Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.10
      1 /*	$NetBSD: amr.c,v 1.10 2003/05/14 11:22:55 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999,2000 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67  */
     68 
     69 /*
     70  * Driver for AMI RAID controllers.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.10 2003/05/14 11:22:55 ad Exp $");
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/device.h>
     80 #include <sys/queue.h>
     81 #include <sys/proc.h>
     82 #include <sys/buf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/kthread.h>
     85 
     86 #include <uvm/uvm_extern.h>
     87 
     88 #include <machine/endian.h>
     89 #include <machine/bus.h>
     90 
     91 #include <dev/pci/pcidevs.h>
     92 #include <dev/pci/pcivar.h>
     93 #include <dev/pci/amrreg.h>
     94 #include <dev/pci/amrvar.h>
     95 
     96 void	amr_attach(struct device *, struct device *, void *);
     97 void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
     98 void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
     99 int	amr_init(struct amr_softc *, const char *,
    100 			 struct pci_attach_args *pa);
    101 int	amr_intr(void *);
    102 int	amr_match(struct device *, struct cfdata *, void *);
    103 int	amr_print(void *, const char *);
    104 void	amr_shutdown(void *);
    105 int	amr_submatch(struct device *, struct cfdata *, void *);
    106 void	amr_teardown(struct amr_softc *);
    107 void	amr_thread(void *);
    108 void	amr_thread_create(void *);
    109 
    110 int	amr_mbox_wait(struct amr_softc *);
    111 int	amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    112 int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    113 int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    114 int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    115 
    116 static inline u_int8_t	amr_inb(struct amr_softc *, int);
    117 static inline u_int32_t	amr_inl(struct amr_softc *, int);
    118 static inline void	amr_outb(struct amr_softc *, int, u_int8_t);
    119 static inline void	amr_outl(struct amr_softc *, int, u_int32_t);
    120 
    121 CFATTACH_DECL(amr, sizeof(struct amr_softc),
    122     amr_match, amr_attach, NULL, NULL);
    123 
    124 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    125 #define	AT_SIG		0x02	/* Check for signature */
    126 
    127 struct amr_pci_type {
    128 	u_short	apt_vendor;
    129 	u_short	apt_product;
    130 	u_short	apt_flags;
    131 } const amr_pci_type[] = {
    132 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    133 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    134 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    135 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }
    136 };
    137 
    138 struct amr_typestr {
    139 	const char	*at_str;
    140 	int		at_sig;
    141 } const amr_typestr[] = {
    142 	{ "Series 431",			AMR_SIG_431 },
    143 	{ "Series 438",			AMR_SIG_438 },
    144 	{ "Series 466",			AMR_SIG_466 },
    145 	{ "Series 467",			AMR_SIG_467 },
    146 	{ "Series 490",			AMR_SIG_490 },
    147 	{ "Series 762",			AMR_SIG_762 },
    148 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    149 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    150 };
    151 
    152 struct {
    153 	const char	*ds_descr;
    154 	int	ds_happy;
    155 } const amr_dstate[] = {
    156 	{ "offline",	0 },
    157 	{ "degraded",	1 },
    158 	{ "optimal",	1 },
    159 	{ "online",	1 },
    160 	{ "failed",	0 },
    161 	{ "rebuilding",	1 },
    162 	{ "hotspare",	0 },
    163 };
    164 
    165 void	*amr_sdh;
    166 int	amr_max_segs;
    167 int	amr_max_xfer;
    168 
    169 static inline u_int8_t
    170 amr_inb(struct amr_softc *amr, int off)
    171 {
    172 
    173 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    174 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    175 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    176 }
    177 
    178 static inline u_int32_t
    179 amr_inl(struct amr_softc *amr, int off)
    180 {
    181 
    182 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    183 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    184 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    185 }
    186 
    187 static inline void
    188 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    189 {
    190 
    191 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    192 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    193 	    BUS_SPACE_BARRIER_WRITE);
    194 }
    195 
    196 static inline void
    197 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    198 {
    199 
    200 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    201 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    202 	    BUS_SPACE_BARRIER_WRITE);
    203 }
    204 
    205 /*
    206  * Match a supported device.
    207  */
    208 int
    209 amr_match(struct device *parent, struct cfdata *match, void *aux)
    210 {
    211 	struct pci_attach_args *pa;
    212 	pcireg_t s;
    213 	int i;
    214 
    215 	pa = (struct pci_attach_args *)aux;
    216 
    217 	/*
    218 	 * Don't match the device if it's operating in I2O mode.  In this
    219 	 * case it should be handled by the `iop' driver.
    220 	 */
    221 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    222 		return (0);
    223 
    224 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    225 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    226 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    227 		    	break;
    228 
    229 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    230 		return (0);
    231 
    232 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    233 		return (1);
    234 
    235 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    236 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    237 }
    238 
    239 /*
    240  * Attach a supported device.
    241  */
    242 void
    243 amr_attach(struct device *parent, struct device *self, void *aux)
    244 {
    245 	bus_space_tag_t memt, iot;
    246 	bus_space_handle_t memh, ioh;
    247 	struct pci_attach_args *pa;
    248 	struct amr_attach_args amra;
    249 	const struct amr_pci_type *apt;
    250 	struct amr_softc *amr;
    251 	pci_chipset_tag_t pc;
    252 	pci_intr_handle_t ih;
    253 	const char *intrstr;
    254 	pcireg_t reg;
    255 	int rseg, i, j, size, rv, memreg, ioreg;
    256 	bus_size_t memsize, iosize;
    257         struct amr_ccb *ac;
    258 
    259 	aprint_naive(": RAID controller\n");
    260 
    261 	amr = (struct amr_softc *)self;
    262 	pa = (struct pci_attach_args *)aux;
    263 	pc = pa->pa_pc;
    264 
    265 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    266 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    267 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    268 			break;
    269 	apt = amr_pci_type + i;
    270 
    271 	memreg = ioreg = 0;
    272 	for (i = 0x10; i <= 0x14; i += 4) {
    273 		reg = pci_conf_read(pc, pa->pa_tag, i);
    274 		switch (PCI_MAPREG_TYPE(reg)) {
    275 		case PCI_MAPREG_TYPE_MEM:
    276 			if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0)
    277 				memreg = i;
    278 			break;
    279 		case PCI_MAPREG_TYPE_IO:
    280 			if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0)
    281 				ioreg = i;
    282 			break;
    283 		}
    284 	}
    285 
    286 	if (memreg != 0)
    287 		if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    288 		    &memt, &memh, NULL, NULL))
    289 			memreg = 0;
    290 	if (ioreg != 0)
    291 		if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    292 		    &iot, &ioh, NULL, NULL))
    293 			ioreg = 0;
    294 
    295 	if (memreg) {
    296 		amr->amr_iot = memt;
    297 		amr->amr_ioh = memh;
    298 		amr->amr_ios = memsize;
    299 	} else if (ioreg) {
    300 		amr->amr_iot = iot;
    301 		amr->amr_ioh = ioh;
    302 		amr->amr_ios = iosize;
    303 	} else {
    304 		aprint_error("can't map control registers\n");
    305 		amr_teardown(amr);
    306 		return;
    307 	}
    308 
    309 	amr->amr_flags |= AMRF_PCI_REGS;
    310 	amr->amr_dmat = pa->pa_dmat;
    311 	amr->amr_pc = pa->pa_pc;
    312 
    313 	/* Enable the device. */
    314 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    315 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    316 	    reg | PCI_COMMAND_MASTER_ENABLE);
    317 
    318 	/* Map and establish the interrupt. */
    319 	if (pci_intr_map(pa, &ih)) {
    320 		aprint_error("can't map interrupt\n");
    321 		amr_teardown(amr);
    322 		return;
    323 	}
    324 	intrstr = pci_intr_string(pc, ih);
    325 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    326 	if (amr->amr_ih == NULL) {
    327 		aprint_error("can't establish interrupt");
    328 		if (intrstr != NULL)
    329 			aprint_normal(" at %s", intrstr);
    330 		aprint_normal("\n");
    331 		amr_teardown(amr);
    332 		return;
    333 	}
    334 	amr->amr_flags |= AMRF_PCI_INTR;
    335 
    336 	/*
    337 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    338 	 * don't like S/G lists to be located below 0x2000, so we allocate
    339 	 * enough slop to enable us to compensate.
    340 	 *
    341 	 * The standard mailbox structure needs to be aligned on a 16-byte
    342 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    343 	 * size, which preceeds the standard mailbox.
    344 	 */
    345 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    346 	amr->amr_dmasize = size;
    347 
    348 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, NULL,
    349 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    350 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    351 		    amr->amr_dv.dv_xname, rv);
    352 		amr_teardown(amr);
    353 		return;
    354 	}
    355 	amr->amr_flags |= AMRF_DMA_ALLOC;
    356 
    357 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    358 	    (caddr_t *)&amr->amr_mbox,
    359 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    360 		aprint_error("%s: unable to map buffer, rv = %d\n",
    361 		    amr->amr_dv.dv_xname, rv);
    362 		amr_teardown(amr);
    363 		return;
    364 	}
    365 	amr->amr_flags |= AMRF_DMA_MAP;
    366 
    367 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    368 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    369 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    370 		    amr->amr_dv.dv_xname, rv);
    371 		amr_teardown(amr);
    372 		return;
    373 	}
    374 	amr->amr_flags |= AMRF_DMA_CREATE;
    375 
    376 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    377 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    378 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    379 		    amr->amr_dv.dv_xname, rv);
    380 		amr_teardown(amr);
    381 		return;
    382 	}
    383 	amr->amr_flags |= AMRF_DMA_LOAD;
    384 
    385 	memset(amr->amr_mbox, 0, size);
    386 
    387 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    388 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    389 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
    390 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    391 
    392 	/*
    393 	 * Allocate and initalise the command control blocks.
    394 	 */
    395 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    396 	amr->amr_ccbs = ac;
    397 	SLIST_INIT(&amr->amr_ccb_freelist);
    398 	TAILQ_INIT(&amr->amr_ccb_active);
    399 	amr->amr_flags |= AMRF_CCBS;
    400 
    401 	if (amr_max_xfer == 0) {
    402 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    403 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    404 	}
    405 
    406 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    407 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    408 		    amr_max_segs, amr_max_xfer, 0,
    409 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    410 		if (rv != 0)
    411 			break;
    412 
    413 		ac->ac_ident = i;
    414 		amr_ccb_free(amr, ac);
    415 	}
    416 	if (i != AMR_MAX_CMDS) {
    417 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    418 		amr_teardown(amr);
    419 		return;
    420 	}
    421 
    422 	/*
    423 	 * Take care of model-specific tasks.
    424 	 */
    425 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    426 		amr->amr_submit = amr_quartz_submit;
    427 		amr->amr_get_work = amr_quartz_get_work;
    428 	} else {
    429 		amr->amr_submit = amr_std_submit;
    430 		amr->amr_get_work = amr_std_get_work;
    431 
    432 		/* Notify the controller of the mailbox location. */
    433 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    434 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    435 
    436 		/* Clear outstanding interrupts and enable interrupts. */
    437 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    438 		amr_outb(amr, AMR_SREG_TOGL,
    439 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    440 	}
    441 
    442 	/*
    443 	 * Retrieve parameters, and tell the world about us.
    444 	 */
    445 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    446 	amr->amr_flags |= AMRF_ENQBUF;
    447 	amr->amr_maxqueuecnt = i;
    448 	aprint_normal(": AMI RAID ");
    449 	if (amr_init(amr, intrstr, pa) != 0) {
    450 		amr_teardown(amr);
    451 		return;
    452 	}
    453 
    454 	/*
    455 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    456 	 * driver doesn't trust the controller's reported value, and lockups
    457 	 * have been seen when we do.
    458 	 */
    459 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    460 	if (amr->amr_maxqueuecnt > i)
    461 		amr->amr_maxqueuecnt = i;
    462 
    463 	/* Set our `shutdownhook' before we start any device activity. */
    464 	if (amr_sdh == NULL)
    465 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    466 
    467 	/* Attach sub-devices. */
    468 	for (j = 0; j < amr->amr_numdrives; j++) {
    469 		if (amr->amr_drive[j].al_size == 0)
    470 			continue;
    471 		amra.amra_unit = j;
    472 		amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
    473 		    amr_print, amr_submatch);
    474 	}
    475 
    476 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    477 	kthread_create(amr_thread_create, amr);
    478 }
    479 
    480 /*
    481  * Free up resources.
    482  */
    483 void
    484 amr_teardown(struct amr_softc *amr)
    485 {
    486 	struct amr_ccb *ac;
    487 	int fl;
    488 
    489 	fl = amr->amr_flags;
    490 
    491 	if ((fl & AMRF_THREAD) != 0) {
    492 		amr->amr_flags |= AMRF_THREAD_EXIT;
    493 		wakeup(amr_thread);
    494 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    495 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    496 	}
    497 	if ((fl & AMRF_CCBS) != 0) {
    498 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    499 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    500 		}
    501 		free(amr->amr_ccbs, M_DEVBUF);
    502 	}
    503 	if ((fl & AMRF_ENQBUF) != 0)
    504 		free(amr->amr_enqbuf, M_DEVBUF);
    505 	if ((fl & AMRF_DMA_LOAD) != 0)
    506 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    507 	if ((fl & AMRF_DMA_MAP) != 0)
    508 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
    509 		    amr->amr_dmasize);
    510 	if ((fl & AMRF_DMA_ALLOC) != 0)
    511 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    512 	if ((fl & AMRF_DMA_CREATE) != 0)
    513 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    514 	if ((fl & AMRF_PCI_INTR) != 0)
    515 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    516 	if ((fl & AMRF_PCI_REGS) != 0)
    517 		bus_space_unmap(amr->amr_ioh, amr->amr_iot, amr->amr_ios);
    518 }
    519 
    520 /*
    521  * Print autoconfiguration message for a sub-device.
    522  */
    523 int
    524 amr_print(void *aux, const char *pnp)
    525 {
    526 	struct amr_attach_args *amra;
    527 
    528 	amra = (struct amr_attach_args *)aux;
    529 
    530 	if (pnp != NULL)
    531 		aprint_normal("block device at %s", pnp);
    532 	aprint_normal(" unit %d", amra->amra_unit);
    533 	return (UNCONF);
    534 }
    535 
    536 /*
    537  * Match a sub-device.
    538  */
    539 int
    540 amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
    541 {
    542 	struct amr_attach_args *amra;
    543 
    544 	amra = (struct amr_attach_args *)aux;
    545 
    546 	if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
    547 	    cf->amracf_unit != amra->amra_unit)
    548 		return (0);
    549 
    550 	return (config_match(parent, cf, aux));
    551 }
    552 
    553 /*
    554  * Retrieve operational parameters and describe the controller.
    555  */
    556 int
    557 amr_init(struct amr_softc *amr, const char *intrstr,
    558 	 struct pci_attach_args *pa)
    559 {
    560 	struct amr_adapter_info *aa;
    561 	struct amr_prodinfo *ap;
    562 	struct amr_enquiry *ae;
    563 	struct amr_enquiry3 *aex;
    564 	const char *prodstr;
    565 	u_int i, sig, ishp;
    566 	char buf[64];
    567 
    568 	/*
    569 	 * Try to get 40LD product info, which tells us what the card is
    570 	 * labelled as.
    571 	 */
    572 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    573 	    amr->amr_enqbuf);
    574 	if (ap != NULL) {
    575 		aprint_normal("<%.80s>\n", ap->ap_product);
    576 		if (intrstr != NULL)
    577 			aprint_normal("%s: interrupting at %s\n",
    578 			    amr->amr_dv.dv_xname, intrstr);
    579 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    580 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    581 		    le16toh(ap->ap_memsize));
    582 
    583 		amr->amr_maxqueuecnt = ap->ap_maxio;
    584 
    585 		/*
    586 		 * Fetch and record state of logical drives.
    587 		 */
    588 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    589 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    590 		if (aex == NULL) {
    591 			aprint_error("%s ENQUIRY3 failed\n",
    592 			    amr->amr_dv.dv_xname);
    593 			return (-1);
    594 		}
    595 
    596 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    597 			aprint_error(
    598 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    599 			    "\n", amr->amr_dv.dv_xname,
    600 			    ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
    601 			amr->amr_numdrives = AMR_MAX_UNITS;
    602 		} else
    603 			amr->amr_numdrives = aex->ae_numldrives;
    604 
    605 		for (i = 0; i < amr->amr_numdrives; i++) {
    606 			amr->amr_drive[i].al_size =
    607 			    le32toh(aex->ae_drivesize[i]);
    608 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    609 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    610 		}
    611 
    612 		return (0);
    613 	}
    614 
    615 	/*
    616 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    617 	 * found, search for a product description.
    618 	 */
    619 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    620 	if (ae != NULL) {
    621 		i = 0;
    622 		sig = le32toh(ae->ae_signature);
    623 
    624 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    625 			if (amr_typestr[i].at_sig == sig)
    626 				break;
    627 			i++;
    628 		}
    629 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    630 			sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
    631 			prodstr = buf;
    632 		} else
    633 			prodstr = amr_typestr[i].at_str;
    634 	} else {
    635 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    636 		if (ae == NULL) {
    637 			aprint_error("%s: unsupported controller\n",
    638 			    amr->amr_dv.dv_xname);
    639 			return (-1);
    640 		}
    641 
    642 		switch (PCI_PRODUCT(pa->pa_id)) {
    643 		case PCI_PRODUCT_AMI_MEGARAID:
    644 			prodstr = "Series 428";
    645 			break;
    646 		case PCI_PRODUCT_AMI_MEGARAID2:
    647 			prodstr = "Series 434";
    648 			break;
    649 		default:
    650 			sprintf(buf, "unknown PCI dev (0x%04x)",
    651 			    PCI_PRODUCT(pa->pa_id));
    652 			prodstr = buf;
    653 			break;
    654 		}
    655 	}
    656 
    657 	/*
    658 	 * HP NetRaid controllers have a special encoding of the firmware
    659 	 * and BIOS versions.  The AMI version seems to have it as strings
    660 	 * whereas the HP version does it with a leading uppercase character
    661 	 * and two binary numbers.
    662 	*/
    663 	aa = &ae->ae_adapter;
    664 
    665 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    666 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    667 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    668 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    669 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    670 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    671 			prodstr = "HP NetRaid 3si";
    672 		}
    673 		ishp = 1;
    674 	} else
    675 		ishp = 0;
    676 
    677 	aprint_normal("<%s>\n", prodstr);
    678 	if (intrstr != NULL)
    679 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    680 		    intrstr);
    681 
    682 	if (ishp)
    683 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    684 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    685 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    686 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    687 	else
    688 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    689 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    690 		    aa->aa_memorysize);
    691 
    692 	amr->amr_maxqueuecnt = aa->aa_maxio;
    693 
    694 	/*
    695 	 * Record state of logical drives.
    696 	 */
    697 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    698 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    699 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    700 		    AMR_MAX_UNITS);
    701 		amr->amr_numdrives = AMR_MAX_UNITS;
    702 	} else
    703 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    704 
    705 	for (i = 0; i < AMR_MAX_UNITS; i++) {
    706 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    707 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    708 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    709 	}
    710 
    711 	return (0);
    712 }
    713 
    714 /*
    715  * Flush the internal cache on each configured controller.  Called at
    716  * shutdown time.
    717  */
    718 void
    719 amr_shutdown(void *cookie)
    720 {
    721         extern struct cfdriver amr_cd;
    722 	struct amr_softc *amr;
    723 	struct amr_ccb *ac;
    724 	int i, rv, s;
    725 
    726 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    727 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    728 			continue;
    729 
    730 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    731 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    732 			s = splbio();
    733 			rv = amr_ccb_poll(amr, ac, 30000);
    734 			splx(s);
    735 			amr_ccb_free(amr, ac);
    736 		}
    737 		if (rv != 0)
    738 			printf("%s: unable to flush cache (%d)\n",
    739 			    amr->amr_dv.dv_xname, rv);
    740 	}
    741 }
    742 
    743 /*
    744  * Interrupt service routine.
    745  */
    746 int
    747 amr_intr(void *cookie)
    748 {
    749 	struct amr_softc *amr;
    750 	struct amr_ccb *ac;
    751 	struct amr_mailbox_resp mbox;
    752 	u_int i, forus, idx;
    753 
    754 	amr = cookie;
    755 	forus = 0;
    756 
    757 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    758 		/* Iterate over completed commands in this result. */
    759 		for (i = 0; i < mbox.mb_nstatus; i++) {
    760 			idx = mbox.mb_completed[i] - 1;
    761 			ac = amr->amr_ccbs + idx;
    762 
    763 			if (idx >= amr->amr_maxqueuecnt) {
    764 				printf("%s: bad status (bogus ID: %u=%u)\n",
    765 				    amr->amr_dv.dv_xname, i, idx);
    766 				continue;
    767 			}
    768 
    769 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    770 				printf("%s: bad status (not active; 0x04%x)\n",
    771 				    amr->amr_dv.dv_xname, ac->ac_flags);
    772 				continue;
    773 			}
    774 
    775 			ac->ac_status = mbox.mb_status;
    776 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    777 			    AC_COMPLETE;
    778 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    779 
    780 			if ((ac->ac_flags & AC_MOAN) != 0)
    781 				printf("%s: ccb %d completed\n",
    782 				    amr->amr_dv.dv_xname, ac->ac_ident);
    783 
    784 			/* Pass notification to upper layers. */
    785 			if (ac->ac_handler != NULL)
    786 				(*ac->ac_handler)(ac);
    787 			else
    788 				wakeup(ac);
    789 		}
    790 		forus = 1;
    791 	}
    792 
    793 	if (forus)
    794 		amr_ccb_enqueue(amr, NULL);
    795 
    796 	return (forus);
    797 }
    798 
    799 /*
    800  * Create the watchdog thread.
    801  */
    802 void
    803 amr_thread_create(void *cookie)
    804 {
    805 	struct amr_softc *amr;
    806 	int rv;
    807 
    808 	amr = cookie;
    809 
    810 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    811 		amr->amr_flags ^= AMRF_THREAD_EXIT;
    812 		wakeup(&amr->amr_flags);
    813 		return;
    814 	}
    815 
    816 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
    817 	    amr->amr_dv.dv_xname);
    818  	if (rv != 0)
    819 		aprint_error("%s: unable to create thread (%d)",
    820  		    amr->amr_dv.dv_xname, rv);
    821  	else
    822  		amr->amr_flags |= AMRF_THREAD;
    823 }
    824 
    825 /*
    826  * Watchdog thread.
    827  */
    828 void
    829 amr_thread(void *cookie)
    830 {
    831 	struct amr_softc *amr;
    832 	struct amr_ccb *ac;
    833 	struct amr_logdrive *al;
    834 	struct amr_enquiry *ae;
    835 	time_t curtime;
    836 	int rv, i, s;
    837 
    838 	amr = cookie;
    839 	ae = amr->amr_enqbuf;
    840 
    841 	for (;;) {
    842 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    843 
    844 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    845 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    846 			wakeup(&amr->amr_flags);
    847 			kthread_exit(0);
    848 		}
    849 
    850 		s = splbio();
    851 		amr_intr(cookie);
    852 		curtime = (time_t)mono_time.tv_sec;
    853 		if ((ac = TAILQ_FIRST(&amr->amr_ccb_active)) != NULL) {
    854 			if (ac->ac_start_time + AMR_TIMEOUT > curtime)
    855 				break;
    856 			if ((ac->ac_flags & AC_MOAN) == 0) {
    857 				printf("%s: ccb %d timed out; mailbox:\n",
    858 				    amr->amr_dv.dv_xname, ac->ac_ident);
    859 				amr_ccb_dump(amr, ac);
    860 				ac->ac_flags |= AC_MOAN;
    861 			}
    862 		}
    863 		splx(s);
    864 
    865 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    866 			printf("%s: ccb_alloc failed (%d)\n",
    867  			    amr->amr_dv.dv_xname, rv);
    868 			continue;
    869 		}
    870 
    871 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    872 
    873 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    874 		    AMR_ENQUIRY_BUFSIZE, 0);
    875 		if (rv != 0) {
    876 			printf("%s: ccb_map failed (%d)\n",
    877  			    amr->amr_dv.dv_xname, rv);
    878 			amr_ccb_free(amr, ac);
    879 			continue;
    880 		}
    881 
    882 		rv = amr_ccb_wait(amr, ac);
    883 		amr_ccb_unmap(amr, ac);
    884 		if (rv != 0) {
    885 			printf("%s: enquiry failed (st=%d)\n",
    886  			    amr->amr_dv.dv_xname, ac->ac_status);
    887 			continue;
    888 		}
    889 		amr_ccb_free(amr, ac);
    890 
    891 		al = amr->amr_drive;
    892 		for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
    893 			if (al->al_dv == NULL)
    894 				continue;
    895 			if (al->al_state == ae->ae_ldrv.al_state[i])
    896 				continue;
    897 
    898 			printf("%s: state changed: %s -> %s\n",
    899 			    al->al_dv->dv_xname,
    900 			    amr_drive_state(al->al_state, NULL),
    901 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    902 
    903 			al->al_state = ae->ae_ldrv.al_state[i];
    904 		}
    905 	}
    906 }
    907 
    908 /*
    909  * Return a text description of a logical drive's current state.
    910  */
    911 const char *
    912 amr_drive_state(int state, int *happy)
    913 {
    914 	const char *str;
    915 
    916 	state = AMR_DRV_CURSTATE(state);
    917 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    918 		if (happy)
    919 			*happy = 1;
    920 		str = "status unknown";
    921 	} else {
    922 		if (happy)
    923 			*happy = amr_dstate[state].ds_happy;
    924 		str = amr_dstate[state].ds_descr;
    925 	}
    926 
    927 	return (str);
    928 }
    929 
    930 /*
    931  * Run a generic enquiry-style command.
    932  */
    933 void *
    934 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    935 	    u_int8_t cmdqual, void *buf)
    936 {
    937 	struct amr_ccb *ac;
    938 	u_int8_t *mb;
    939 	int rv;
    940 
    941 	if (amr_ccb_alloc(amr, &ac) != 0)
    942 		return (NULL);
    943 
    944 	/* Build the command proper. */
    945 	mb = (u_int8_t *)&ac->ac_cmd;
    946 	mb[0] = cmd;
    947 	mb[2] = cmdsub;
    948 	mb[3] = cmdqual;
    949 
    950 	rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
    951 	if (rv == 0) {
    952 		rv = amr_ccb_poll(amr, ac, 2000);
    953 		amr_ccb_unmap(amr, ac);
    954 	}
    955 	amr_ccb_free(amr, ac);
    956 
    957 	return (rv ? NULL : buf);
    958 }
    959 
    960 /*
    961  * Allocate and initialise a CCB.
    962  */
    963 int
    964 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    965 {
    966 	int s;
    967 
    968 	s = splbio();
    969 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    970 		splx(s);
    971 		return (EAGAIN);
    972 	}
    973 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    974 	splx(s);
    975 
    976 	return (0);
    977 }
    978 
    979 /*
    980  * Free a CCB.
    981  */
    982 void
    983 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    984 {
    985 	int s;
    986 
    987 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    988 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    989 	ac->ac_cmd.mb_busy = 1;
    990 	ac->ac_handler = NULL;
    991 	ac->ac_flags = 0;
    992 
    993 	s = splbio();
    994 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
    995 	splx(s);
    996 }
    997 
    998 /*
    999  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1000  * the order that they were enqueued and try to submit their command blocks
   1001  * to the controller for execution.
   1002  */
   1003 void
   1004 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1005 {
   1006 	int s;
   1007 
   1008 	s = splbio();
   1009 
   1010 	if (ac != NULL)
   1011 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1012 
   1013 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1014 		if ((*amr->amr_submit)(amr, ac) != 0)
   1015 			break;
   1016 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1017 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1018 	}
   1019 
   1020 	splx(s);
   1021 }
   1022 
   1023 /*
   1024  * Map the specified CCB's data buffer onto the bus, and fill the
   1025  * scatter-gather list.
   1026  */
   1027 int
   1028 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1029 	    int out)
   1030 {
   1031 	struct amr_sgentry *sge;
   1032 	struct amr_mailbox_cmd *mb;
   1033 	int nsegs, i, rv, sgloff;
   1034 	bus_dmamap_t xfer;
   1035 
   1036 	xfer = ac->ac_xfer_map;
   1037 
   1038 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1039 	    BUS_DMA_NOWAIT);
   1040 	if (rv != 0)
   1041 		return (rv);
   1042 
   1043 	mb = &ac->ac_cmd;
   1044 	ac->ac_xfer_size = size;
   1045 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
   1046 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1047 
   1048 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1049 	nsegs = xfer->dm_nsegs;
   1050 	if (nsegs == 1) {
   1051 		mb->mb_nsgelem = 0;
   1052 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1053 		ac->ac_flags |= AC_NOSGL;
   1054 	} else {
   1055 		mb->mb_nsgelem = nsegs;
   1056 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1057 
   1058 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
   1059 		for (i = 0; i < nsegs; i++, sge++) {
   1060 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1061 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1062 		}
   1063 	}
   1064 
   1065 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
   1066 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
   1067 
   1068 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1069 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1070 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1071 
   1072 	return (0);
   1073 }
   1074 
   1075 /*
   1076  * Unmap the specified CCB's data buffer.
   1077  */
   1078 void
   1079 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1080 {
   1081 
   1082 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1083 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1084 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1085 		    BUS_DMASYNC_POSTWRITE);
   1086 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1087 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
   1088 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1089 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1090 }
   1091 
   1092 /*
   1093  * Submit a command to the controller and poll on completion.  Return
   1094  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1095  */
   1096 int
   1097 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1098 {
   1099 	int rv;
   1100 
   1101 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1102 		return (rv);
   1103 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1104 
   1105 	for (timo *= 10; timo != 0; timo--) {
   1106 		amr_intr(amr);
   1107 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1108 			break;
   1109 		DELAY(100);
   1110 	}
   1111 
   1112 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1113 }
   1114 
   1115 /*
   1116  * Submit a command to the controller and sleep on completion.  Return
   1117  * non-zero on error.
   1118  */
   1119 int
   1120 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1121 {
   1122 	int s;
   1123 
   1124 	s = splbio();
   1125 	amr_ccb_enqueue(amr, ac);
   1126 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1127 	splx(s);
   1128 
   1129 	return (ac->ac_status != 0 ? EIO : 0);
   1130 }
   1131 
   1132 /*
   1133  * Wait for the mailbox to become available.
   1134  */
   1135 int
   1136 amr_mbox_wait(struct amr_softc *amr)
   1137 {
   1138 	int timo;
   1139 
   1140 	for (timo = 10000; timo != 0; timo--) {
   1141 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1142 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1143 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1144 			break;
   1145 		DELAY(100);
   1146 	}
   1147 
   1148 	if (timo == 0)
   1149 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1150 
   1151 	return (timo != 0 ? 0 : EAGAIN);
   1152 }
   1153 
   1154 /*
   1155  * Tell the controller that the mailbox contains a valid command.  Must be
   1156  * called with interrupts blocked.
   1157  */
   1158 int
   1159 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1160 {
   1161 	u_int32_t v;
   1162 
   1163 	amr->amr_mbox->mb_poll = 0;
   1164 	amr->amr_mbox->mb_ack = 0;
   1165 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1166 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1167 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1168 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1169 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1170 		return (EAGAIN);
   1171 
   1172 	v = amr_inl(amr, AMR_QREG_IDB);
   1173 	if ((v & (AMR_QIDB_SUBMIT | AMR_QIDB_ACK)) != 0) {
   1174 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1175 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1176 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1177 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1178 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1179 		return (EAGAIN);
   1180 	}
   1181 
   1182 	amr->amr_mbox->mb_segment = 0;
   1183 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1184 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1185 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1186 
   1187 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1188 	ac->ac_flags |= AC_ACTIVE;
   1189 	amr_outl(amr, AMR_QREG_IDB, amr->amr_mbox_paddr | AMR_QIDB_SUBMIT);
   1190 	return (0);
   1191 }
   1192 
   1193 int
   1194 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1195 {
   1196 
   1197 	amr->amr_mbox->mb_poll = 0;
   1198 	amr->amr_mbox->mb_ack = 0;
   1199 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1200 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1201 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1202 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1203 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1204 		return (EAGAIN);
   1205 
   1206 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1207 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1208 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1209 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1210 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1211 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1212 		return (EAGAIN);
   1213 	}
   1214 
   1215 	amr->amr_mbox->mb_segment = 0;
   1216 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1217 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1218 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1219 
   1220 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1221 	ac->ac_flags |= AC_ACTIVE;
   1222 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1223 	return (0);
   1224 }
   1225 
   1226 /*
   1227  * Claim any work that the controller has completed; acknowledge completion,
   1228  * save details of the completion in (mbsave).  Must be called with
   1229  * interrupts blocked.
   1230  */
   1231 int
   1232 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1233 {
   1234 
   1235 	/* Work waiting for us? */
   1236 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1237 		return (-1);
   1238 
   1239 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1240 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1241 
   1242 	/* Save the mailbox, which contains a list of completed commands. */
   1243 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1244 
   1245 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1246 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1247 
   1248 	/* Ack the interrupt and mailbox transfer. */
   1249 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1250 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1251 
   1252 	/*
   1253 	 * This waits for the controller to notice that we've taken the
   1254 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1255 	 * but if we remove this code, we stop completing commands under
   1256 	 * load.
   1257 	 *
   1258 	 * Peter J says we shouldn't do this.  The documentation says we
   1259 	 * should.  Who is right?
   1260 	 */
   1261 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1262 		;
   1263 
   1264 	return (0);
   1265 }
   1266 
   1267 int
   1268 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1269 {
   1270 	u_int8_t istat;
   1271 
   1272 	/* Check for valid interrupt status. */
   1273 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1274 		return (-1);
   1275 
   1276 	/* Ack the interrupt. */
   1277 	amr_outb(amr, AMR_SREG_INTR, istat);
   1278 
   1279 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1280 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1281 
   1282 	/* Save mailbox, which contains a list of completed commands. */
   1283 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1284 
   1285 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1286 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1287 
   1288 	/* Ack mailbox transfer. */
   1289 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1290 
   1291 	return (0);
   1292 }
   1293 
   1294 void
   1295 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1296 {
   1297 	int i;
   1298 
   1299 	printf("%s: ", amr->amr_dv.dv_xname);
   1300 	for (i = 0; i < 4; i++)
   1301 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1302 	printf("\n");
   1303 }
   1304