amr.c revision 1.25.2.2 1 1.25.2.2 tron /* $NetBSD: amr.c,v 1.25.2.2 2006/07/30 16:38:59 tron Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.9 ad * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 ad * by Andrew Doran.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1 ad * must display the following acknowledgement:
20 1.1 ad * This product includes software developed by the NetBSD
21 1.1 ad * Foundation, Inc. and its contributors.
22 1.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 ad * contributors may be used to endorse or promote products derived
24 1.1 ad * from this software without specific prior written permission.
25 1.1 ad *
26 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1 ad */
38 1.1 ad
39 1.1 ad /*-
40 1.1 ad * Copyright (c) 1999,2000 Michael Smith
41 1.1 ad * Copyright (c) 2000 BSDi
42 1.1 ad * All rights reserved.
43 1.1 ad *
44 1.1 ad * Redistribution and use in source and binary forms, with or without
45 1.1 ad * modification, are permitted provided that the following conditions
46 1.1 ad * are met:
47 1.1 ad * 1. Redistributions of source code must retain the above copyright
48 1.1 ad * notice, this list of conditions and the following disclaimer.
49 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 ad * notice, this list of conditions and the following disclaimer in the
51 1.1 ad * documentation and/or other materials provided with the distribution.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 1.25 perry * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 1.1 ad */
68 1.1 ad
69 1.1 ad /*
70 1.1 ad * Driver for AMI RAID controllers.
71 1.1 ad */
72 1.1 ad
73 1.1 ad #include <sys/cdefs.h>
74 1.25.2.2 tron __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.25.2.2 2006/07/30 16:38:59 tron Exp $");
75 1.1 ad
76 1.1 ad #include <sys/param.h>
77 1.1 ad #include <sys/systm.h>
78 1.1 ad #include <sys/kernel.h>
79 1.1 ad #include <sys/device.h>
80 1.1 ad #include <sys/queue.h>
81 1.1 ad #include <sys/proc.h>
82 1.1 ad #include <sys/buf.h>
83 1.1 ad #include <sys/malloc.h>
84 1.25.2.2 tron #include <sys/conf.h>
85 1.9 ad #include <sys/kthread.h>
86 1.1 ad
87 1.1 ad #include <uvm/uvm_extern.h>
88 1.1 ad
89 1.1 ad #include <machine/endian.h>
90 1.1 ad #include <machine/bus.h>
91 1.1 ad
92 1.1 ad #include <dev/pci/pcidevs.h>
93 1.1 ad #include <dev/pci/pcivar.h>
94 1.1 ad #include <dev/pci/amrreg.h>
95 1.1 ad #include <dev/pci/amrvar.h>
96 1.25.2.2 tron #include <dev/pci/amrio.h>
97 1.1 ad
98 1.22 drochner #include "locators.h"
99 1.22 drochner
100 1.1 ad void amr_attach(struct device *, struct device *, void *);
101 1.10 ad void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
102 1.9 ad void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
103 1.1 ad int amr_init(struct amr_softc *, const char *,
104 1.1 ad struct pci_attach_args *pa);
105 1.1 ad int amr_intr(void *);
106 1.1 ad int amr_match(struct device *, struct cfdata *, void *);
107 1.1 ad int amr_print(void *, const char *);
108 1.1 ad void amr_shutdown(void *);
109 1.22 drochner int amr_submatch(struct device *, struct cfdata *,
110 1.22 drochner const locdesc_t *, void *);
111 1.9 ad void amr_teardown(struct amr_softc *);
112 1.9 ad void amr_thread(void *);
113 1.9 ad void amr_thread_create(void *);
114 1.1 ad
115 1.1 ad int amr_mbox_wait(struct amr_softc *);
116 1.9 ad int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
117 1.1 ad int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
118 1.9 ad int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
119 1.1 ad int amr_std_submit(struct amr_softc *, struct amr_ccb *);
120 1.1 ad
121 1.1 ad static inline u_int8_t amr_inb(struct amr_softc *, int);
122 1.1 ad static inline u_int32_t amr_inl(struct amr_softc *, int);
123 1.1 ad static inline void amr_outb(struct amr_softc *, int, u_int8_t);
124 1.1 ad static inline void amr_outl(struct amr_softc *, int, u_int32_t);
125 1.1 ad
126 1.25.2.2 tron static dev_type_open(amropen);
127 1.25.2.2 tron static dev_type_close(amrclose);
128 1.25.2.2 tron static dev_type_ioctl(amrioctl);
129 1.25.2.2 tron
130 1.5 thorpej CFATTACH_DECL(amr, sizeof(struct amr_softc),
131 1.6 thorpej amr_match, amr_attach, NULL, NULL);
132 1.1 ad
133 1.25.2.2 tron const struct cdevsw amr_cdevsw = {
134 1.25.2.2 tron amropen, amrclose, noread, nowrite, amrioctl,
135 1.25.2.2 tron nostop, notty, nopoll, nommap,
136 1.25.2.2 tron };
137 1.25.2.2 tron
138 1.25.2.2 tron extern struct cfdriver amr_cd;
139 1.25.2.2 tron
140 1.1 ad #define AT_QUARTZ 0x01 /* `Quartz' chipset */
141 1.1 ad #define AT_SIG 0x02 /* Check for signature */
142 1.1 ad
143 1.1 ad struct amr_pci_type {
144 1.1 ad u_short apt_vendor;
145 1.1 ad u_short apt_product;
146 1.1 ad u_short apt_flags;
147 1.9 ad } const amr_pci_type[] = {
148 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
149 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
150 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
151 1.21 he { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
152 1.12 matt { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
153 1.25.2.1 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
154 1.25.2.1 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
155 1.25.2.1 tron { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
156 1.12 matt { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
157 1.14 martti { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
158 1.23 martti { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
159 1.24 martti { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
160 1.25.2.1 tron { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
161 1.25.2.1 tron { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
162 1.25.2.1 tron { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
163 1.1 ad };
164 1.1 ad
165 1.1 ad struct amr_typestr {
166 1.1 ad const char *at_str;
167 1.1 ad int at_sig;
168 1.9 ad } const amr_typestr[] = {
169 1.1 ad { "Series 431", AMR_SIG_431 },
170 1.1 ad { "Series 438", AMR_SIG_438 },
171 1.1 ad { "Series 466", AMR_SIG_466 },
172 1.1 ad { "Series 467", AMR_SIG_467 },
173 1.1 ad { "Series 490", AMR_SIG_490 },
174 1.1 ad { "Series 762", AMR_SIG_762 },
175 1.1 ad { "HP NetRAID (T5)", AMR_SIG_T5 },
176 1.1 ad { "HP NetRAID (T7)", AMR_SIG_T7 },
177 1.1 ad };
178 1.1 ad
179 1.9 ad struct {
180 1.9 ad const char *ds_descr;
181 1.9 ad int ds_happy;
182 1.9 ad } const amr_dstate[] = {
183 1.9 ad { "offline", 0 },
184 1.9 ad { "degraded", 1 },
185 1.9 ad { "optimal", 1 },
186 1.9 ad { "online", 1 },
187 1.9 ad { "failed", 0 },
188 1.9 ad { "rebuilding", 1 },
189 1.9 ad { "hotspare", 0 },
190 1.9 ad };
191 1.9 ad
192 1.9 ad void *amr_sdh;
193 1.9 ad int amr_max_segs;
194 1.9 ad int amr_max_xfer;
195 1.1 ad
196 1.1 ad static inline u_int8_t
197 1.1 ad amr_inb(struct amr_softc *amr, int off)
198 1.1 ad {
199 1.1 ad
200 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
201 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
202 1.1 ad return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
203 1.1 ad }
204 1.1 ad
205 1.1 ad static inline u_int32_t
206 1.1 ad amr_inl(struct amr_softc *amr, int off)
207 1.1 ad {
208 1.1 ad
209 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
210 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
211 1.1 ad return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
212 1.1 ad }
213 1.1 ad
214 1.1 ad static inline void
215 1.1 ad amr_outb(struct amr_softc *amr, int off, u_int8_t val)
216 1.1 ad {
217 1.1 ad
218 1.1 ad bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
219 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
220 1.1 ad BUS_SPACE_BARRIER_WRITE);
221 1.1 ad }
222 1.1 ad
223 1.1 ad static inline void
224 1.1 ad amr_outl(struct amr_softc *amr, int off, u_int32_t val)
225 1.1 ad {
226 1.1 ad
227 1.1 ad bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
228 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
229 1.1 ad BUS_SPACE_BARRIER_WRITE);
230 1.1 ad }
231 1.1 ad
232 1.1 ad /*
233 1.1 ad * Match a supported device.
234 1.1 ad */
235 1.1 ad int
236 1.1 ad amr_match(struct device *parent, struct cfdata *match, void *aux)
237 1.1 ad {
238 1.1 ad struct pci_attach_args *pa;
239 1.1 ad pcireg_t s;
240 1.1 ad int i;
241 1.1 ad
242 1.1 ad pa = (struct pci_attach_args *)aux;
243 1.1 ad
244 1.1 ad /*
245 1.1 ad * Don't match the device if it's operating in I2O mode. In this
246 1.1 ad * case it should be handled by the `iop' driver.
247 1.1 ad */
248 1.1 ad if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
249 1.1 ad return (0);
250 1.1 ad
251 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
252 1.25 perry if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
253 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
254 1.1 ad break;
255 1.1 ad
256 1.1 ad if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
257 1.1 ad return (0);
258 1.1 ad
259 1.1 ad if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
260 1.1 ad return (1);
261 1.1 ad
262 1.1 ad s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
263 1.1 ad return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
264 1.1 ad }
265 1.1 ad
266 1.1 ad /*
267 1.9 ad * Attach a supported device.
268 1.1 ad */
269 1.1 ad void
270 1.1 ad amr_attach(struct device *parent, struct device *self, void *aux)
271 1.1 ad {
272 1.1 ad struct pci_attach_args *pa;
273 1.1 ad struct amr_attach_args amra;
274 1.1 ad const struct amr_pci_type *apt;
275 1.1 ad struct amr_softc *amr;
276 1.1 ad pci_chipset_tag_t pc;
277 1.1 ad pci_intr_handle_t ih;
278 1.1 ad const char *intrstr;
279 1.1 ad pcireg_t reg;
280 1.9 ad int rseg, i, j, size, rv, memreg, ioreg;
281 1.25.2.2 tron struct amr_ccb *ac;
282 1.22 drochner int help[2];
283 1.22 drochner locdesc_t *ldesc = (void *)help; /* XXX */
284 1.1 ad
285 1.8 thorpej aprint_naive(": RAID controller\n");
286 1.8 thorpej
287 1.1 ad amr = (struct amr_softc *)self;
288 1.1 ad pa = (struct pci_attach_args *)aux;
289 1.1 ad pc = pa->pa_pc;
290 1.1 ad
291 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
292 1.1 ad if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
293 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
294 1.1 ad break;
295 1.1 ad apt = amr_pci_type + i;
296 1.1 ad
297 1.1 ad memreg = ioreg = 0;
298 1.1 ad for (i = 0x10; i <= 0x14; i += 4) {
299 1.1 ad reg = pci_conf_read(pc, pa->pa_tag, i);
300 1.1 ad switch (PCI_MAPREG_TYPE(reg)) {
301 1.1 ad case PCI_MAPREG_TYPE_MEM:
302 1.19 fvdl if (PCI_MAPREG_MEM_SIZE(reg) != 0)
303 1.19 fvdl memreg = i;
304 1.1 ad break;
305 1.1 ad case PCI_MAPREG_TYPE_IO:
306 1.19 fvdl if (PCI_MAPREG_IO_SIZE(reg) != 0)
307 1.19 fvdl ioreg = i;
308 1.1 ad break;
309 1.16 christos
310 1.1 ad }
311 1.1 ad }
312 1.1 ad
313 1.18 mycroft if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
314 1.18 mycroft &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
315 1.18 mycroft ;
316 1.18 mycroft else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
317 1.18 mycroft &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
318 1.18 mycroft ;
319 1.18 mycroft else {
320 1.8 thorpej aprint_error("can't map control registers\n");
321 1.9 ad amr_teardown(amr);
322 1.1 ad return;
323 1.1 ad }
324 1.1 ad
325 1.9 ad amr->amr_flags |= AMRF_PCI_REGS;
326 1.1 ad amr->amr_dmat = pa->pa_dmat;
327 1.9 ad amr->amr_pc = pa->pa_pc;
328 1.1 ad
329 1.1 ad /* Enable the device. */
330 1.1 ad reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
331 1.1 ad pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
332 1.1 ad reg | PCI_COMMAND_MASTER_ENABLE);
333 1.1 ad
334 1.1 ad /* Map and establish the interrupt. */
335 1.1 ad if (pci_intr_map(pa, &ih)) {
336 1.8 thorpej aprint_error("can't map interrupt\n");
337 1.9 ad amr_teardown(amr);
338 1.1 ad return;
339 1.1 ad }
340 1.1 ad intrstr = pci_intr_string(pc, ih);
341 1.1 ad amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
342 1.1 ad if (amr->amr_ih == NULL) {
343 1.8 thorpej aprint_error("can't establish interrupt");
344 1.1 ad if (intrstr != NULL)
345 1.8 thorpej aprint_normal(" at %s", intrstr);
346 1.8 thorpej aprint_normal("\n");
347 1.9 ad amr_teardown(amr);
348 1.1 ad return;
349 1.1 ad }
350 1.9 ad amr->amr_flags |= AMRF_PCI_INTR;
351 1.1 ad
352 1.1 ad /*
353 1.1 ad * Allocate space for the mailbox and S/G lists. Some controllers
354 1.1 ad * don't like S/G lists to be located below 0x2000, so we allocate
355 1.1 ad * enough slop to enable us to compensate.
356 1.1 ad *
357 1.1 ad * The standard mailbox structure needs to be aligned on a 16-byte
358 1.1 ad * boundary. The 64-bit mailbox has one extra field, 4 bytes in
359 1.1 ad * size, which preceeds the standard mailbox.
360 1.1 ad */
361 1.1 ad size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
362 1.9 ad amr->amr_dmasize = size;
363 1.1 ad
364 1.15 fvdl if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
365 1.9 ad &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
366 1.8 thorpej aprint_error("%s: unable to allocate buffer, rv = %d\n",
367 1.1 ad amr->amr_dv.dv_xname, rv);
368 1.9 ad amr_teardown(amr);
369 1.1 ad return;
370 1.1 ad }
371 1.9 ad amr->amr_flags |= AMRF_DMA_ALLOC;
372 1.1 ad
373 1.25 perry if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
374 1.1 ad (caddr_t *)&amr->amr_mbox,
375 1.1 ad BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
376 1.8 thorpej aprint_error("%s: unable to map buffer, rv = %d\n",
377 1.1 ad amr->amr_dv.dv_xname, rv);
378 1.9 ad amr_teardown(amr);
379 1.1 ad return;
380 1.1 ad }
381 1.9 ad amr->amr_flags |= AMRF_DMA_MAP;
382 1.1 ad
383 1.25 perry if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
384 1.1 ad BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
385 1.8 thorpej aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
386 1.1 ad amr->amr_dv.dv_xname, rv);
387 1.9 ad amr_teardown(amr);
388 1.1 ad return;
389 1.1 ad }
390 1.9 ad amr->amr_flags |= AMRF_DMA_CREATE;
391 1.1 ad
392 1.1 ad if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
393 1.1 ad amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
394 1.8 thorpej aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
395 1.1 ad amr->amr_dv.dv_xname, rv);
396 1.9 ad amr_teardown(amr);
397 1.1 ad return;
398 1.1 ad }
399 1.9 ad amr->amr_flags |= AMRF_DMA_LOAD;
400 1.1 ad
401 1.1 ad memset(amr->amr_mbox, 0, size);
402 1.1 ad
403 1.9 ad amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
404 1.1 ad amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
405 1.1 ad amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
406 1.1 ad amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
407 1.1 ad
408 1.1 ad /*
409 1.1 ad * Allocate and initalise the command control blocks.
410 1.1 ad */
411 1.1 ad ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
412 1.1 ad amr->amr_ccbs = ac;
413 1.1 ad SLIST_INIT(&amr->amr_ccb_freelist);
414 1.10 ad TAILQ_INIT(&amr->amr_ccb_active);
415 1.9 ad amr->amr_flags |= AMRF_CCBS;
416 1.9 ad
417 1.9 ad if (amr_max_xfer == 0) {
418 1.9 ad amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
419 1.9 ad amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
420 1.9 ad }
421 1.1 ad
422 1.1 ad for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
423 1.9 ad rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
424 1.9 ad amr_max_segs, amr_max_xfer, 0,
425 1.9 ad BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
426 1.1 ad if (rv != 0)
427 1.1 ad break;
428 1.1 ad
429 1.1 ad ac->ac_ident = i;
430 1.9 ad amr_ccb_free(amr, ac);
431 1.9 ad }
432 1.9 ad if (i != AMR_MAX_CMDS) {
433 1.9 ad aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
434 1.9 ad amr_teardown(amr);
435 1.9 ad return;
436 1.1 ad }
437 1.1 ad
438 1.1 ad /*
439 1.1 ad * Take care of model-specific tasks.
440 1.1 ad */
441 1.1 ad if ((apt->apt_flags & AT_QUARTZ) != 0) {
442 1.1 ad amr->amr_submit = amr_quartz_submit;
443 1.1 ad amr->amr_get_work = amr_quartz_get_work;
444 1.1 ad } else {
445 1.1 ad amr->amr_submit = amr_std_submit;
446 1.1 ad amr->amr_get_work = amr_std_get_work;
447 1.1 ad
448 1.1 ad /* Notify the controller of the mailbox location. */
449 1.9 ad amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
450 1.1 ad amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
451 1.1 ad
452 1.1 ad /* Clear outstanding interrupts and enable interrupts. */
453 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
454 1.1 ad amr_outb(amr, AMR_SREG_TOGL,
455 1.1 ad amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
456 1.1 ad }
457 1.1 ad
458 1.1 ad /*
459 1.1 ad * Retrieve parameters, and tell the world about us.
460 1.1 ad */
461 1.9 ad amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
462 1.9 ad amr->amr_flags |= AMRF_ENQBUF;
463 1.1 ad amr->amr_maxqueuecnt = i;
464 1.8 thorpej aprint_normal(": AMI RAID ");
465 1.9 ad if (amr_init(amr, intrstr, pa) != 0) {
466 1.9 ad amr_teardown(amr);
467 1.1 ad return;
468 1.9 ad }
469 1.1 ad
470 1.25 perry /*
471 1.1 ad * Cap the maximum number of outstanding commands. AMI's Linux
472 1.1 ad * driver doesn't trust the controller's reported value, and lockups
473 1.1 ad * have been seen when we do.
474 1.1 ad */
475 1.1 ad amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
476 1.1 ad if (amr->amr_maxqueuecnt > i)
477 1.1 ad amr->amr_maxqueuecnt = i;
478 1.1 ad
479 1.1 ad /* Set our `shutdownhook' before we start any device activity. */
480 1.1 ad if (amr_sdh == NULL)
481 1.1 ad amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
482 1.1 ad
483 1.1 ad /* Attach sub-devices. */
484 1.9 ad for (j = 0; j < amr->amr_numdrives; j++) {
485 1.9 ad if (amr->amr_drive[j].al_size == 0)
486 1.1 ad continue;
487 1.9 ad amra.amra_unit = j;
488 1.22 drochner
489 1.22 drochner ldesc->len = 1;
490 1.22 drochner ldesc->locs[AMRCF_UNIT] = j;
491 1.22 drochner
492 1.22 drochner amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
493 1.22 drochner "amr", ldesc, &amra, amr_print, amr_submatch);
494 1.1 ad }
495 1.1 ad
496 1.1 ad SIMPLEQ_INIT(&amr->amr_ccb_queue);
497 1.13 ad
498 1.13 ad /* XXX This doesn't work for newer boards yet. */
499 1.13 ad if ((apt->apt_flags & AT_QUARTZ) == 0)
500 1.13 ad kthread_create(amr_thread_create, amr);
501 1.9 ad }
502 1.9 ad
503 1.9 ad /*
504 1.9 ad * Free up resources.
505 1.9 ad */
506 1.9 ad void
507 1.9 ad amr_teardown(struct amr_softc *amr)
508 1.9 ad {
509 1.9 ad struct amr_ccb *ac;
510 1.9 ad int fl;
511 1.9 ad
512 1.9 ad fl = amr->amr_flags;
513 1.9 ad
514 1.9 ad if ((fl & AMRF_THREAD) != 0) {
515 1.9 ad amr->amr_flags |= AMRF_THREAD_EXIT;
516 1.9 ad wakeup(amr_thread);
517 1.9 ad while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
518 1.9 ad tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
519 1.9 ad }
520 1.9 ad if ((fl & AMRF_CCBS) != 0) {
521 1.9 ad SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
522 1.9 ad bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
523 1.9 ad }
524 1.9 ad free(amr->amr_ccbs, M_DEVBUF);
525 1.9 ad }
526 1.9 ad if ((fl & AMRF_ENQBUF) != 0)
527 1.9 ad free(amr->amr_enqbuf, M_DEVBUF);
528 1.9 ad if ((fl & AMRF_DMA_LOAD) != 0)
529 1.9 ad bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
530 1.9 ad if ((fl & AMRF_DMA_MAP) != 0)
531 1.9 ad bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
532 1.9 ad amr->amr_dmasize);
533 1.9 ad if ((fl & AMRF_DMA_ALLOC) != 0)
534 1.9 ad bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
535 1.9 ad if ((fl & AMRF_DMA_CREATE) != 0)
536 1.9 ad bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
537 1.9 ad if ((fl & AMRF_PCI_INTR) != 0)
538 1.9 ad pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
539 1.9 ad if ((fl & AMRF_PCI_REGS) != 0)
540 1.11 fvdl bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
541 1.1 ad }
542 1.1 ad
543 1.1 ad /*
544 1.1 ad * Print autoconfiguration message for a sub-device.
545 1.1 ad */
546 1.1 ad int
547 1.1 ad amr_print(void *aux, const char *pnp)
548 1.1 ad {
549 1.1 ad struct amr_attach_args *amra;
550 1.1 ad
551 1.1 ad amra = (struct amr_attach_args *)aux;
552 1.1 ad
553 1.1 ad if (pnp != NULL)
554 1.7 thorpej aprint_normal("block device at %s", pnp);
555 1.7 thorpej aprint_normal(" unit %d", amra->amra_unit);
556 1.1 ad return (UNCONF);
557 1.1 ad }
558 1.1 ad
559 1.1 ad /*
560 1.1 ad * Match a sub-device.
561 1.1 ad */
562 1.1 ad int
563 1.22 drochner amr_submatch(struct device *parent, struct cfdata *cf,
564 1.22 drochner const locdesc_t *ldesc, void *aux)
565 1.1 ad {
566 1.1 ad struct amr_attach_args *amra;
567 1.1 ad
568 1.1 ad amra = (struct amr_attach_args *)aux;
569 1.1 ad
570 1.22 drochner if (cf->cf_loc[AMRCF_UNIT] != AMRCF_UNIT_DEFAULT &&
571 1.22 drochner cf->cf_loc[AMRCF_UNIT] != ldesc->locs[AMRCF_UNIT])
572 1.1 ad return (0);
573 1.1 ad
574 1.3 thorpej return (config_match(parent, cf, aux));
575 1.1 ad }
576 1.1 ad
577 1.1 ad /*
578 1.1 ad * Retrieve operational parameters and describe the controller.
579 1.1 ad */
580 1.1 ad int
581 1.1 ad amr_init(struct amr_softc *amr, const char *intrstr,
582 1.1 ad struct pci_attach_args *pa)
583 1.1 ad {
584 1.9 ad struct amr_adapter_info *aa;
585 1.1 ad struct amr_prodinfo *ap;
586 1.1 ad struct amr_enquiry *ae;
587 1.1 ad struct amr_enquiry3 *aex;
588 1.1 ad const char *prodstr;
589 1.9 ad u_int i, sig, ishp;
590 1.1 ad char buf[64];
591 1.1 ad
592 1.1 ad /*
593 1.1 ad * Try to get 40LD product info, which tells us what the card is
594 1.1 ad * labelled as.
595 1.1 ad */
596 1.9 ad ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
597 1.9 ad amr->amr_enqbuf);
598 1.1 ad if (ap != NULL) {
599 1.8 thorpej aprint_normal("<%.80s>\n", ap->ap_product);
600 1.1 ad if (intrstr != NULL)
601 1.8 thorpej aprint_normal("%s: interrupting at %s\n",
602 1.1 ad amr->amr_dv.dv_xname, intrstr);
603 1.8 thorpej aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
604 1.1 ad amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
605 1.1 ad le16toh(ap->ap_memsize));
606 1.1 ad
607 1.1 ad amr->amr_maxqueuecnt = ap->ap_maxio;
608 1.1 ad
609 1.1 ad /*
610 1.1 ad * Fetch and record state of logical drives.
611 1.1 ad */
612 1.1 ad aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
613 1.9 ad AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
614 1.1 ad if (aex == NULL) {
615 1.8 thorpej aprint_error("%s ENQUIRY3 failed\n",
616 1.8 thorpej amr->amr_dv.dv_xname);
617 1.1 ad return (-1);
618 1.1 ad }
619 1.1 ad
620 1.1 ad if (aex->ae_numldrives > AMR_MAX_UNITS) {
621 1.8 thorpej aprint_error(
622 1.8 thorpej "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
623 1.17 christos "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
624 1.17 christos amr->amr_numdrives);
625 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
626 1.1 ad } else
627 1.1 ad amr->amr_numdrives = aex->ae_numldrives;
628 1.1 ad
629 1.1 ad for (i = 0; i < amr->amr_numdrives; i++) {
630 1.1 ad amr->amr_drive[i].al_size =
631 1.1 ad le32toh(aex->ae_drivesize[i]);
632 1.1 ad amr->amr_drive[i].al_state = aex->ae_drivestate[i];
633 1.1 ad amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
634 1.1 ad }
635 1.1 ad
636 1.1 ad return (0);
637 1.1 ad }
638 1.1 ad
639 1.1 ad /*
640 1.1 ad * Try 8LD extended ENQUIRY to get the controller signature. Once
641 1.1 ad * found, search for a product description.
642 1.1 ad */
643 1.9 ad ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
644 1.9 ad if (ae != NULL) {
645 1.1 ad i = 0;
646 1.1 ad sig = le32toh(ae->ae_signature);
647 1.1 ad
648 1.1 ad while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
649 1.1 ad if (amr_typestr[i].at_sig == sig)
650 1.1 ad break;
651 1.1 ad i++;
652 1.1 ad }
653 1.1 ad if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
654 1.20 itojun snprintf(buf, sizeof(buf),
655 1.20 itojun "unknown ENQUIRY2 sig (0x%08x)", sig);
656 1.1 ad prodstr = buf;
657 1.1 ad } else
658 1.1 ad prodstr = amr_typestr[i].at_str;
659 1.1 ad } else {
660 1.9 ad ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
661 1.9 ad if (ae == NULL) {
662 1.8 thorpej aprint_error("%s: unsupported controller\n",
663 1.1 ad amr->amr_dv.dv_xname);
664 1.1 ad return (-1);
665 1.1 ad }
666 1.1 ad
667 1.1 ad switch (PCI_PRODUCT(pa->pa_id)) {
668 1.1 ad case PCI_PRODUCT_AMI_MEGARAID:
669 1.1 ad prodstr = "Series 428";
670 1.1 ad break;
671 1.1 ad case PCI_PRODUCT_AMI_MEGARAID2:
672 1.1 ad prodstr = "Series 434";
673 1.1 ad break;
674 1.1 ad default:
675 1.20 itojun snprintf(buf, sizeof(buf), "unknown PCI dev (0x%04x)",
676 1.1 ad PCI_PRODUCT(pa->pa_id));
677 1.1 ad prodstr = buf;
678 1.1 ad break;
679 1.1 ad }
680 1.1 ad }
681 1.1 ad
682 1.9 ad /*
683 1.9 ad * HP NetRaid controllers have a special encoding of the firmware
684 1.9 ad * and BIOS versions. The AMI version seems to have it as strings
685 1.9 ad * whereas the HP version does it with a leading uppercase character
686 1.9 ad * and two binary numbers.
687 1.9 ad */
688 1.9 ad aa = &ae->ae_adapter;
689 1.9 ad
690 1.9 ad if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
691 1.9 ad aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
692 1.9 ad aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
693 1.9 ad aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
694 1.9 ad if (le32toh(ae->ae_signature) == AMR_SIG_438) {
695 1.9 ad /* The AMI 438 is a NetRaid 3si in HP-land. */
696 1.9 ad prodstr = "HP NetRaid 3si";
697 1.9 ad }
698 1.9 ad ishp = 1;
699 1.9 ad } else
700 1.9 ad ishp = 0;
701 1.9 ad
702 1.8 thorpej aprint_normal("<%s>\n", prodstr);
703 1.1 ad if (intrstr != NULL)
704 1.8 thorpej aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
705 1.1 ad intrstr);
706 1.1 ad
707 1.9 ad if (ishp)
708 1.9 ad aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
709 1.9 ad ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
710 1.9 ad aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
711 1.9 ad aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
712 1.9 ad else
713 1.9 ad aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
714 1.9 ad amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
715 1.9 ad aa->aa_memorysize);
716 1.9 ad
717 1.9 ad amr->amr_maxqueuecnt = aa->aa_maxio;
718 1.1 ad
719 1.1 ad /*
720 1.1 ad * Record state of logical drives.
721 1.1 ad */
722 1.1 ad if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
723 1.8 thorpej aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
724 1.1 ad amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
725 1.1 ad AMR_MAX_UNITS);
726 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
727 1.1 ad } else
728 1.1 ad amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
729 1.1 ad
730 1.1 ad for (i = 0; i < AMR_MAX_UNITS; i++) {
731 1.1 ad amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
732 1.1 ad amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
733 1.1 ad amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
734 1.1 ad }
735 1.1 ad
736 1.1 ad return (0);
737 1.1 ad }
738 1.1 ad
739 1.1 ad /*
740 1.1 ad * Flush the internal cache on each configured controller. Called at
741 1.1 ad * shutdown time.
742 1.1 ad */
743 1.1 ad void
744 1.1 ad amr_shutdown(void *cookie)
745 1.1 ad {
746 1.25.2.2 tron extern struct cfdriver amr_cd;
747 1.1 ad struct amr_softc *amr;
748 1.1 ad struct amr_ccb *ac;
749 1.9 ad int i, rv, s;
750 1.1 ad
751 1.1 ad for (i = 0; i < amr_cd.cd_ndevs; i++) {
752 1.1 ad if ((amr = device_lookup(&amr_cd, i)) == NULL)
753 1.1 ad continue;
754 1.1 ad
755 1.1 ad if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
756 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
757 1.9 ad s = splbio();
758 1.1 ad rv = amr_ccb_poll(amr, ac, 30000);
759 1.9 ad splx(s);
760 1.1 ad amr_ccb_free(amr, ac);
761 1.1 ad }
762 1.1 ad if (rv != 0)
763 1.1 ad printf("%s: unable to flush cache (%d)\n",
764 1.1 ad amr->amr_dv.dv_xname, rv);
765 1.1 ad }
766 1.1 ad }
767 1.1 ad
768 1.1 ad /*
769 1.1 ad * Interrupt service routine.
770 1.1 ad */
771 1.1 ad int
772 1.1 ad amr_intr(void *cookie)
773 1.1 ad {
774 1.1 ad struct amr_softc *amr;
775 1.1 ad struct amr_ccb *ac;
776 1.9 ad struct amr_mailbox_resp mbox;
777 1.1 ad u_int i, forus, idx;
778 1.1 ad
779 1.1 ad amr = cookie;
780 1.1 ad forus = 0;
781 1.1 ad
782 1.1 ad while ((*amr->amr_get_work)(amr, &mbox) == 0) {
783 1.1 ad /* Iterate over completed commands in this result. */
784 1.1 ad for (i = 0; i < mbox.mb_nstatus; i++) {
785 1.1 ad idx = mbox.mb_completed[i] - 1;
786 1.1 ad ac = amr->amr_ccbs + idx;
787 1.1 ad
788 1.1 ad if (idx >= amr->amr_maxqueuecnt) {
789 1.1 ad printf("%s: bad status (bogus ID: %u=%u)\n",
790 1.1 ad amr->amr_dv.dv_xname, i, idx);
791 1.1 ad continue;
792 1.1 ad }
793 1.1 ad
794 1.1 ad if ((ac->ac_flags & AC_ACTIVE) == 0) {
795 1.1 ad printf("%s: bad status (not active; 0x04%x)\n",
796 1.1 ad amr->amr_dv.dv_xname, ac->ac_flags);
797 1.1 ad continue;
798 1.1 ad }
799 1.1 ad
800 1.1 ad ac->ac_status = mbox.mb_status;
801 1.1 ad ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
802 1.1 ad AC_COMPLETE;
803 1.10 ad TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
804 1.10 ad
805 1.10 ad if ((ac->ac_flags & AC_MOAN) != 0)
806 1.10 ad printf("%s: ccb %d completed\n",
807 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
808 1.1 ad
809 1.1 ad /* Pass notification to upper layers. */
810 1.1 ad if (ac->ac_handler != NULL)
811 1.1 ad (*ac->ac_handler)(ac);
812 1.9 ad else
813 1.9 ad wakeup(ac);
814 1.1 ad }
815 1.1 ad forus = 1;
816 1.1 ad }
817 1.1 ad
818 1.1 ad if (forus)
819 1.1 ad amr_ccb_enqueue(amr, NULL);
820 1.9 ad
821 1.1 ad return (forus);
822 1.1 ad }
823 1.1 ad
824 1.1 ad /*
825 1.9 ad * Create the watchdog thread.
826 1.9 ad */
827 1.9 ad void
828 1.9 ad amr_thread_create(void *cookie)
829 1.9 ad {
830 1.9 ad struct amr_softc *amr;
831 1.9 ad int rv;
832 1.9 ad
833 1.9 ad amr = cookie;
834 1.9 ad
835 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
836 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
837 1.9 ad wakeup(&amr->amr_flags);
838 1.9 ad return;
839 1.9 ad }
840 1.9 ad
841 1.9 ad rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
842 1.9 ad amr->amr_dv.dv_xname);
843 1.9 ad if (rv != 0)
844 1.9 ad aprint_error("%s: unable to create thread (%d)",
845 1.9 ad amr->amr_dv.dv_xname, rv);
846 1.9 ad else
847 1.9 ad amr->amr_flags |= AMRF_THREAD;
848 1.9 ad }
849 1.9 ad
850 1.9 ad /*
851 1.9 ad * Watchdog thread.
852 1.9 ad */
853 1.9 ad void
854 1.9 ad amr_thread(void *cookie)
855 1.9 ad {
856 1.9 ad struct amr_softc *amr;
857 1.9 ad struct amr_ccb *ac;
858 1.9 ad struct amr_logdrive *al;
859 1.9 ad struct amr_enquiry *ae;
860 1.10 ad time_t curtime;
861 1.9 ad int rv, i, s;
862 1.9 ad
863 1.9 ad amr = cookie;
864 1.9 ad ae = amr->amr_enqbuf;
865 1.9 ad
866 1.9 ad for (;;) {
867 1.9 ad tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
868 1.9 ad
869 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
870 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
871 1.9 ad wakeup(&amr->amr_flags);
872 1.9 ad kthread_exit(0);
873 1.9 ad }
874 1.9 ad
875 1.9 ad s = splbio();
876 1.9 ad amr_intr(cookie);
877 1.10 ad curtime = (time_t)mono_time.tv_sec;
878 1.13 ad ac = TAILQ_FIRST(&amr->amr_ccb_active);
879 1.13 ad while (ac != NULL) {
880 1.10 ad if (ac->ac_start_time + AMR_TIMEOUT > curtime)
881 1.10 ad break;
882 1.10 ad if ((ac->ac_flags & AC_MOAN) == 0) {
883 1.10 ad printf("%s: ccb %d timed out; mailbox:\n",
884 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
885 1.10 ad amr_ccb_dump(amr, ac);
886 1.10 ad ac->ac_flags |= AC_MOAN;
887 1.10 ad }
888 1.13 ad ac = TAILQ_NEXT(ac, ac_chain.tailq);
889 1.10 ad }
890 1.9 ad splx(s);
891 1.9 ad
892 1.9 ad if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
893 1.9 ad printf("%s: ccb_alloc failed (%d)\n",
894 1.25 perry amr->amr_dv.dv_xname, rv);
895 1.9 ad continue;
896 1.9 ad }
897 1.9 ad
898 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
899 1.9 ad
900 1.9 ad rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
901 1.25.2.2 tron AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
902 1.9 ad if (rv != 0) {
903 1.9 ad printf("%s: ccb_map failed (%d)\n",
904 1.9 ad amr->amr_dv.dv_xname, rv);
905 1.9 ad amr_ccb_free(amr, ac);
906 1.9 ad continue;
907 1.9 ad }
908 1.9 ad
909 1.9 ad rv = amr_ccb_wait(amr, ac);
910 1.9 ad amr_ccb_unmap(amr, ac);
911 1.9 ad if (rv != 0) {
912 1.9 ad printf("%s: enquiry failed (st=%d)\n",
913 1.9 ad amr->amr_dv.dv_xname, ac->ac_status);
914 1.9 ad continue;
915 1.9 ad }
916 1.9 ad amr_ccb_free(amr, ac);
917 1.9 ad
918 1.9 ad al = amr->amr_drive;
919 1.9 ad for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
920 1.9 ad if (al->al_dv == NULL)
921 1.9 ad continue;
922 1.9 ad if (al->al_state == ae->ae_ldrv.al_state[i])
923 1.9 ad continue;
924 1.9 ad
925 1.9 ad printf("%s: state changed: %s -> %s\n",
926 1.9 ad al->al_dv->dv_xname,
927 1.9 ad amr_drive_state(al->al_state, NULL),
928 1.9 ad amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
929 1.9 ad
930 1.9 ad al->al_state = ae->ae_ldrv.al_state[i];
931 1.9 ad }
932 1.9 ad }
933 1.9 ad }
934 1.9 ad
935 1.9 ad /*
936 1.9 ad * Return a text description of a logical drive's current state.
937 1.9 ad */
938 1.9 ad const char *
939 1.9 ad amr_drive_state(int state, int *happy)
940 1.9 ad {
941 1.9 ad const char *str;
942 1.9 ad
943 1.9 ad state = AMR_DRV_CURSTATE(state);
944 1.9 ad if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
945 1.9 ad if (happy)
946 1.9 ad *happy = 1;
947 1.9 ad str = "status unknown";
948 1.9 ad } else {
949 1.9 ad if (happy)
950 1.9 ad *happy = amr_dstate[state].ds_happy;
951 1.9 ad str = amr_dstate[state].ds_descr;
952 1.9 ad }
953 1.9 ad
954 1.9 ad return (str);
955 1.9 ad }
956 1.9 ad
957 1.9 ad /*
958 1.1 ad * Run a generic enquiry-style command.
959 1.1 ad */
960 1.1 ad void *
961 1.1 ad amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
962 1.9 ad u_int8_t cmdqual, void *buf)
963 1.1 ad {
964 1.1 ad struct amr_ccb *ac;
965 1.1 ad u_int8_t *mb;
966 1.1 ad int rv;
967 1.1 ad
968 1.1 ad if (amr_ccb_alloc(amr, &ac) != 0)
969 1.1 ad return (NULL);
970 1.1 ad
971 1.1 ad /* Build the command proper. */
972 1.9 ad mb = (u_int8_t *)&ac->ac_cmd;
973 1.1 ad mb[0] = cmd;
974 1.1 ad mb[2] = cmdsub;
975 1.1 ad mb[3] = cmdqual;
976 1.1 ad
977 1.25.2.2 tron rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
978 1.9 ad if (rv == 0) {
979 1.1 ad rv = amr_ccb_poll(amr, ac, 2000);
980 1.1 ad amr_ccb_unmap(amr, ac);
981 1.1 ad }
982 1.1 ad amr_ccb_free(amr, ac);
983 1.1 ad
984 1.9 ad return (rv ? NULL : buf);
985 1.1 ad }
986 1.1 ad
987 1.1 ad /*
988 1.1 ad * Allocate and initialise a CCB.
989 1.1 ad */
990 1.1 ad int
991 1.1 ad amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
992 1.1 ad {
993 1.1 ad int s;
994 1.1 ad
995 1.1 ad s = splbio();
996 1.9 ad if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
997 1.1 ad splx(s);
998 1.1 ad return (EAGAIN);
999 1.1 ad }
1000 1.1 ad SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
1001 1.1 ad splx(s);
1002 1.1 ad
1003 1.1 ad return (0);
1004 1.1 ad }
1005 1.1 ad
1006 1.1 ad /*
1007 1.1 ad * Free a CCB.
1008 1.1 ad */
1009 1.1 ad void
1010 1.1 ad amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
1011 1.1 ad {
1012 1.1 ad int s;
1013 1.1 ad
1014 1.9 ad memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1015 1.9 ad ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1016 1.9 ad ac->ac_cmd.mb_busy = 1;
1017 1.9 ad ac->ac_handler = NULL;
1018 1.1 ad ac->ac_flags = 0;
1019 1.1 ad
1020 1.1 ad s = splbio();
1021 1.1 ad SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1022 1.1 ad splx(s);
1023 1.1 ad }
1024 1.1 ad
1025 1.1 ad /*
1026 1.1 ad * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1027 1.1 ad * the order that they were enqueued and try to submit their command blocks
1028 1.1 ad * to the controller for execution.
1029 1.1 ad */
1030 1.1 ad void
1031 1.1 ad amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1032 1.1 ad {
1033 1.1 ad int s;
1034 1.1 ad
1035 1.1 ad s = splbio();
1036 1.1 ad
1037 1.1 ad if (ac != NULL)
1038 1.1 ad SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1039 1.1 ad
1040 1.1 ad while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1041 1.1 ad if ((*amr->amr_submit)(amr, ac) != 0)
1042 1.1 ad break;
1043 1.2 lukem SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1044 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1045 1.1 ad }
1046 1.1 ad
1047 1.1 ad splx(s);
1048 1.1 ad }
1049 1.1 ad
1050 1.1 ad /*
1051 1.1 ad * Map the specified CCB's data buffer onto the bus, and fill the
1052 1.1 ad * scatter-gather list.
1053 1.1 ad */
1054 1.1 ad int
1055 1.1 ad amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1056 1.25.2.2 tron int tflag)
1057 1.1 ad {
1058 1.1 ad struct amr_sgentry *sge;
1059 1.9 ad struct amr_mailbox_cmd *mb;
1060 1.1 ad int nsegs, i, rv, sgloff;
1061 1.1 ad bus_dmamap_t xfer;
1062 1.25.2.2 tron int dmaflag = 0;
1063 1.1 ad
1064 1.1 ad xfer = ac->ac_xfer_map;
1065 1.1 ad
1066 1.1 ad rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1067 1.1 ad BUS_DMA_NOWAIT);
1068 1.1 ad if (rv != 0)
1069 1.1 ad return (rv);
1070 1.1 ad
1071 1.9 ad mb = &ac->ac_cmd;
1072 1.1 ad ac->ac_xfer_size = size;
1073 1.25.2.2 tron ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1074 1.1 ad sgloff = AMR_SGL_SIZE * ac->ac_ident;
1075 1.1 ad
1076 1.25.2.2 tron if (tflag & AC_XFER_OUT)
1077 1.25.2.2 tron dmaflag |= BUS_DMASYNC_PREWRITE;
1078 1.25.2.2 tron if (tflag & AC_XFER_IN)
1079 1.25.2.2 tron dmaflag |= BUS_DMASYNC_PREREAD;
1080 1.25.2.2 tron
1081 1.1 ad /* We don't need to use a scatter/gather list for just 1 segment. */
1082 1.1 ad nsegs = xfer->dm_nsegs;
1083 1.1 ad if (nsegs == 1) {
1084 1.1 ad mb->mb_nsgelem = 0;
1085 1.1 ad mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1086 1.1 ad ac->ac_flags |= AC_NOSGL;
1087 1.1 ad } else {
1088 1.1 ad mb->mb_nsgelem = nsegs;
1089 1.1 ad mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1090 1.1 ad
1091 1.1 ad sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1092 1.1 ad for (i = 0; i < nsegs; i++, sge++) {
1093 1.1 ad sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1094 1.1 ad sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1095 1.1 ad }
1096 1.1 ad }
1097 1.1 ad
1098 1.25.2.2 tron bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1099 1.1 ad
1100 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1101 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1102 1.1 ad AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1103 1.1 ad
1104 1.1 ad return (0);
1105 1.1 ad }
1106 1.1 ad
1107 1.1 ad /*
1108 1.1 ad * Unmap the specified CCB's data buffer.
1109 1.1 ad */
1110 1.1 ad void
1111 1.1 ad amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1112 1.1 ad {
1113 1.25.2.2 tron int dmaflag = 0;
1114 1.25.2.2 tron
1115 1.25.2.2 tron if (ac->ac_flags & AC_XFER_IN)
1116 1.25.2.2 tron dmaflag |= BUS_DMASYNC_POSTREAD;
1117 1.25.2.2 tron if (ac->ac_flags & AC_XFER_OUT)
1118 1.25.2.2 tron dmaflag |= BUS_DMASYNC_POSTWRITE;
1119 1.1 ad
1120 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1121 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1122 1.1 ad AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1123 1.1 ad BUS_DMASYNC_POSTWRITE);
1124 1.1 ad bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1125 1.25.2.2 tron dmaflag);
1126 1.1 ad bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1127 1.1 ad }
1128 1.1 ad
1129 1.1 ad /*
1130 1.1 ad * Submit a command to the controller and poll on completion. Return
1131 1.1 ad * non-zero on timeout or error. Must be called with interrupts blocked.
1132 1.1 ad */
1133 1.1 ad int
1134 1.1 ad amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1135 1.1 ad {
1136 1.1 ad int rv;
1137 1.1 ad
1138 1.1 ad if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1139 1.1 ad return (rv);
1140 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1141 1.1 ad
1142 1.1 ad for (timo *= 10; timo != 0; timo--) {
1143 1.1 ad amr_intr(amr);
1144 1.1 ad if ((ac->ac_flags & AC_COMPLETE) != 0)
1145 1.1 ad break;
1146 1.1 ad DELAY(100);
1147 1.1 ad }
1148 1.1 ad
1149 1.1 ad return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1150 1.1 ad }
1151 1.1 ad
1152 1.1 ad /*
1153 1.9 ad * Submit a command to the controller and sleep on completion. Return
1154 1.9 ad * non-zero on error.
1155 1.9 ad */
1156 1.9 ad int
1157 1.9 ad amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1158 1.9 ad {
1159 1.9 ad int s;
1160 1.9 ad
1161 1.9 ad s = splbio();
1162 1.9 ad amr_ccb_enqueue(amr, ac);
1163 1.25 perry tsleep(ac, PRIBIO, "amrcmd", 0);
1164 1.9 ad splx(s);
1165 1.9 ad
1166 1.9 ad return (ac->ac_status != 0 ? EIO : 0);
1167 1.9 ad }
1168 1.9 ad
1169 1.9 ad /*
1170 1.1 ad * Wait for the mailbox to become available.
1171 1.1 ad */
1172 1.1 ad int
1173 1.1 ad amr_mbox_wait(struct amr_softc *amr)
1174 1.1 ad {
1175 1.1 ad int timo;
1176 1.1 ad
1177 1.1 ad for (timo = 10000; timo != 0; timo--) {
1178 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1179 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1180 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1181 1.1 ad break;
1182 1.1 ad DELAY(100);
1183 1.1 ad }
1184 1.1 ad
1185 1.9 ad if (timo == 0)
1186 1.1 ad printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1187 1.1 ad
1188 1.9 ad return (timo != 0 ? 0 : EAGAIN);
1189 1.1 ad }
1190 1.1 ad
1191 1.1 ad /*
1192 1.1 ad * Tell the controller that the mailbox contains a valid command. Must be
1193 1.1 ad * called with interrupts blocked.
1194 1.1 ad */
1195 1.1 ad int
1196 1.1 ad amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1197 1.1 ad {
1198 1.1 ad u_int32_t v;
1199 1.1 ad
1200 1.9 ad amr->amr_mbox->mb_poll = 0;
1201 1.9 ad amr->amr_mbox->mb_ack = 0;
1202 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1203 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1204 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1205 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1206 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1207 1.9 ad return (EAGAIN);
1208 1.9 ad
1209 1.1 ad v = amr_inl(amr, AMR_QREG_IDB);
1210 1.13 ad if ((v & AMR_QIDB_SUBMIT) != 0) {
1211 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1212 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1213 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1214 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1215 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1216 1.9 ad return (EAGAIN);
1217 1.9 ad }
1218 1.1 ad
1219 1.10 ad amr->amr_mbox->mb_segment = 0;
1220 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1221 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1222 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1223 1.10 ad
1224 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1225 1.1 ad ac->ac_flags |= AC_ACTIVE;
1226 1.13 ad amr_outl(amr, AMR_QREG_IDB,
1227 1.13 ad (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1228 1.1 ad return (0);
1229 1.1 ad }
1230 1.1 ad
1231 1.1 ad int
1232 1.1 ad amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1233 1.1 ad {
1234 1.1 ad
1235 1.9 ad amr->amr_mbox->mb_poll = 0;
1236 1.9 ad amr->amr_mbox->mb_ack = 0;
1237 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1238 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1239 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1240 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1241 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1242 1.9 ad return (EAGAIN);
1243 1.9 ad
1244 1.9 ad if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1245 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1246 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1247 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1248 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1249 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1250 1.9 ad return (EAGAIN);
1251 1.9 ad }
1252 1.1 ad
1253 1.10 ad amr->amr_mbox->mb_segment = 0;
1254 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1255 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1256 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1257 1.10 ad
1258 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1259 1.1 ad ac->ac_flags |= AC_ACTIVE;
1260 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1261 1.1 ad return (0);
1262 1.1 ad }
1263 1.1 ad
1264 1.1 ad /*
1265 1.1 ad * Claim any work that the controller has completed; acknowledge completion,
1266 1.1 ad * save details of the completion in (mbsave). Must be called with
1267 1.1 ad * interrupts blocked.
1268 1.1 ad */
1269 1.1 ad int
1270 1.9 ad amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1271 1.1 ad {
1272 1.1 ad
1273 1.1 ad /* Work waiting for us? */
1274 1.1 ad if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1275 1.1 ad return (-1);
1276 1.1 ad
1277 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1278 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1279 1.9 ad
1280 1.1 ad /* Save the mailbox, which contains a list of completed commands. */
1281 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1282 1.9 ad
1283 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1284 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1285 1.1 ad
1286 1.1 ad /* Ack the interrupt and mailbox transfer. */
1287 1.1 ad amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1288 1.9 ad amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1289 1.1 ad
1290 1.1 ad /*
1291 1.1 ad * This waits for the controller to notice that we've taken the
1292 1.1 ad * command from it. It's very inefficient, and we shouldn't do it,
1293 1.1 ad * but if we remove this code, we stop completing commands under
1294 1.1 ad * load.
1295 1.1 ad *
1296 1.1 ad * Peter J says we shouldn't do this. The documentation says we
1297 1.1 ad * should. Who is right?
1298 1.1 ad */
1299 1.1 ad while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1300 1.13 ad DELAY(10);
1301 1.1 ad
1302 1.1 ad return (0);
1303 1.1 ad }
1304 1.1 ad
1305 1.1 ad int
1306 1.9 ad amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1307 1.1 ad {
1308 1.1 ad u_int8_t istat;
1309 1.1 ad
1310 1.1 ad /* Check for valid interrupt status. */
1311 1.1 ad if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1312 1.1 ad return (-1);
1313 1.1 ad
1314 1.1 ad /* Ack the interrupt. */
1315 1.1 ad amr_outb(amr, AMR_SREG_INTR, istat);
1316 1.1 ad
1317 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1318 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1319 1.9 ad
1320 1.1 ad /* Save mailbox, which contains a list of completed commands. */
1321 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1322 1.9 ad
1323 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1324 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1325 1.1 ad
1326 1.1 ad /* Ack mailbox transfer. */
1327 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1328 1.1 ad
1329 1.1 ad return (0);
1330 1.10 ad }
1331 1.10 ad
1332 1.10 ad void
1333 1.10 ad amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1334 1.10 ad {
1335 1.10 ad int i;
1336 1.10 ad
1337 1.10 ad printf("%s: ", amr->amr_dv.dv_xname);
1338 1.10 ad for (i = 0; i < 4; i++)
1339 1.10 ad printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1340 1.10 ad printf("\n");
1341 1.1 ad }
1342 1.25.2.2 tron
1343 1.25.2.2 tron static int
1344 1.25.2.2 tron amropen(dev_t dev, int flag, int mode, struct proc *p)
1345 1.25.2.2 tron {
1346 1.25.2.2 tron struct amr_softc *amr;
1347 1.25.2.2 tron
1348 1.25.2.2 tron if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL)
1349 1.25.2.2 tron return (ENXIO);
1350 1.25.2.2 tron if ((amr->amr_flags & AMRF_OPEN) != 0)
1351 1.25.2.2 tron return (EBUSY);
1352 1.25.2.2 tron
1353 1.25.2.2 tron amr->amr_flags |= AMRF_OPEN;
1354 1.25.2.2 tron return (0);
1355 1.25.2.2 tron }
1356 1.25.2.2 tron
1357 1.25.2.2 tron static int
1358 1.25.2.2 tron amrclose(dev_t dev, int flag, int mode, struct proc *p)
1359 1.25.2.2 tron {
1360 1.25.2.2 tron struct amr_softc *amr;
1361 1.25.2.2 tron
1362 1.25.2.2 tron amr = device_lookup(&amr_cd, minor(dev));
1363 1.25.2.2 tron amr->amr_flags &= ~AMRF_OPEN;
1364 1.25.2.2 tron return (0);
1365 1.25.2.2 tron }
1366 1.25.2.2 tron
1367 1.25.2.2 tron static int
1368 1.25.2.2 tron amrioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1369 1.25.2.2 tron {
1370 1.25.2.2 tron struct amr_softc *amr;
1371 1.25.2.2 tron struct amr_user_ioctl *au;
1372 1.25.2.2 tron struct amr_ccb *ac;
1373 1.25.2.2 tron struct amr_mailbox_ioctl *mbi;
1374 1.25.2.2 tron unsigned long au_length;
1375 1.25.2.2 tron uint8_t *au_cmd;
1376 1.25.2.2 tron int error;
1377 1.25.2.2 tron void *dp = NULL, *au_buffer;
1378 1.25.2.2 tron
1379 1.25.2.2 tron if (securelevel >= 2)
1380 1.25.2.2 tron return (EPERM);
1381 1.25.2.2 tron
1382 1.25.2.2 tron amr = device_lookup(&amr_cd, minor(dev));
1383 1.25.2.2 tron
1384 1.25.2.2 tron /* This should be compatible with the FreeBSD interface */
1385 1.25.2.2 tron
1386 1.25.2.2 tron switch (cmd) {
1387 1.25.2.2 tron case AMR_IO_VERSION:
1388 1.25.2.2 tron *(int *)data = AMR_IO_VERSION_NUMBER;
1389 1.25.2.2 tron return 0;
1390 1.25.2.2 tron case AMR_IO_COMMAND:
1391 1.25.2.2 tron au = (struct amr_user_ioctl *)data;
1392 1.25.2.2 tron au_cmd = au->au_cmd;
1393 1.25.2.2 tron au_buffer = au->au_buffer;
1394 1.25.2.2 tron au_length = au->au_length;
1395 1.25.2.2 tron break;
1396 1.25.2.2 tron default:
1397 1.25.2.2 tron return ENOTTY;
1398 1.25.2.2 tron }
1399 1.25.2.2 tron
1400 1.25.2.2 tron if (au_cmd[0] == AMR_CMD_PASS) {
1401 1.25.2.2 tron /* not yet */
1402 1.25.2.2 tron return EOPNOTSUPP;
1403 1.25.2.2 tron }
1404 1.25.2.2 tron
1405 1.25.2.2 tron if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1406 1.25.2.2 tron return (EINVAL);
1407 1.25.2.2 tron
1408 1.25.2.2 tron /*
1409 1.25.2.2 tron * allocate kernel memory for data, doing I/O directly to user
1410 1.25.2.2 tron * buffer isn't that easy.
1411 1.25.2.2 tron */
1412 1.25.2.2 tron dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1413 1.25.2.2 tron if (dp == NULL)
1414 1.25.2.2 tron return ENOMEM;
1415 1.25.2.2 tron if ((error = copyin(au_buffer, dp, au_length)) != 0)
1416 1.25.2.2 tron goto out;
1417 1.25.2.2 tron
1418 1.25.2.2 tron /* direct command to controller */
1419 1.25.2.2 tron while (amr_ccb_alloc(amr, &ac) != 0) {
1420 1.25.2.2 tron error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1421 1.25.2.2 tron if (error == EINTR)
1422 1.25.2.2 tron goto out;
1423 1.25.2.2 tron }
1424 1.25.2.2 tron
1425 1.25.2.2 tron mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1426 1.25.2.2 tron mbi->mb_command = au_cmd[0];
1427 1.25.2.2 tron mbi->mb_channel = au_cmd[1];
1428 1.25.2.2 tron mbi->mb_param = au_cmd[2];
1429 1.25.2.2 tron mbi->mb_pad[0] = au_cmd[3];
1430 1.25.2.2 tron mbi->mb_drive = au_cmd[4];
1431 1.25.2.2 tron error = amr_ccb_map(amr, ac, dp, (int)au_length,
1432 1.25.2.2 tron AC_XFER_IN | AC_XFER_OUT);
1433 1.25.2.2 tron if (error == 0) {
1434 1.25.2.2 tron error = amr_ccb_wait(amr, ac);
1435 1.25.2.2 tron amr_ccb_unmap(amr, ac);
1436 1.25.2.2 tron if (error == 0)
1437 1.25.2.2 tron error = copyout(dp, au_buffer, au_length);
1438 1.25.2.2 tron
1439 1.25.2.2 tron }
1440 1.25.2.2 tron amr_ccb_free(amr, ac);
1441 1.25.2.2 tron out:
1442 1.25.2.2 tron free(dp, M_DEVBUF);
1443 1.25.2.2 tron return (error);
1444 1.25.2.2 tron }
1445