1 ad
1087 1.1 ad /*
1088 1.1 ad * Submit a command to the controller and poll on completion. Return
1089 1.1 ad * non-zero on timeout or error. Must be called with interrupts blocked.
1090 1.1 ad */
1091 1.1 ad int
1092 1.1 ad amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1093 1.1 ad {
1094 1.1 ad int rv;
1095 1.1 ad
1096 1.1 ad if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1097 1.1 ad return (rv);
1098 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1099 1.1 ad
1100 1.1 ad for (timo *= 10; timo != 0; timo--) {
1101 1.1 ad amr_intr(amr);
1102 1.1 ad if ((ac->ac_flags & AC_COMPLETE) != 0)
1103 1.1 ad break;
1104 1.1 ad DELAY(100);
1105 1.1 ad }
1106 1.1 ad
1107 1.1 ad return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1108 1.1 ad }
1109 1.1 ad
1110 1.1 ad /*
1111 1.9 ad * Submit a command to the controller and sleep on completion. Return
1112 1.9 ad * non-zero on error.
1113 1.9 ad */
1114 1.9 ad int
1115 1.9 ad amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1116 1.9 ad {
1117 1.9 ad int s;
1118 1.9 ad
1119 1.9 ad s = splbio();
1120 1.9 ad amr_ccb_enqueue(amr, ac);
1121 1.9 ad tsleep(ac, PRIBIO, "amrcmd", 0);
1122 1.9 ad splx(s);
1123 1.9 ad
1124 1.9 ad return (ac->ac_status != 0 ? EIO : 0);
1125 1.9 ad }
1126 1.9 ad
1127 1.9 ad /*
1128 1.1 ad * Wait for the mailbox to become available.
1129 1.1 ad */
1130 1.1 ad int
1131 1.1 ad amr_mbox_wait(struct amr_softc *amr)
1132 1.1 ad {
1133 1.1 ad int timo;
1134 1.1 ad
1135 1.1 ad for (timo = 10000; timo != 0; timo--) {
1136 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1137 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1138 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1139 1.1 ad break;
1140 1.1 ad DELAY(100);
1141 1.1 ad }
1142 1.1 ad
1143 1.9 ad if (timo == 0)
1144 1.1 ad printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1145 1.1 ad
1146 1.9 ad return (timo != 0 ? 0 : EAGAIN);
1147 1.1 ad }
1148 1.1 ad
1149 1.1 ad /*
1150 1.1 ad * Tell the controller that the mailbox contains a valid command. Must be
1151 1.1 ad * called with interrupts blocked.
1152 1.1 ad */
1153 1.1 ad int
1154 1.1 ad amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1155 1.1 ad {
1156 1.1 ad u_int32_t v;
1157 1.1 ad
1158 1.9 ad amr->amr_mbox->mb_poll = 0;
1159 1.9 ad amr->amr_mbox->mb_ack = 0;
1160 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1161 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1162 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1163 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1164 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1165 1.9 ad return (EAGAIN);
1166 1.9 ad
1167 1.1 ad v = amr_inl(amr, AMR_QREG_IDB);
1168 1.13 ad if ((v & AMR_QIDB_SUBMIT) != 0) {
1169 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1170 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1171 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1172 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1173 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1174 1.9 ad return (EAGAIN);
1175 1.9 ad }
1176 1.1 ad
1177 1.10 ad amr->amr_mbox->mb_segment = 0;
1178 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1179 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1180 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1181 1.10 ad
1182 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1183 1.1 ad ac->ac_flags |= AC_ACTIVE;
1184 1.13 ad amr_outl(amr, AMR_QREG_IDB,
1185 1.13 ad (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1186 1.1 ad return (0);
1187 1.1 ad }
1188 1.1 ad
1189 1.1 ad int
1190 1.1 ad amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1191 1.1 ad {
1192 1.1 ad
1193 1.9 ad amr->amr_mbox->mb_poll = 0;
1194 1.9 ad amr->amr_mbox->mb_ack = 0;
1195 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1196 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1197 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1198 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1199 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1200 1.9 ad return (EAGAIN);
1201 1.9 ad
1202 1.9 ad if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1203 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1204 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1205 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1206 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1207 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1208 1.9 ad return (EAGAIN);
1209 1.9 ad }
1210 1.1 ad
1211 1.10 ad amr->amr_mbox->mb_segment = 0;
1212 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1213 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1214 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1215 1.10 ad
1216 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1217 1.1 ad ac->ac_flags |= AC_ACTIVE;
1218 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1219 1.1 ad return (0);
1220 1.1 ad }
1221 1.1 ad
1222 1.1 ad /*
1223 1.1 ad * Claim any work that the controller has completed; acknowledge completion,
1224 1.1 ad * save details of the completion in (mbsave). Must be called with
1225 1.1 ad * interrupts blocked.
1226 1.1 ad */
1227 1.1 ad int
1228 1.9 ad amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1229 1.1 ad {
1230 1.1 ad
1231 1.1 ad /* Work waiting for us? */
1232 1.1 ad if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1233 1.1 ad return (-1);
1234 1.1 ad
1235 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1236 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1237 1.9 ad
1238 1.1 ad /* Save the mailbox, which contains a list of completed commands. */
1239 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1240 1.9 ad
1241 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1242 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1243 1.1 ad
1244 1.1 ad /* Ack the interrupt and mailbox transfer. */
1245 1.1 ad amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1246 1.9 ad amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1247 1.1 ad
1248 1.1 ad /*
1249 1.1 ad * This waits for the controller to notice that we've taken the
1250 1.1 ad * command from it. It's very inefficient, and we shouldn't do it,
1251 1.1 ad * but if we remove this code, we stop completing commands under
1252 1.1 ad * load.
1253 1.1 ad *
1254 1.1 ad * Peter J says we shouldn't do this. The documentation says we
1255 1.1 ad * should. Who is right?
1256 1.1 ad */
1257 1.1 ad while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1258 1.13 ad DELAY(10);
1259 1.1 ad
1260 1.1 ad return (0);
1261 1.1 ad }
1262 1.1 ad
1263 1.1 ad int
1264 1.9 ad amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1265 1.1 ad {
1266 1.1 ad u_int8_t istat;
1267 1.1 ad
1268 1.1 ad /* Check for valid interrupt status. */
1269 1.1 ad if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1270 1.1 ad return (-1);
1271 1.1 ad
1272 1.1 ad /* Ack the interrupt. */
1273 1.1 ad amr_outb(amr, AMR_SREG_INTR, istat);
1274 1.1 ad
1275 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1276 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1277 1.9 ad
1278 1.1 ad /* Save mailbox, which contains a list of completed commands. */
1279 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1280 1.9 ad
1281 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1282 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1283 1.1 ad
1284 1.1 ad /* Ack mailbox transfer. */
1285 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1286 1.1 ad
1287 1.1 ad return (0);
1288 1.10 ad }
1289 1.10 ad
1290 1.10 ad void
1291 1.10 ad amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1292 1.10 ad {
1293 1.10 ad int i;
1294 1.10 ad
1295 1.10 ad printf("%s: ", amr->amr_dv.dv_xname);
1296 1.10 ad for (i = 0; i < 4; i++)
1297 1.10 ad printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1298 1.10 ad printf("\n");
1299 1.1 ad }
1300