amr.c revision 1.31 1 1.31 jonathan /* $NetBSD: amr.c,v 1.31 2005/12/11 19:34:47 jonathan Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.9 ad * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 ad * by Andrew Doran.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1 ad * must display the following acknowledgement:
20 1.1 ad * This product includes software developed by the NetBSD
21 1.1 ad * Foundation, Inc. and its contributors.
22 1.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 ad * contributors may be used to endorse or promote products derived
24 1.1 ad * from this software without specific prior written permission.
25 1.1 ad *
26 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1 ad */
38 1.1 ad
39 1.1 ad /*-
40 1.1 ad * Copyright (c) 1999,2000 Michael Smith
41 1.1 ad * Copyright (c) 2000 BSDi
42 1.1 ad * All rights reserved.
43 1.1 ad *
44 1.1 ad * Redistribution and use in source and binary forms, with or without
45 1.1 ad * modification, are permitted provided that the following conditions
46 1.1 ad * are met:
47 1.1 ad * 1. Redistributions of source code must retain the above copyright
48 1.1 ad * notice, this list of conditions and the following disclaimer.
49 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 ad * notice, this list of conditions and the following disclaimer in the
51 1.1 ad * documentation and/or other materials provided with the distribution.
52 1.1 ad *
53 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 ad * SUCH DAMAGE.
64 1.1 ad *
65 1.1 ad * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 1.25 perry * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 1.1 ad */
68 1.1 ad
69 1.1 ad /*
70 1.1 ad * Driver for AMI RAID controllers.
71 1.1 ad */
72 1.1 ad
73 1.1 ad #include <sys/cdefs.h>
74 1.31 jonathan __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.31 2005/12/11 19:34:47 jonathan Exp $");
75 1.1 ad
76 1.1 ad #include <sys/param.h>
77 1.1 ad #include <sys/systm.h>
78 1.1 ad #include <sys/kernel.h>
79 1.1 ad #include <sys/device.h>
80 1.1 ad #include <sys/queue.h>
81 1.1 ad #include <sys/proc.h>
82 1.1 ad #include <sys/buf.h>
83 1.1 ad #include <sys/malloc.h>
84 1.9 ad #include <sys/kthread.h>
85 1.1 ad
86 1.1 ad #include <uvm/uvm_extern.h>
87 1.1 ad
88 1.1 ad #include <machine/endian.h>
89 1.1 ad #include <machine/bus.h>
90 1.1 ad
91 1.1 ad #include <dev/pci/pcidevs.h>
92 1.1 ad #include <dev/pci/pcivar.h>
93 1.1 ad #include <dev/pci/amrreg.h>
94 1.1 ad #include <dev/pci/amrvar.h>
95 1.1 ad
96 1.22 drochner #include "locators.h"
97 1.22 drochner
98 1.27 thorpej static void amr_attach(struct device *, struct device *, void *);
99 1.27 thorpej static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
100 1.27 thorpej static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
101 1.27 thorpej void *);
102 1.27 thorpej static int amr_init(struct amr_softc *, const char *,
103 1.1 ad struct pci_attach_args *pa);
104 1.27 thorpej static int amr_intr(void *);
105 1.27 thorpej static int amr_match(struct device *, struct cfdata *, void *);
106 1.27 thorpej static int amr_print(void *, const char *);
107 1.27 thorpej static void amr_shutdown(void *);
108 1.27 thorpej static void amr_teardown(struct amr_softc *);
109 1.27 thorpej static void amr_thread(void *);
110 1.27 thorpej static void amr_thread_create(void *);
111 1.27 thorpej
112 1.27 thorpej static int amr_quartz_get_work(struct amr_softc *,
113 1.27 thorpej struct amr_mailbox_resp *);
114 1.27 thorpej static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
115 1.27 thorpej static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
116 1.27 thorpej static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
117 1.1 ad
118 1.5 thorpej CFATTACH_DECL(amr, sizeof(struct amr_softc),
119 1.6 thorpej amr_match, amr_attach, NULL, NULL);
120 1.1 ad
121 1.1 ad #define AT_QUARTZ 0x01 /* `Quartz' chipset */
122 1.1 ad #define AT_SIG 0x02 /* Check for signature */
123 1.1 ad
124 1.1 ad struct amr_pci_type {
125 1.1 ad u_short apt_vendor;
126 1.1 ad u_short apt_product;
127 1.1 ad u_short apt_flags;
128 1.27 thorpej } static const amr_pci_type[] = {
129 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
130 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
131 1.1 ad { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
132 1.21 he { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
133 1.12 matt { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
134 1.31 jonathan { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
135 1.31 jonathan { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
136 1.31 jonathan { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
137 1.12 matt { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
138 1.14 martti { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
139 1.23 martti { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
140 1.24 martti { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
141 1.31 jonathan { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
142 1.31 jonathan { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
143 1.31 jonathan { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
144 1.1 ad };
145 1.1 ad
146 1.1 ad struct amr_typestr {
147 1.1 ad const char *at_str;
148 1.1 ad int at_sig;
149 1.27 thorpej } static const amr_typestr[] = {
150 1.1 ad { "Series 431", AMR_SIG_431 },
151 1.1 ad { "Series 438", AMR_SIG_438 },
152 1.1 ad { "Series 466", AMR_SIG_466 },
153 1.1 ad { "Series 467", AMR_SIG_467 },
154 1.1 ad { "Series 490", AMR_SIG_490 },
155 1.1 ad { "Series 762", AMR_SIG_762 },
156 1.1 ad { "HP NetRAID (T5)", AMR_SIG_T5 },
157 1.1 ad { "HP NetRAID (T7)", AMR_SIG_T7 },
158 1.1 ad };
159 1.1 ad
160 1.9 ad struct {
161 1.9 ad const char *ds_descr;
162 1.9 ad int ds_happy;
163 1.27 thorpej } static const amr_dstate[] = {
164 1.9 ad { "offline", 0 },
165 1.9 ad { "degraded", 1 },
166 1.9 ad { "optimal", 1 },
167 1.9 ad { "online", 1 },
168 1.9 ad { "failed", 0 },
169 1.9 ad { "rebuilding", 1 },
170 1.9 ad { "hotspare", 0 },
171 1.9 ad };
172 1.9 ad
173 1.27 thorpej static void *amr_sdh;
174 1.27 thorpej
175 1.27 thorpej static int amr_max_segs;
176 1.27 thorpej int amr_max_xfer;
177 1.1 ad
178 1.1 ad static inline u_int8_t
179 1.1 ad amr_inb(struct amr_softc *amr, int off)
180 1.1 ad {
181 1.1 ad
182 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
183 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
184 1.1 ad return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
185 1.1 ad }
186 1.1 ad
187 1.1 ad static inline u_int32_t
188 1.1 ad amr_inl(struct amr_softc *amr, int off)
189 1.1 ad {
190 1.1 ad
191 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
192 1.1 ad BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
193 1.1 ad return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
194 1.1 ad }
195 1.1 ad
196 1.1 ad static inline void
197 1.1 ad amr_outb(struct amr_softc *amr, int off, u_int8_t val)
198 1.1 ad {
199 1.1 ad
200 1.1 ad bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
201 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
202 1.1 ad BUS_SPACE_BARRIER_WRITE);
203 1.1 ad }
204 1.1 ad
205 1.1 ad static inline void
206 1.1 ad amr_outl(struct amr_softc *amr, int off, u_int32_t val)
207 1.1 ad {
208 1.1 ad
209 1.1 ad bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
210 1.1 ad bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
211 1.1 ad BUS_SPACE_BARRIER_WRITE);
212 1.1 ad }
213 1.1 ad
214 1.1 ad /*
215 1.1 ad * Match a supported device.
216 1.1 ad */
217 1.27 thorpej static int
218 1.1 ad amr_match(struct device *parent, struct cfdata *match, void *aux)
219 1.1 ad {
220 1.1 ad struct pci_attach_args *pa;
221 1.1 ad pcireg_t s;
222 1.1 ad int i;
223 1.1 ad
224 1.1 ad pa = (struct pci_attach_args *)aux;
225 1.1 ad
226 1.1 ad /*
227 1.1 ad * Don't match the device if it's operating in I2O mode. In this
228 1.1 ad * case it should be handled by the `iop' driver.
229 1.1 ad */
230 1.1 ad if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
231 1.1 ad return (0);
232 1.1 ad
233 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
234 1.25 perry if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
235 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
236 1.1 ad break;
237 1.1 ad
238 1.1 ad if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
239 1.1 ad return (0);
240 1.1 ad
241 1.1 ad if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
242 1.1 ad return (1);
243 1.1 ad
244 1.1 ad s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
245 1.1 ad return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
246 1.1 ad }
247 1.1 ad
248 1.1 ad /*
249 1.9 ad * Attach a supported device.
250 1.1 ad */
251 1.27 thorpej static void
252 1.1 ad amr_attach(struct device *parent, struct device *self, void *aux)
253 1.1 ad {
254 1.1 ad struct pci_attach_args *pa;
255 1.1 ad struct amr_attach_args amra;
256 1.1 ad const struct amr_pci_type *apt;
257 1.1 ad struct amr_softc *amr;
258 1.1 ad pci_chipset_tag_t pc;
259 1.1 ad pci_intr_handle_t ih;
260 1.1 ad const char *intrstr;
261 1.1 ad pcireg_t reg;
262 1.9 ad int rseg, i, j, size, rv, memreg, ioreg;
263 1.1 ad struct amr_ccb *ac;
264 1.28 drochner int locs[AMRCF_NLOCS];
265 1.1 ad
266 1.8 thorpej aprint_naive(": RAID controller\n");
267 1.8 thorpej
268 1.1 ad amr = (struct amr_softc *)self;
269 1.1 ad pa = (struct pci_attach_args *)aux;
270 1.1 ad pc = pa->pa_pc;
271 1.1 ad
272 1.1 ad for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
273 1.1 ad if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
274 1.1 ad PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
275 1.1 ad break;
276 1.1 ad apt = amr_pci_type + i;
277 1.1 ad
278 1.1 ad memreg = ioreg = 0;
279 1.1 ad for (i = 0x10; i <= 0x14; i += 4) {
280 1.1 ad reg = pci_conf_read(pc, pa->pa_tag, i);
281 1.1 ad switch (PCI_MAPREG_TYPE(reg)) {
282 1.1 ad case PCI_MAPREG_TYPE_MEM:
283 1.19 fvdl if (PCI_MAPREG_MEM_SIZE(reg) != 0)
284 1.19 fvdl memreg = i;
285 1.1 ad break;
286 1.1 ad case PCI_MAPREG_TYPE_IO:
287 1.19 fvdl if (PCI_MAPREG_IO_SIZE(reg) != 0)
288 1.19 fvdl ioreg = i;
289 1.1 ad break;
290 1.16 christos
291 1.1 ad }
292 1.1 ad }
293 1.1 ad
294 1.18 mycroft if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
295 1.18 mycroft &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
296 1.18 mycroft ;
297 1.18 mycroft else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
298 1.18 mycroft &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
299 1.18 mycroft ;
300 1.18 mycroft else {
301 1.8 thorpej aprint_error("can't map control registers\n");
302 1.9 ad amr_teardown(amr);
303 1.1 ad return;
304 1.1 ad }
305 1.1 ad
306 1.9 ad amr->amr_flags |= AMRF_PCI_REGS;
307 1.1 ad amr->amr_dmat = pa->pa_dmat;
308 1.9 ad amr->amr_pc = pa->pa_pc;
309 1.1 ad
310 1.1 ad /* Enable the device. */
311 1.1 ad reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
312 1.1 ad pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
313 1.1 ad reg | PCI_COMMAND_MASTER_ENABLE);
314 1.1 ad
315 1.1 ad /* Map and establish the interrupt. */
316 1.1 ad if (pci_intr_map(pa, &ih)) {
317 1.8 thorpej aprint_error("can't map interrupt\n");
318 1.9 ad amr_teardown(amr);
319 1.1 ad return;
320 1.1 ad }
321 1.1 ad intrstr = pci_intr_string(pc, ih);
322 1.1 ad amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
323 1.1 ad if (amr->amr_ih == NULL) {
324 1.8 thorpej aprint_error("can't establish interrupt");
325 1.1 ad if (intrstr != NULL)
326 1.8 thorpej aprint_normal(" at %s", intrstr);
327 1.8 thorpej aprint_normal("\n");
328 1.9 ad amr_teardown(amr);
329 1.1 ad return;
330 1.1 ad }
331 1.9 ad amr->amr_flags |= AMRF_PCI_INTR;
332 1.1 ad
333 1.1 ad /*
334 1.1 ad * Allocate space for the mailbox and S/G lists. Some controllers
335 1.1 ad * don't like S/G lists to be located below 0x2000, so we allocate
336 1.1 ad * enough slop to enable us to compensate.
337 1.1 ad *
338 1.1 ad * The standard mailbox structure needs to be aligned on a 16-byte
339 1.1 ad * boundary. The 64-bit mailbox has one extra field, 4 bytes in
340 1.1 ad * size, which preceeds the standard mailbox.
341 1.1 ad */
342 1.1 ad size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
343 1.9 ad amr->amr_dmasize = size;
344 1.1 ad
345 1.15 fvdl if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
346 1.9 ad &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
347 1.8 thorpej aprint_error("%s: unable to allocate buffer, rv = %d\n",
348 1.1 ad amr->amr_dv.dv_xname, rv);
349 1.9 ad amr_teardown(amr);
350 1.1 ad return;
351 1.1 ad }
352 1.9 ad amr->amr_flags |= AMRF_DMA_ALLOC;
353 1.1 ad
354 1.25 perry if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
355 1.1 ad (caddr_t *)&amr->amr_mbox,
356 1.1 ad BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
357 1.8 thorpej aprint_error("%s: unable to map buffer, rv = %d\n",
358 1.1 ad amr->amr_dv.dv_xname, rv);
359 1.9 ad amr_teardown(amr);
360 1.1 ad return;
361 1.1 ad }
362 1.9 ad amr->amr_flags |= AMRF_DMA_MAP;
363 1.1 ad
364 1.25 perry if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
365 1.1 ad BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
366 1.8 thorpej aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
367 1.1 ad amr->amr_dv.dv_xname, rv);
368 1.9 ad amr_teardown(amr);
369 1.1 ad return;
370 1.1 ad }
371 1.9 ad amr->amr_flags |= AMRF_DMA_CREATE;
372 1.1 ad
373 1.1 ad if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
374 1.1 ad amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
375 1.8 thorpej aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
376 1.1 ad amr->amr_dv.dv_xname, rv);
377 1.9 ad amr_teardown(amr);
378 1.1 ad return;
379 1.1 ad }
380 1.9 ad amr->amr_flags |= AMRF_DMA_LOAD;
381 1.1 ad
382 1.1 ad memset(amr->amr_mbox, 0, size);
383 1.1 ad
384 1.9 ad amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
385 1.1 ad amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
386 1.1 ad amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
387 1.1 ad amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
388 1.1 ad
389 1.1 ad /*
390 1.1 ad * Allocate and initalise the command control blocks.
391 1.1 ad */
392 1.1 ad ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
393 1.1 ad amr->amr_ccbs = ac;
394 1.1 ad SLIST_INIT(&amr->amr_ccb_freelist);
395 1.10 ad TAILQ_INIT(&amr->amr_ccb_active);
396 1.9 ad amr->amr_flags |= AMRF_CCBS;
397 1.9 ad
398 1.9 ad if (amr_max_xfer == 0) {
399 1.9 ad amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
400 1.9 ad amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
401 1.9 ad }
402 1.1 ad
403 1.1 ad for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
404 1.9 ad rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
405 1.9 ad amr_max_segs, amr_max_xfer, 0,
406 1.9 ad BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
407 1.1 ad if (rv != 0)
408 1.1 ad break;
409 1.1 ad
410 1.1 ad ac->ac_ident = i;
411 1.9 ad amr_ccb_free(amr, ac);
412 1.9 ad }
413 1.9 ad if (i != AMR_MAX_CMDS) {
414 1.9 ad aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
415 1.9 ad amr_teardown(amr);
416 1.9 ad return;
417 1.1 ad }
418 1.1 ad
419 1.1 ad /*
420 1.1 ad * Take care of model-specific tasks.
421 1.1 ad */
422 1.1 ad if ((apt->apt_flags & AT_QUARTZ) != 0) {
423 1.1 ad amr->amr_submit = amr_quartz_submit;
424 1.1 ad amr->amr_get_work = amr_quartz_get_work;
425 1.1 ad } else {
426 1.1 ad amr->amr_submit = amr_std_submit;
427 1.1 ad amr->amr_get_work = amr_std_get_work;
428 1.1 ad
429 1.1 ad /* Notify the controller of the mailbox location. */
430 1.9 ad amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
431 1.1 ad amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
432 1.1 ad
433 1.1 ad /* Clear outstanding interrupts and enable interrupts. */
434 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
435 1.1 ad amr_outb(amr, AMR_SREG_TOGL,
436 1.1 ad amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
437 1.1 ad }
438 1.1 ad
439 1.1 ad /*
440 1.1 ad * Retrieve parameters, and tell the world about us.
441 1.1 ad */
442 1.9 ad amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
443 1.9 ad amr->amr_flags |= AMRF_ENQBUF;
444 1.1 ad amr->amr_maxqueuecnt = i;
445 1.8 thorpej aprint_normal(": AMI RAID ");
446 1.9 ad if (amr_init(amr, intrstr, pa) != 0) {
447 1.9 ad amr_teardown(amr);
448 1.1 ad return;
449 1.9 ad }
450 1.1 ad
451 1.25 perry /*
452 1.1 ad * Cap the maximum number of outstanding commands. AMI's Linux
453 1.1 ad * driver doesn't trust the controller's reported value, and lockups
454 1.1 ad * have been seen when we do.
455 1.1 ad */
456 1.1 ad amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
457 1.1 ad if (amr->amr_maxqueuecnt > i)
458 1.1 ad amr->amr_maxqueuecnt = i;
459 1.1 ad
460 1.1 ad /* Set our `shutdownhook' before we start any device activity. */
461 1.1 ad if (amr_sdh == NULL)
462 1.1 ad amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
463 1.1 ad
464 1.1 ad /* Attach sub-devices. */
465 1.9 ad for (j = 0; j < amr->amr_numdrives; j++) {
466 1.9 ad if (amr->amr_drive[j].al_size == 0)
467 1.1 ad continue;
468 1.9 ad amra.amra_unit = j;
469 1.22 drochner
470 1.28 drochner locs[AMRCF_UNIT] = j;
471 1.22 drochner
472 1.22 drochner amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
473 1.29 drochner "amr", locs, &amra, amr_print, config_stdsubmatch);
474 1.1 ad }
475 1.1 ad
476 1.1 ad SIMPLEQ_INIT(&amr->amr_ccb_queue);
477 1.13 ad
478 1.13 ad /* XXX This doesn't work for newer boards yet. */
479 1.13 ad if ((apt->apt_flags & AT_QUARTZ) == 0)
480 1.13 ad kthread_create(amr_thread_create, amr);
481 1.9 ad }
482 1.9 ad
483 1.9 ad /*
484 1.9 ad * Free up resources.
485 1.9 ad */
486 1.27 thorpej static void
487 1.9 ad amr_teardown(struct amr_softc *amr)
488 1.9 ad {
489 1.9 ad struct amr_ccb *ac;
490 1.9 ad int fl;
491 1.9 ad
492 1.9 ad fl = amr->amr_flags;
493 1.9 ad
494 1.9 ad if ((fl & AMRF_THREAD) != 0) {
495 1.9 ad amr->amr_flags |= AMRF_THREAD_EXIT;
496 1.9 ad wakeup(amr_thread);
497 1.9 ad while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
498 1.9 ad tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
499 1.9 ad }
500 1.9 ad if ((fl & AMRF_CCBS) != 0) {
501 1.9 ad SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
502 1.9 ad bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
503 1.9 ad }
504 1.9 ad free(amr->amr_ccbs, M_DEVBUF);
505 1.9 ad }
506 1.9 ad if ((fl & AMRF_ENQBUF) != 0)
507 1.9 ad free(amr->amr_enqbuf, M_DEVBUF);
508 1.9 ad if ((fl & AMRF_DMA_LOAD) != 0)
509 1.9 ad bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
510 1.9 ad if ((fl & AMRF_DMA_MAP) != 0)
511 1.9 ad bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
512 1.9 ad amr->amr_dmasize);
513 1.9 ad if ((fl & AMRF_DMA_ALLOC) != 0)
514 1.9 ad bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
515 1.9 ad if ((fl & AMRF_DMA_CREATE) != 0)
516 1.9 ad bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
517 1.9 ad if ((fl & AMRF_PCI_INTR) != 0)
518 1.9 ad pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
519 1.9 ad if ((fl & AMRF_PCI_REGS) != 0)
520 1.11 fvdl bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
521 1.1 ad }
522 1.1 ad
523 1.1 ad /*
524 1.1 ad * Print autoconfiguration message for a sub-device.
525 1.1 ad */
526 1.27 thorpej static int
527 1.1 ad amr_print(void *aux, const char *pnp)
528 1.1 ad {
529 1.1 ad struct amr_attach_args *amra;
530 1.1 ad
531 1.1 ad amra = (struct amr_attach_args *)aux;
532 1.1 ad
533 1.1 ad if (pnp != NULL)
534 1.7 thorpej aprint_normal("block device at %s", pnp);
535 1.7 thorpej aprint_normal(" unit %d", amra->amra_unit);
536 1.1 ad return (UNCONF);
537 1.1 ad }
538 1.1 ad
539 1.1 ad /*
540 1.1 ad * Retrieve operational parameters and describe the controller.
541 1.1 ad */
542 1.27 thorpej static int
543 1.1 ad amr_init(struct amr_softc *amr, const char *intrstr,
544 1.1 ad struct pci_attach_args *pa)
545 1.1 ad {
546 1.9 ad struct amr_adapter_info *aa;
547 1.1 ad struct amr_prodinfo *ap;
548 1.1 ad struct amr_enquiry *ae;
549 1.1 ad struct amr_enquiry3 *aex;
550 1.1 ad const char *prodstr;
551 1.9 ad u_int i, sig, ishp;
552 1.26 christos char sbuf[64];
553 1.1 ad
554 1.1 ad /*
555 1.1 ad * Try to get 40LD product info, which tells us what the card is
556 1.1 ad * labelled as.
557 1.1 ad */
558 1.9 ad ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
559 1.9 ad amr->amr_enqbuf);
560 1.1 ad if (ap != NULL) {
561 1.8 thorpej aprint_normal("<%.80s>\n", ap->ap_product);
562 1.1 ad if (intrstr != NULL)
563 1.8 thorpej aprint_normal("%s: interrupting at %s\n",
564 1.1 ad amr->amr_dv.dv_xname, intrstr);
565 1.8 thorpej aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
566 1.1 ad amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
567 1.1 ad le16toh(ap->ap_memsize));
568 1.1 ad
569 1.1 ad amr->amr_maxqueuecnt = ap->ap_maxio;
570 1.1 ad
571 1.1 ad /*
572 1.1 ad * Fetch and record state of logical drives.
573 1.1 ad */
574 1.1 ad aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
575 1.9 ad AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
576 1.1 ad if (aex == NULL) {
577 1.8 thorpej aprint_error("%s ENQUIRY3 failed\n",
578 1.8 thorpej amr->amr_dv.dv_xname);
579 1.1 ad return (-1);
580 1.1 ad }
581 1.1 ad
582 1.1 ad if (aex->ae_numldrives > AMR_MAX_UNITS) {
583 1.8 thorpej aprint_error(
584 1.8 thorpej "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
585 1.17 christos "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
586 1.17 christos amr->amr_numdrives);
587 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
588 1.1 ad } else
589 1.1 ad amr->amr_numdrives = aex->ae_numldrives;
590 1.1 ad
591 1.1 ad for (i = 0; i < amr->amr_numdrives; i++) {
592 1.1 ad amr->amr_drive[i].al_size =
593 1.1 ad le32toh(aex->ae_drivesize[i]);
594 1.1 ad amr->amr_drive[i].al_state = aex->ae_drivestate[i];
595 1.1 ad amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
596 1.1 ad }
597 1.1 ad
598 1.1 ad return (0);
599 1.1 ad }
600 1.1 ad
601 1.1 ad /*
602 1.1 ad * Try 8LD extended ENQUIRY to get the controller signature. Once
603 1.1 ad * found, search for a product description.
604 1.1 ad */
605 1.9 ad ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
606 1.9 ad if (ae != NULL) {
607 1.1 ad i = 0;
608 1.1 ad sig = le32toh(ae->ae_signature);
609 1.1 ad
610 1.1 ad while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
611 1.1 ad if (amr_typestr[i].at_sig == sig)
612 1.1 ad break;
613 1.1 ad i++;
614 1.1 ad }
615 1.1 ad if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
616 1.26 christos snprintf(sbuf, sizeof(sbuf),
617 1.20 itojun "unknown ENQUIRY2 sig (0x%08x)", sig);
618 1.26 christos prodstr = sbuf;
619 1.1 ad } else
620 1.1 ad prodstr = amr_typestr[i].at_str;
621 1.1 ad } else {
622 1.9 ad ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
623 1.9 ad if (ae == NULL) {
624 1.8 thorpej aprint_error("%s: unsupported controller\n",
625 1.1 ad amr->amr_dv.dv_xname);
626 1.1 ad return (-1);
627 1.1 ad }
628 1.1 ad
629 1.1 ad switch (PCI_PRODUCT(pa->pa_id)) {
630 1.1 ad case PCI_PRODUCT_AMI_MEGARAID:
631 1.1 ad prodstr = "Series 428";
632 1.1 ad break;
633 1.1 ad case PCI_PRODUCT_AMI_MEGARAID2:
634 1.1 ad prodstr = "Series 434";
635 1.1 ad break;
636 1.1 ad default:
637 1.26 christos snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
638 1.1 ad PCI_PRODUCT(pa->pa_id));
639 1.26 christos prodstr = sbuf;
640 1.1 ad break;
641 1.1 ad }
642 1.1 ad }
643 1.1 ad
644 1.9 ad /*
645 1.9 ad * HP NetRaid controllers have a special encoding of the firmware
646 1.9 ad * and BIOS versions. The AMI version seems to have it as strings
647 1.9 ad * whereas the HP version does it with a leading uppercase character
648 1.9 ad * and two binary numbers.
649 1.9 ad */
650 1.9 ad aa = &ae->ae_adapter;
651 1.9 ad
652 1.9 ad if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
653 1.9 ad aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
654 1.9 ad aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
655 1.9 ad aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
656 1.9 ad if (le32toh(ae->ae_signature) == AMR_SIG_438) {
657 1.9 ad /* The AMI 438 is a NetRaid 3si in HP-land. */
658 1.9 ad prodstr = "HP NetRaid 3si";
659 1.9 ad }
660 1.9 ad ishp = 1;
661 1.9 ad } else
662 1.9 ad ishp = 0;
663 1.9 ad
664 1.8 thorpej aprint_normal("<%s>\n", prodstr);
665 1.1 ad if (intrstr != NULL)
666 1.8 thorpej aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
667 1.1 ad intrstr);
668 1.1 ad
669 1.9 ad if (ishp)
670 1.9 ad aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
671 1.9 ad ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
672 1.9 ad aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
673 1.9 ad aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
674 1.9 ad else
675 1.9 ad aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
676 1.9 ad amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
677 1.9 ad aa->aa_memorysize);
678 1.9 ad
679 1.9 ad amr->amr_maxqueuecnt = aa->aa_maxio;
680 1.1 ad
681 1.1 ad /*
682 1.1 ad * Record state of logical drives.
683 1.1 ad */
684 1.1 ad if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
685 1.8 thorpej aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
686 1.1 ad amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
687 1.1 ad AMR_MAX_UNITS);
688 1.1 ad amr->amr_numdrives = AMR_MAX_UNITS;
689 1.1 ad } else
690 1.1 ad amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
691 1.1 ad
692 1.1 ad for (i = 0; i < AMR_MAX_UNITS; i++) {
693 1.1 ad amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
694 1.1 ad amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
695 1.1 ad amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
696 1.1 ad }
697 1.1 ad
698 1.1 ad return (0);
699 1.1 ad }
700 1.1 ad
701 1.1 ad /*
702 1.1 ad * Flush the internal cache on each configured controller. Called at
703 1.1 ad * shutdown time.
704 1.1 ad */
705 1.27 thorpej static void
706 1.1 ad amr_shutdown(void *cookie)
707 1.1 ad {
708 1.1 ad extern struct cfdriver amr_cd;
709 1.1 ad struct amr_softc *amr;
710 1.1 ad struct amr_ccb *ac;
711 1.9 ad int i, rv, s;
712 1.1 ad
713 1.1 ad for (i = 0; i < amr_cd.cd_ndevs; i++) {
714 1.1 ad if ((amr = device_lookup(&amr_cd, i)) == NULL)
715 1.1 ad continue;
716 1.1 ad
717 1.1 ad if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
718 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
719 1.9 ad s = splbio();
720 1.1 ad rv = amr_ccb_poll(amr, ac, 30000);
721 1.9 ad splx(s);
722 1.1 ad amr_ccb_free(amr, ac);
723 1.1 ad }
724 1.1 ad if (rv != 0)
725 1.1 ad printf("%s: unable to flush cache (%d)\n",
726 1.1 ad amr->amr_dv.dv_xname, rv);
727 1.1 ad }
728 1.1 ad }
729 1.1 ad
730 1.1 ad /*
731 1.1 ad * Interrupt service routine.
732 1.1 ad */
733 1.27 thorpej static int
734 1.1 ad amr_intr(void *cookie)
735 1.1 ad {
736 1.1 ad struct amr_softc *amr;
737 1.1 ad struct amr_ccb *ac;
738 1.9 ad struct amr_mailbox_resp mbox;
739 1.1 ad u_int i, forus, idx;
740 1.1 ad
741 1.1 ad amr = cookie;
742 1.1 ad forus = 0;
743 1.1 ad
744 1.1 ad while ((*amr->amr_get_work)(amr, &mbox) == 0) {
745 1.1 ad /* Iterate over completed commands in this result. */
746 1.1 ad for (i = 0; i < mbox.mb_nstatus; i++) {
747 1.1 ad idx = mbox.mb_completed[i] - 1;
748 1.1 ad ac = amr->amr_ccbs + idx;
749 1.1 ad
750 1.1 ad if (idx >= amr->amr_maxqueuecnt) {
751 1.1 ad printf("%s: bad status (bogus ID: %u=%u)\n",
752 1.1 ad amr->amr_dv.dv_xname, i, idx);
753 1.1 ad continue;
754 1.1 ad }
755 1.1 ad
756 1.1 ad if ((ac->ac_flags & AC_ACTIVE) == 0) {
757 1.1 ad printf("%s: bad status (not active; 0x04%x)\n",
758 1.1 ad amr->amr_dv.dv_xname, ac->ac_flags);
759 1.1 ad continue;
760 1.1 ad }
761 1.1 ad
762 1.1 ad ac->ac_status = mbox.mb_status;
763 1.1 ad ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
764 1.1 ad AC_COMPLETE;
765 1.10 ad TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
766 1.10 ad
767 1.10 ad if ((ac->ac_flags & AC_MOAN) != 0)
768 1.10 ad printf("%s: ccb %d completed\n",
769 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
770 1.1 ad
771 1.1 ad /* Pass notification to upper layers. */
772 1.1 ad if (ac->ac_handler != NULL)
773 1.1 ad (*ac->ac_handler)(ac);
774 1.9 ad else
775 1.9 ad wakeup(ac);
776 1.1 ad }
777 1.1 ad forus = 1;
778 1.1 ad }
779 1.1 ad
780 1.1 ad if (forus)
781 1.1 ad amr_ccb_enqueue(amr, NULL);
782 1.9 ad
783 1.1 ad return (forus);
784 1.1 ad }
785 1.1 ad
786 1.1 ad /*
787 1.9 ad * Create the watchdog thread.
788 1.9 ad */
789 1.27 thorpej static void
790 1.9 ad amr_thread_create(void *cookie)
791 1.9 ad {
792 1.9 ad struct amr_softc *amr;
793 1.9 ad int rv;
794 1.9 ad
795 1.9 ad amr = cookie;
796 1.9 ad
797 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
798 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
799 1.9 ad wakeup(&amr->amr_flags);
800 1.9 ad return;
801 1.9 ad }
802 1.9 ad
803 1.9 ad rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
804 1.9 ad amr->amr_dv.dv_xname);
805 1.9 ad if (rv != 0)
806 1.9 ad aprint_error("%s: unable to create thread (%d)",
807 1.9 ad amr->amr_dv.dv_xname, rv);
808 1.9 ad else
809 1.9 ad amr->amr_flags |= AMRF_THREAD;
810 1.9 ad }
811 1.9 ad
812 1.9 ad /*
813 1.9 ad * Watchdog thread.
814 1.9 ad */
815 1.27 thorpej static void
816 1.9 ad amr_thread(void *cookie)
817 1.9 ad {
818 1.9 ad struct amr_softc *amr;
819 1.9 ad struct amr_ccb *ac;
820 1.9 ad struct amr_logdrive *al;
821 1.9 ad struct amr_enquiry *ae;
822 1.10 ad time_t curtime;
823 1.9 ad int rv, i, s;
824 1.9 ad
825 1.9 ad amr = cookie;
826 1.9 ad ae = amr->amr_enqbuf;
827 1.9 ad
828 1.9 ad for (;;) {
829 1.9 ad tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
830 1.9 ad
831 1.9 ad if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
832 1.9 ad amr->amr_flags ^= AMRF_THREAD_EXIT;
833 1.9 ad wakeup(&amr->amr_flags);
834 1.9 ad kthread_exit(0);
835 1.9 ad }
836 1.9 ad
837 1.9 ad s = splbio();
838 1.9 ad amr_intr(cookie);
839 1.10 ad curtime = (time_t)mono_time.tv_sec;
840 1.13 ad ac = TAILQ_FIRST(&amr->amr_ccb_active);
841 1.13 ad while (ac != NULL) {
842 1.10 ad if (ac->ac_start_time + AMR_TIMEOUT > curtime)
843 1.10 ad break;
844 1.10 ad if ((ac->ac_flags & AC_MOAN) == 0) {
845 1.10 ad printf("%s: ccb %d timed out; mailbox:\n",
846 1.10 ad amr->amr_dv.dv_xname, ac->ac_ident);
847 1.10 ad amr_ccb_dump(amr, ac);
848 1.10 ad ac->ac_flags |= AC_MOAN;
849 1.10 ad }
850 1.13 ad ac = TAILQ_NEXT(ac, ac_chain.tailq);
851 1.10 ad }
852 1.9 ad splx(s);
853 1.9 ad
854 1.9 ad if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
855 1.9 ad printf("%s: ccb_alloc failed (%d)\n",
856 1.25 perry amr->amr_dv.dv_xname, rv);
857 1.9 ad continue;
858 1.9 ad }
859 1.9 ad
860 1.9 ad ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
861 1.9 ad
862 1.9 ad rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
863 1.9 ad AMR_ENQUIRY_BUFSIZE, 0);
864 1.9 ad if (rv != 0) {
865 1.9 ad printf("%s: ccb_map failed (%d)\n",
866 1.9 ad amr->amr_dv.dv_xname, rv);
867 1.9 ad amr_ccb_free(amr, ac);
868 1.9 ad continue;
869 1.9 ad }
870 1.9 ad
871 1.9 ad rv = amr_ccb_wait(amr, ac);
872 1.9 ad amr_ccb_unmap(amr, ac);
873 1.9 ad if (rv != 0) {
874 1.9 ad printf("%s: enquiry failed (st=%d)\n",
875 1.9 ad amr->amr_dv.dv_xname, ac->ac_status);
876 1.9 ad continue;
877 1.9 ad }
878 1.9 ad amr_ccb_free(amr, ac);
879 1.9 ad
880 1.9 ad al = amr->amr_drive;
881 1.9 ad for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
882 1.9 ad if (al->al_dv == NULL)
883 1.9 ad continue;
884 1.9 ad if (al->al_state == ae->ae_ldrv.al_state[i])
885 1.9 ad continue;
886 1.9 ad
887 1.9 ad printf("%s: state changed: %s -> %s\n",
888 1.9 ad al->al_dv->dv_xname,
889 1.9 ad amr_drive_state(al->al_state, NULL),
890 1.9 ad amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
891 1.9 ad
892 1.9 ad al->al_state = ae->ae_ldrv.al_state[i];
893 1.9 ad }
894 1.9 ad }
895 1.9 ad }
896 1.9 ad
897 1.9 ad /*
898 1.9 ad * Return a text description of a logical drive's current state.
899 1.9 ad */
900 1.9 ad const char *
901 1.9 ad amr_drive_state(int state, int *happy)
902 1.9 ad {
903 1.9 ad const char *str;
904 1.9 ad
905 1.9 ad state = AMR_DRV_CURSTATE(state);
906 1.9 ad if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
907 1.9 ad if (happy)
908 1.9 ad *happy = 1;
909 1.9 ad str = "status unknown";
910 1.9 ad } else {
911 1.9 ad if (happy)
912 1.9 ad *happy = amr_dstate[state].ds_happy;
913 1.9 ad str = amr_dstate[state].ds_descr;
914 1.9 ad }
915 1.9 ad
916 1.9 ad return (str);
917 1.9 ad }
918 1.9 ad
919 1.9 ad /*
920 1.1 ad * Run a generic enquiry-style command.
921 1.1 ad */
922 1.27 thorpej static void *
923 1.1 ad amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
924 1.26 christos u_int8_t cmdqual, void *sbuf)
925 1.1 ad {
926 1.1 ad struct amr_ccb *ac;
927 1.1 ad u_int8_t *mb;
928 1.1 ad int rv;
929 1.1 ad
930 1.1 ad if (amr_ccb_alloc(amr, &ac) != 0)
931 1.1 ad return (NULL);
932 1.1 ad
933 1.1 ad /* Build the command proper. */
934 1.9 ad mb = (u_int8_t *)&ac->ac_cmd;
935 1.1 ad mb[0] = cmd;
936 1.1 ad mb[2] = cmdsub;
937 1.1 ad mb[3] = cmdqual;
938 1.1 ad
939 1.26 christos rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, 0);
940 1.9 ad if (rv == 0) {
941 1.1 ad rv = amr_ccb_poll(amr, ac, 2000);
942 1.1 ad amr_ccb_unmap(amr, ac);
943 1.1 ad }
944 1.1 ad amr_ccb_free(amr, ac);
945 1.1 ad
946 1.26 christos return (rv ? NULL : sbuf);
947 1.1 ad }
948 1.1 ad
949 1.1 ad /*
950 1.1 ad * Allocate and initialise a CCB.
951 1.1 ad */
952 1.1 ad int
953 1.1 ad amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
954 1.1 ad {
955 1.1 ad int s;
956 1.1 ad
957 1.1 ad s = splbio();
958 1.9 ad if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
959 1.1 ad splx(s);
960 1.1 ad return (EAGAIN);
961 1.1 ad }
962 1.1 ad SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
963 1.1 ad splx(s);
964 1.1 ad
965 1.1 ad return (0);
966 1.1 ad }
967 1.1 ad
968 1.1 ad /*
969 1.1 ad * Free a CCB.
970 1.1 ad */
971 1.1 ad void
972 1.1 ad amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
973 1.1 ad {
974 1.1 ad int s;
975 1.1 ad
976 1.9 ad memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
977 1.9 ad ac->ac_cmd.mb_ident = ac->ac_ident + 1;
978 1.9 ad ac->ac_cmd.mb_busy = 1;
979 1.9 ad ac->ac_handler = NULL;
980 1.1 ad ac->ac_flags = 0;
981 1.1 ad
982 1.1 ad s = splbio();
983 1.1 ad SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
984 1.1 ad splx(s);
985 1.1 ad }
986 1.1 ad
987 1.1 ad /*
988 1.1 ad * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
989 1.1 ad * the order that they were enqueued and try to submit their command blocks
990 1.1 ad * to the controller for execution.
991 1.1 ad */
992 1.1 ad void
993 1.1 ad amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
994 1.1 ad {
995 1.1 ad int s;
996 1.1 ad
997 1.1 ad s = splbio();
998 1.1 ad
999 1.1 ad if (ac != NULL)
1000 1.1 ad SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1001 1.1 ad
1002 1.1 ad while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1003 1.1 ad if ((*amr->amr_submit)(amr, ac) != 0)
1004 1.1 ad break;
1005 1.2 lukem SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1006 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1007 1.1 ad }
1008 1.1 ad
1009 1.1 ad splx(s);
1010 1.1 ad }
1011 1.1 ad
1012 1.1 ad /*
1013 1.1 ad * Map the specified CCB's data buffer onto the bus, and fill the
1014 1.1 ad * scatter-gather list.
1015 1.1 ad */
1016 1.1 ad int
1017 1.1 ad amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1018 1.1 ad int out)
1019 1.1 ad {
1020 1.1 ad struct amr_sgentry *sge;
1021 1.9 ad struct amr_mailbox_cmd *mb;
1022 1.1 ad int nsegs, i, rv, sgloff;
1023 1.1 ad bus_dmamap_t xfer;
1024 1.1 ad
1025 1.1 ad xfer = ac->ac_xfer_map;
1026 1.1 ad
1027 1.1 ad rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1028 1.1 ad BUS_DMA_NOWAIT);
1029 1.1 ad if (rv != 0)
1030 1.1 ad return (rv);
1031 1.1 ad
1032 1.9 ad mb = &ac->ac_cmd;
1033 1.1 ad ac->ac_xfer_size = size;
1034 1.1 ad ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1035 1.1 ad sgloff = AMR_SGL_SIZE * ac->ac_ident;
1036 1.1 ad
1037 1.1 ad /* We don't need to use a scatter/gather list for just 1 segment. */
1038 1.1 ad nsegs = xfer->dm_nsegs;
1039 1.1 ad if (nsegs == 1) {
1040 1.1 ad mb->mb_nsgelem = 0;
1041 1.1 ad mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1042 1.1 ad ac->ac_flags |= AC_NOSGL;
1043 1.1 ad } else {
1044 1.1 ad mb->mb_nsgelem = nsegs;
1045 1.1 ad mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1046 1.1 ad
1047 1.1 ad sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1048 1.1 ad for (i = 0; i < nsegs; i++, sge++) {
1049 1.1 ad sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1050 1.1 ad sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1051 1.1 ad }
1052 1.1 ad }
1053 1.1 ad
1054 1.1 ad bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1055 1.1 ad out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1056 1.1 ad
1057 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1058 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1059 1.1 ad AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1060 1.1 ad
1061 1.1 ad return (0);
1062 1.1 ad }
1063 1.1 ad
1064 1.1 ad /*
1065 1.1 ad * Unmap the specified CCB's data buffer.
1066 1.1 ad */
1067 1.1 ad void
1068 1.1 ad amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1069 1.1 ad {
1070 1.1 ad
1071 1.1 ad if ((ac->ac_flags & AC_NOSGL) == 0)
1072 1.1 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1073 1.1 ad AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1074 1.1 ad BUS_DMASYNC_POSTWRITE);
1075 1.1 ad bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1076 1.1 ad (ac->ac_flags & AC_XFER_IN) != 0 ?
1077 1.1 ad BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1078 1.1 ad bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1079 1.1 ad }
1080 1.1 ad
1081 1.1 ad /*
1082 1.1 ad * Submit a command to the controller and poll on completion. Return
1083 1.1 ad * non-zero on timeout or error. Must be called with interrupts blocked.
1084 1.1 ad */
1085 1.1 ad int
1086 1.1 ad amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1087 1.1 ad {
1088 1.1 ad int rv;
1089 1.1 ad
1090 1.1 ad if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1091 1.1 ad return (rv);
1092 1.10 ad TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1093 1.1 ad
1094 1.1 ad for (timo *= 10; timo != 0; timo--) {
1095 1.1 ad amr_intr(amr);
1096 1.1 ad if ((ac->ac_flags & AC_COMPLETE) != 0)
1097 1.1 ad break;
1098 1.1 ad DELAY(100);
1099 1.1 ad }
1100 1.1 ad
1101 1.1 ad return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1102 1.1 ad }
1103 1.1 ad
1104 1.1 ad /*
1105 1.9 ad * Submit a command to the controller and sleep on completion. Return
1106 1.9 ad * non-zero on error.
1107 1.9 ad */
1108 1.9 ad int
1109 1.9 ad amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1110 1.9 ad {
1111 1.9 ad int s;
1112 1.9 ad
1113 1.9 ad s = splbio();
1114 1.9 ad amr_ccb_enqueue(amr, ac);
1115 1.25 perry tsleep(ac, PRIBIO, "amrcmd", 0);
1116 1.9 ad splx(s);
1117 1.9 ad
1118 1.9 ad return (ac->ac_status != 0 ? EIO : 0);
1119 1.9 ad }
1120 1.9 ad
1121 1.27 thorpej #if 0
1122 1.9 ad /*
1123 1.1 ad * Wait for the mailbox to become available.
1124 1.1 ad */
1125 1.27 thorpej static int
1126 1.1 ad amr_mbox_wait(struct amr_softc *amr)
1127 1.1 ad {
1128 1.1 ad int timo;
1129 1.1 ad
1130 1.1 ad for (timo = 10000; timo != 0; timo--) {
1131 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1132 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1133 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1134 1.1 ad break;
1135 1.1 ad DELAY(100);
1136 1.1 ad }
1137 1.1 ad
1138 1.9 ad if (timo == 0)
1139 1.1 ad printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1140 1.1 ad
1141 1.9 ad return (timo != 0 ? 0 : EAGAIN);
1142 1.1 ad }
1143 1.27 thorpej #endif
1144 1.1 ad
1145 1.1 ad /*
1146 1.1 ad * Tell the controller that the mailbox contains a valid command. Must be
1147 1.1 ad * called with interrupts blocked.
1148 1.1 ad */
1149 1.27 thorpej static int
1150 1.1 ad amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1151 1.1 ad {
1152 1.1 ad u_int32_t v;
1153 1.1 ad
1154 1.9 ad amr->amr_mbox->mb_poll = 0;
1155 1.9 ad amr->amr_mbox->mb_ack = 0;
1156 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1157 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1158 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1159 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1160 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1161 1.9 ad return (EAGAIN);
1162 1.9 ad
1163 1.1 ad v = amr_inl(amr, AMR_QREG_IDB);
1164 1.13 ad if ((v & AMR_QIDB_SUBMIT) != 0) {
1165 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1166 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1167 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1168 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1169 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1170 1.9 ad return (EAGAIN);
1171 1.9 ad }
1172 1.1 ad
1173 1.10 ad amr->amr_mbox->mb_segment = 0;
1174 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1175 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1176 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1177 1.10 ad
1178 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1179 1.1 ad ac->ac_flags |= AC_ACTIVE;
1180 1.13 ad amr_outl(amr, AMR_QREG_IDB,
1181 1.13 ad (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1182 1.1 ad return (0);
1183 1.1 ad }
1184 1.1 ad
1185 1.27 thorpej static int
1186 1.1 ad amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1187 1.1 ad {
1188 1.1 ad
1189 1.9 ad amr->amr_mbox->mb_poll = 0;
1190 1.9 ad amr->amr_mbox->mb_ack = 0;
1191 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1192 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1193 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1194 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1195 1.9 ad if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1196 1.9 ad return (EAGAIN);
1197 1.9 ad
1198 1.9 ad if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1199 1.9 ad amr->amr_mbox->mb_cmd.mb_busy = 0;
1200 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1201 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1202 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1203 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1204 1.9 ad return (EAGAIN);
1205 1.9 ad }
1206 1.1 ad
1207 1.10 ad amr->amr_mbox->mb_segment = 0;
1208 1.10 ad memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1209 1.10 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1210 1.10 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1211 1.10 ad
1212 1.10 ad ac->ac_start_time = (time_t)mono_time.tv_sec;
1213 1.1 ad ac->ac_flags |= AC_ACTIVE;
1214 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1215 1.1 ad return (0);
1216 1.1 ad }
1217 1.1 ad
1218 1.1 ad /*
1219 1.1 ad * Claim any work that the controller has completed; acknowledge completion,
1220 1.1 ad * save details of the completion in (mbsave). Must be called with
1221 1.1 ad * interrupts blocked.
1222 1.1 ad */
1223 1.27 thorpej static int
1224 1.9 ad amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1225 1.1 ad {
1226 1.1 ad
1227 1.1 ad /* Work waiting for us? */
1228 1.1 ad if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1229 1.1 ad return (-1);
1230 1.1 ad
1231 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1232 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1233 1.9 ad
1234 1.1 ad /* Save the mailbox, which contains a list of completed commands. */
1235 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1236 1.9 ad
1237 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1238 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1239 1.1 ad
1240 1.1 ad /* Ack the interrupt and mailbox transfer. */
1241 1.1 ad amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1242 1.9 ad amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1243 1.1 ad
1244 1.1 ad /*
1245 1.1 ad * This waits for the controller to notice that we've taken the
1246 1.1 ad * command from it. It's very inefficient, and we shouldn't do it,
1247 1.1 ad * but if we remove this code, we stop completing commands under
1248 1.1 ad * load.
1249 1.1 ad *
1250 1.1 ad * Peter J says we shouldn't do this. The documentation says we
1251 1.1 ad * should. Who is right?
1252 1.1 ad */
1253 1.1 ad while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1254 1.13 ad DELAY(10);
1255 1.1 ad
1256 1.1 ad return (0);
1257 1.1 ad }
1258 1.1 ad
1259 1.27 thorpej static int
1260 1.9 ad amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1261 1.1 ad {
1262 1.1 ad u_int8_t istat;
1263 1.1 ad
1264 1.1 ad /* Check for valid interrupt status. */
1265 1.1 ad if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1266 1.1 ad return (-1);
1267 1.1 ad
1268 1.1 ad /* Ack the interrupt. */
1269 1.1 ad amr_outb(amr, AMR_SREG_INTR, istat);
1270 1.1 ad
1271 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1272 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1273 1.9 ad
1274 1.1 ad /* Save mailbox, which contains a list of completed commands. */
1275 1.9 ad memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1276 1.9 ad
1277 1.9 ad bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1278 1.9 ad sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1279 1.1 ad
1280 1.1 ad /* Ack mailbox transfer. */
1281 1.1 ad amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1282 1.1 ad
1283 1.1 ad return (0);
1284 1.10 ad }
1285 1.10 ad
1286 1.27 thorpej static void
1287 1.10 ad amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1288 1.10 ad {
1289 1.10 ad int i;
1290 1.10 ad
1291 1.10 ad printf("%s: ", amr->amr_dv.dv_xname);
1292 1.10 ad for (i = 0; i < 4; i++)
1293 1.10 ad printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1294 1.10 ad printf("\n");
1295 1.1 ad }
1296