Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.14
      1 /*	$NetBSD: amr.c,v 1.14 2003/10/14 11:33:36 martti Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999,2000 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67  */
     68 
     69 /*
     70  * Driver for AMI RAID controllers.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.14 2003/10/14 11:33:36 martti Exp $");
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/device.h>
     80 #include <sys/queue.h>
     81 #include <sys/proc.h>
     82 #include <sys/buf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/kthread.h>
     85 
     86 #include <uvm/uvm_extern.h>
     87 
     88 #include <machine/endian.h>
     89 #include <machine/bus.h>
     90 
     91 #include <dev/pci/pcidevs.h>
     92 #include <dev/pci/pcivar.h>
     93 #include <dev/pci/amrreg.h>
     94 #include <dev/pci/amrvar.h>
     95 
     96 void	amr_attach(struct device *, struct device *, void *);
     97 void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
     98 void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
     99 int	amr_init(struct amr_softc *, const char *,
    100 			 struct pci_attach_args *pa);
    101 int	amr_intr(void *);
    102 int	amr_match(struct device *, struct cfdata *, void *);
    103 int	amr_print(void *, const char *);
    104 void	amr_shutdown(void *);
    105 int	amr_submatch(struct device *, struct cfdata *, void *);
    106 void	amr_teardown(struct amr_softc *);
    107 void	amr_thread(void *);
    108 void	amr_thread_create(void *);
    109 
    110 int	amr_mbox_wait(struct amr_softc *);
    111 int	amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    112 int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    113 int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    114 int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    115 
    116 static inline u_int8_t	amr_inb(struct amr_softc *, int);
    117 static inline u_int32_t	amr_inl(struct amr_softc *, int);
    118 static inline void	amr_outb(struct amr_softc *, int, u_int8_t);
    119 static inline void	amr_outl(struct amr_softc *, int, u_int32_t);
    120 
    121 CFATTACH_DECL(amr, sizeof(struct amr_softc),
    122     amr_match, amr_attach, NULL, NULL);
    123 
    124 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    125 #define	AT_SIG		0x02	/* Check for signature */
    126 
    127 struct amr_pci_type {
    128 	u_short	apt_vendor;
    129 	u_short	apt_product;
    130 	u_short	apt_flags;
    131 } const amr_pci_type[] = {
    132 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    133 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    134 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    135 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    136 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    137 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    138 };
    139 
    140 struct amr_typestr {
    141 	const char	*at_str;
    142 	int		at_sig;
    143 } const amr_typestr[] = {
    144 	{ "Series 431",			AMR_SIG_431 },
    145 	{ "Series 438",			AMR_SIG_438 },
    146 	{ "Series 466",			AMR_SIG_466 },
    147 	{ "Series 467",			AMR_SIG_467 },
    148 	{ "Series 490",			AMR_SIG_490 },
    149 	{ "Series 762",			AMR_SIG_762 },
    150 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    151 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    152 };
    153 
    154 struct {
    155 	const char	*ds_descr;
    156 	int	ds_happy;
    157 } const amr_dstate[] = {
    158 	{ "offline",	0 },
    159 	{ "degraded",	1 },
    160 	{ "optimal",	1 },
    161 	{ "online",	1 },
    162 	{ "failed",	0 },
    163 	{ "rebuilding",	1 },
    164 	{ "hotspare",	0 },
    165 };
    166 
    167 void	*amr_sdh;
    168 int	amr_max_segs;
    169 int	amr_max_xfer;
    170 
    171 static inline u_int8_t
    172 amr_inb(struct amr_softc *amr, int off)
    173 {
    174 
    175 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    176 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    177 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    178 }
    179 
    180 static inline u_int32_t
    181 amr_inl(struct amr_softc *amr, int off)
    182 {
    183 
    184 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    185 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    186 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    187 }
    188 
    189 static inline void
    190 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    191 {
    192 
    193 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    194 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    195 	    BUS_SPACE_BARRIER_WRITE);
    196 }
    197 
    198 static inline void
    199 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    200 {
    201 
    202 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    203 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    204 	    BUS_SPACE_BARRIER_WRITE);
    205 }
    206 
    207 /*
    208  * Match a supported device.
    209  */
    210 int
    211 amr_match(struct device *parent, struct cfdata *match, void *aux)
    212 {
    213 	struct pci_attach_args *pa;
    214 	pcireg_t s;
    215 	int i;
    216 
    217 	pa = (struct pci_attach_args *)aux;
    218 
    219 	/*
    220 	 * Don't match the device if it's operating in I2O mode.  In this
    221 	 * case it should be handled by the `iop' driver.
    222 	 */
    223 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    224 		return (0);
    225 
    226 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    227 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    228 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    229 		    	break;
    230 
    231 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    232 		return (0);
    233 
    234 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    235 		return (1);
    236 
    237 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    238 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    239 }
    240 
    241 /*
    242  * Attach a supported device.
    243  */
    244 void
    245 amr_attach(struct device *parent, struct device *self, void *aux)
    246 {
    247 	bus_space_tag_t memt, iot;
    248 	bus_space_handle_t memh, ioh;
    249 	struct pci_attach_args *pa;
    250 	struct amr_attach_args amra;
    251 	const struct amr_pci_type *apt;
    252 	struct amr_softc *amr;
    253 	pci_chipset_tag_t pc;
    254 	pci_intr_handle_t ih;
    255 	const char *intrstr;
    256 	pcireg_t reg;
    257 	int rseg, i, j, size, rv, memreg, ioreg;
    258 	bus_size_t memsize, iosize;
    259         struct amr_ccb *ac;
    260 
    261 	aprint_naive(": RAID controller\n");
    262 
    263 	amr = (struct amr_softc *)self;
    264 	pa = (struct pci_attach_args *)aux;
    265 	pc = pa->pa_pc;
    266 
    267 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    268 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    269 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    270 			break;
    271 	apt = amr_pci_type + i;
    272 
    273 	memreg = ioreg = 0;
    274 	for (i = 0x10; i <= 0x14; i += 4) {
    275 		reg = pci_conf_read(pc, pa->pa_tag, i);
    276 		switch (PCI_MAPREG_TYPE(reg)) {
    277 		case PCI_MAPREG_TYPE_MEM:
    278 			if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0)
    279 				memreg = i;
    280 			break;
    281 		case PCI_MAPREG_TYPE_IO:
    282 			if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0)
    283 				ioreg = i;
    284 			break;
    285 		}
    286 	}
    287 
    288 	if (memreg != 0)
    289 		if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    290 		    &memt, &memh, NULL, NULL))
    291 			memreg = 0;
    292 	if (ioreg != 0)
    293 		if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    294 		    &iot, &ioh, NULL, NULL))
    295 			ioreg = 0;
    296 
    297 	if (memreg) {
    298 		amr->amr_iot = memt;
    299 		amr->amr_ioh = memh;
    300 		amr->amr_ios = memsize;
    301 	} else if (ioreg) {
    302 		amr->amr_iot = iot;
    303 		amr->amr_ioh = ioh;
    304 		amr->amr_ios = iosize;
    305 	} else {
    306 		aprint_error("can't map control registers\n");
    307 		amr_teardown(amr);
    308 		return;
    309 	}
    310 
    311 	amr->amr_flags |= AMRF_PCI_REGS;
    312 	amr->amr_dmat = pa->pa_dmat;
    313 	amr->amr_pc = pa->pa_pc;
    314 
    315 	/* Enable the device. */
    316 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    317 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    318 	    reg | PCI_COMMAND_MASTER_ENABLE);
    319 
    320 	/* Map and establish the interrupt. */
    321 	if (pci_intr_map(pa, &ih)) {
    322 		aprint_error("can't map interrupt\n");
    323 		amr_teardown(amr);
    324 		return;
    325 	}
    326 	intrstr = pci_intr_string(pc, ih);
    327 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    328 	if (amr->amr_ih == NULL) {
    329 		aprint_error("can't establish interrupt");
    330 		if (intrstr != NULL)
    331 			aprint_normal(" at %s", intrstr);
    332 		aprint_normal("\n");
    333 		amr_teardown(amr);
    334 		return;
    335 	}
    336 	amr->amr_flags |= AMRF_PCI_INTR;
    337 
    338 	/*
    339 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    340 	 * don't like S/G lists to be located below 0x2000, so we allocate
    341 	 * enough slop to enable us to compensate.
    342 	 *
    343 	 * The standard mailbox structure needs to be aligned on a 16-byte
    344 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    345 	 * size, which preceeds the standard mailbox.
    346 	 */
    347 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    348 	amr->amr_dmasize = size;
    349 
    350 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, NULL,
    351 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    352 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    353 		    amr->amr_dv.dv_xname, rv);
    354 		amr_teardown(amr);
    355 		return;
    356 	}
    357 	amr->amr_flags |= AMRF_DMA_ALLOC;
    358 
    359 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    360 	    (caddr_t *)&amr->amr_mbox,
    361 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    362 		aprint_error("%s: unable to map buffer, rv = %d\n",
    363 		    amr->amr_dv.dv_xname, rv);
    364 		amr_teardown(amr);
    365 		return;
    366 	}
    367 	amr->amr_flags |= AMRF_DMA_MAP;
    368 
    369 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    370 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    371 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    372 		    amr->amr_dv.dv_xname, rv);
    373 		amr_teardown(amr);
    374 		return;
    375 	}
    376 	amr->amr_flags |= AMRF_DMA_CREATE;
    377 
    378 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    379 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    380 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    381 		    amr->amr_dv.dv_xname, rv);
    382 		amr_teardown(amr);
    383 		return;
    384 	}
    385 	amr->amr_flags |= AMRF_DMA_LOAD;
    386 
    387 	memset(amr->amr_mbox, 0, size);
    388 
    389 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    390 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    391 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
    392 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    393 
    394 	/*
    395 	 * Allocate and initalise the command control blocks.
    396 	 */
    397 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    398 	amr->amr_ccbs = ac;
    399 	SLIST_INIT(&amr->amr_ccb_freelist);
    400 	TAILQ_INIT(&amr->amr_ccb_active);
    401 	amr->amr_flags |= AMRF_CCBS;
    402 
    403 	if (amr_max_xfer == 0) {
    404 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    405 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    406 	}
    407 
    408 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    409 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    410 		    amr_max_segs, amr_max_xfer, 0,
    411 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    412 		if (rv != 0)
    413 			break;
    414 
    415 		ac->ac_ident = i;
    416 		amr_ccb_free(amr, ac);
    417 	}
    418 	if (i != AMR_MAX_CMDS) {
    419 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    420 		amr_teardown(amr);
    421 		return;
    422 	}
    423 
    424 	/*
    425 	 * Take care of model-specific tasks.
    426 	 */
    427 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    428 		amr->amr_submit = amr_quartz_submit;
    429 		amr->amr_get_work = amr_quartz_get_work;
    430 	} else {
    431 		amr->amr_submit = amr_std_submit;
    432 		amr->amr_get_work = amr_std_get_work;
    433 
    434 		/* Notify the controller of the mailbox location. */
    435 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    436 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    437 
    438 		/* Clear outstanding interrupts and enable interrupts. */
    439 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    440 		amr_outb(amr, AMR_SREG_TOGL,
    441 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    442 	}
    443 
    444 	/*
    445 	 * Retrieve parameters, and tell the world about us.
    446 	 */
    447 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    448 	amr->amr_flags |= AMRF_ENQBUF;
    449 	amr->amr_maxqueuecnt = i;
    450 	aprint_normal(": AMI RAID ");
    451 	if (amr_init(amr, intrstr, pa) != 0) {
    452 		amr_teardown(amr);
    453 		return;
    454 	}
    455 
    456 	/*
    457 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    458 	 * driver doesn't trust the controller's reported value, and lockups
    459 	 * have been seen when we do.
    460 	 */
    461 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    462 	if (amr->amr_maxqueuecnt > i)
    463 		amr->amr_maxqueuecnt = i;
    464 
    465 	/* Set our `shutdownhook' before we start any device activity. */
    466 	if (amr_sdh == NULL)
    467 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    468 
    469 	/* Attach sub-devices. */
    470 	for (j = 0; j < amr->amr_numdrives; j++) {
    471 		if (amr->amr_drive[j].al_size == 0)
    472 			continue;
    473 		amra.amra_unit = j;
    474 		amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
    475 		    amr_print, amr_submatch);
    476 	}
    477 
    478 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    479 
    480 	/* XXX This doesn't work for newer boards yet. */
    481 	if ((apt->apt_flags & AT_QUARTZ) == 0)
    482 		kthread_create(amr_thread_create, amr);
    483 }
    484 
    485 /*
    486  * Free up resources.
    487  */
    488 void
    489 amr_teardown(struct amr_softc *amr)
    490 {
    491 	struct amr_ccb *ac;
    492 	int fl;
    493 
    494 	fl = amr->amr_flags;
    495 
    496 	if ((fl & AMRF_THREAD) != 0) {
    497 		amr->amr_flags |= AMRF_THREAD_EXIT;
    498 		wakeup(amr_thread);
    499 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    500 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    501 	}
    502 	if ((fl & AMRF_CCBS) != 0) {
    503 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    504 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    505 		}
    506 		free(amr->amr_ccbs, M_DEVBUF);
    507 	}
    508 	if ((fl & AMRF_ENQBUF) != 0)
    509 		free(amr->amr_enqbuf, M_DEVBUF);
    510 	if ((fl & AMRF_DMA_LOAD) != 0)
    511 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    512 	if ((fl & AMRF_DMA_MAP) != 0)
    513 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
    514 		    amr->amr_dmasize);
    515 	if ((fl & AMRF_DMA_ALLOC) != 0)
    516 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    517 	if ((fl & AMRF_DMA_CREATE) != 0)
    518 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    519 	if ((fl & AMRF_PCI_INTR) != 0)
    520 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    521 	if ((fl & AMRF_PCI_REGS) != 0)
    522 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    523 }
    524 
    525 /*
    526  * Print autoconfiguration message for a sub-device.
    527  */
    528 int
    529 amr_print(void *aux, const char *pnp)
    530 {
    531 	struct amr_attach_args *amra;
    532 
    533 	amra = (struct amr_attach_args *)aux;
    534 
    535 	if (pnp != NULL)
    536 		aprint_normal("block device at %s", pnp);
    537 	aprint_normal(" unit %d", amra->amra_unit);
    538 	return (UNCONF);
    539 }
    540 
    541 /*
    542  * Match a sub-device.
    543  */
    544 int
    545 amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
    546 {
    547 	struct amr_attach_args *amra;
    548 
    549 	amra = (struct amr_attach_args *)aux;
    550 
    551 	if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
    552 	    cf->amracf_unit != amra->amra_unit)
    553 		return (0);
    554 
    555 	return (config_match(parent, cf, aux));
    556 }
    557 
    558 /*
    559  * Retrieve operational parameters and describe the controller.
    560  */
    561 int
    562 amr_init(struct amr_softc *amr, const char *intrstr,
    563 	 struct pci_attach_args *pa)
    564 {
    565 	struct amr_adapter_info *aa;
    566 	struct amr_prodinfo *ap;
    567 	struct amr_enquiry *ae;
    568 	struct amr_enquiry3 *aex;
    569 	const char *prodstr;
    570 	u_int i, sig, ishp;
    571 	char buf[64];
    572 
    573 	/*
    574 	 * Try to get 40LD product info, which tells us what the card is
    575 	 * labelled as.
    576 	 */
    577 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    578 	    amr->amr_enqbuf);
    579 	if (ap != NULL) {
    580 		aprint_normal("<%.80s>\n", ap->ap_product);
    581 		if (intrstr != NULL)
    582 			aprint_normal("%s: interrupting at %s\n",
    583 			    amr->amr_dv.dv_xname, intrstr);
    584 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    585 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    586 		    le16toh(ap->ap_memsize));
    587 
    588 		amr->amr_maxqueuecnt = ap->ap_maxio;
    589 
    590 		/*
    591 		 * Fetch and record state of logical drives.
    592 		 */
    593 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    594 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    595 		if (aex == NULL) {
    596 			aprint_error("%s ENQUIRY3 failed\n",
    597 			    amr->amr_dv.dv_xname);
    598 			return (-1);
    599 		}
    600 
    601 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    602 			aprint_error(
    603 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    604 			    "\n", amr->amr_dv.dv_xname,
    605 			    ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
    606 			amr->amr_numdrives = AMR_MAX_UNITS;
    607 		} else
    608 			amr->amr_numdrives = aex->ae_numldrives;
    609 
    610 		for (i = 0; i < amr->amr_numdrives; i++) {
    611 			amr->amr_drive[i].al_size =
    612 			    le32toh(aex->ae_drivesize[i]);
    613 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    614 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    615 		}
    616 
    617 		return (0);
    618 	}
    619 
    620 	/*
    621 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    622 	 * found, search for a product description.
    623 	 */
    624 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    625 	if (ae != NULL) {
    626 		i = 0;
    627 		sig = le32toh(ae->ae_signature);
    628 
    629 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    630 			if (amr_typestr[i].at_sig == sig)
    631 				break;
    632 			i++;
    633 		}
    634 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    635 			sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
    636 			prodstr = buf;
    637 		} else
    638 			prodstr = amr_typestr[i].at_str;
    639 	} else {
    640 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    641 		if (ae == NULL) {
    642 			aprint_error("%s: unsupported controller\n",
    643 			    amr->amr_dv.dv_xname);
    644 			return (-1);
    645 		}
    646 
    647 		switch (PCI_PRODUCT(pa->pa_id)) {
    648 		case PCI_PRODUCT_AMI_MEGARAID:
    649 			prodstr = "Series 428";
    650 			break;
    651 		case PCI_PRODUCT_AMI_MEGARAID2:
    652 			prodstr = "Series 434";
    653 			break;
    654 		default:
    655 			sprintf(buf, "unknown PCI dev (0x%04x)",
    656 			    PCI_PRODUCT(pa->pa_id));
    657 			prodstr = buf;
    658 			break;
    659 		}
    660 	}
    661 
    662 	/*
    663 	 * HP NetRaid controllers have a special encoding of the firmware
    664 	 * and BIOS versions.  The AMI version seems to have it as strings
    665 	 * whereas the HP version does it with a leading uppercase character
    666 	 * and two binary numbers.
    667 	*/
    668 	aa = &ae->ae_adapter;
    669 
    670 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    671 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    672 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    673 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    674 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    675 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    676 			prodstr = "HP NetRaid 3si";
    677 		}
    678 		ishp = 1;
    679 	} else
    680 		ishp = 0;
    681 
    682 	aprint_normal("<%s>\n", prodstr);
    683 	if (intrstr != NULL)
    684 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    685 		    intrstr);
    686 
    687 	if (ishp)
    688 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    689 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    690 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    691 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    692 	else
    693 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    694 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    695 		    aa->aa_memorysize);
    696 
    697 	amr->amr_maxqueuecnt = aa->aa_maxio;
    698 
    699 	/*
    700 	 * Record state of logical drives.
    701 	 */
    702 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    703 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    704 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    705 		    AMR_MAX_UNITS);
    706 		amr->amr_numdrives = AMR_MAX_UNITS;
    707 	} else
    708 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    709 
    710 	for (i = 0; i < AMR_MAX_UNITS; i++) {
    711 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    712 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    713 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    714 	}
    715 
    716 	return (0);
    717 }
    718 
    719 /*
    720  * Flush the internal cache on each configured controller.  Called at
    721  * shutdown time.
    722  */
    723 void
    724 amr_shutdown(void *cookie)
    725 {
    726         extern struct cfdriver amr_cd;
    727 	struct amr_softc *amr;
    728 	struct amr_ccb *ac;
    729 	int i, rv, s;
    730 
    731 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    732 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    733 			continue;
    734 
    735 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    736 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    737 			s = splbio();
    738 			rv = amr_ccb_poll(amr, ac, 30000);
    739 			splx(s);
    740 			amr_ccb_free(amr, ac);
    741 		}
    742 		if (rv != 0)
    743 			printf("%s: unable to flush cache (%d)\n",
    744 			    amr->amr_dv.dv_xname, rv);
    745 	}
    746 }
    747 
    748 /*
    749  * Interrupt service routine.
    750  */
    751 int
    752 amr_intr(void *cookie)
    753 {
    754 	struct amr_softc *amr;
    755 	struct amr_ccb *ac;
    756 	struct amr_mailbox_resp mbox;
    757 	u_int i, forus, idx;
    758 
    759 	amr = cookie;
    760 	forus = 0;
    761 
    762 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    763 		/* Iterate over completed commands in this result. */
    764 		for (i = 0; i < mbox.mb_nstatus; i++) {
    765 			idx = mbox.mb_completed[i] - 1;
    766 			ac = amr->amr_ccbs + idx;
    767 
    768 			if (idx >= amr->amr_maxqueuecnt) {
    769 				printf("%s: bad status (bogus ID: %u=%u)\n",
    770 				    amr->amr_dv.dv_xname, i, idx);
    771 				continue;
    772 			}
    773 
    774 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    775 				printf("%s: bad status (not active; 0x04%x)\n",
    776 				    amr->amr_dv.dv_xname, ac->ac_flags);
    777 				continue;
    778 			}
    779 
    780 			ac->ac_status = mbox.mb_status;
    781 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    782 			    AC_COMPLETE;
    783 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    784 
    785 			if ((ac->ac_flags & AC_MOAN) != 0)
    786 				printf("%s: ccb %d completed\n",
    787 				    amr->amr_dv.dv_xname, ac->ac_ident);
    788 
    789 			/* Pass notification to upper layers. */
    790 			if (ac->ac_handler != NULL)
    791 				(*ac->ac_handler)(ac);
    792 			else
    793 				wakeup(ac);
    794 		}
    795 		forus = 1;
    796 	}
    797 
    798 	if (forus)
    799 		amr_ccb_enqueue(amr, NULL);
    800 
    801 	return (forus);
    802 }
    803 
    804 /*
    805  * Create the watchdog thread.
    806  */
    807 void
    808 amr_thread_create(void *cookie)
    809 {
    810 	struct amr_softc *amr;
    811 	int rv;
    812 
    813 	amr = cookie;
    814 
    815 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    816 		amr->amr_flags ^= AMRF_THREAD_EXIT;
    817 		wakeup(&amr->amr_flags);
    818 		return;
    819 	}
    820 
    821 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
    822 	    amr->amr_dv.dv_xname);
    823  	if (rv != 0)
    824 		aprint_error("%s: unable to create thread (%d)",
    825  		    amr->amr_dv.dv_xname, rv);
    826  	else
    827  		amr->amr_flags |= AMRF_THREAD;
    828 }
    829 
    830 /*
    831  * Watchdog thread.
    832  */
    833 void
    834 amr_thread(void *cookie)
    835 {
    836 	struct amr_softc *amr;
    837 	struct amr_ccb *ac;
    838 	struct amr_logdrive *al;
    839 	struct amr_enquiry *ae;
    840 	time_t curtime;
    841 	int rv, i, s;
    842 
    843 	amr = cookie;
    844 	ae = amr->amr_enqbuf;
    845 
    846 	for (;;) {
    847 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    848 
    849 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    850 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    851 			wakeup(&amr->amr_flags);
    852 			kthread_exit(0);
    853 		}
    854 
    855 		s = splbio();
    856 		amr_intr(cookie);
    857 		curtime = (time_t)mono_time.tv_sec;
    858 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    859 		while (ac != NULL) {
    860 			if (ac->ac_start_time + AMR_TIMEOUT > curtime)
    861 				break;
    862 			if ((ac->ac_flags & AC_MOAN) == 0) {
    863 				printf("%s: ccb %d timed out; mailbox:\n",
    864 				    amr->amr_dv.dv_xname, ac->ac_ident);
    865 				amr_ccb_dump(amr, ac);
    866 				ac->ac_flags |= AC_MOAN;
    867 			}
    868 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    869 		}
    870 		splx(s);
    871 
    872 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    873 			printf("%s: ccb_alloc failed (%d)\n",
    874  			    amr->amr_dv.dv_xname, rv);
    875 			continue;
    876 		}
    877 
    878 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    879 
    880 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    881 		    AMR_ENQUIRY_BUFSIZE, 0);
    882 		if (rv != 0) {
    883 			printf("%s: ccb_map failed (%d)\n",
    884  			    amr->amr_dv.dv_xname, rv);
    885 			amr_ccb_free(amr, ac);
    886 			continue;
    887 		}
    888 
    889 		rv = amr_ccb_wait(amr, ac);
    890 		amr_ccb_unmap(amr, ac);
    891 		if (rv != 0) {
    892 			printf("%s: enquiry failed (st=%d)\n",
    893  			    amr->amr_dv.dv_xname, ac->ac_status);
    894 			continue;
    895 		}
    896 		amr_ccb_free(amr, ac);
    897 
    898 		al = amr->amr_drive;
    899 		for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
    900 			if (al->al_dv == NULL)
    901 				continue;
    902 			if (al->al_state == ae->ae_ldrv.al_state[i])
    903 				continue;
    904 
    905 			printf("%s: state changed: %s -> %s\n",
    906 			    al->al_dv->dv_xname,
    907 			    amr_drive_state(al->al_state, NULL),
    908 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    909 
    910 			al->al_state = ae->ae_ldrv.al_state[i];
    911 		}
    912 	}
    913 }
    914 
    915 /*
    916  * Return a text description of a logical drive's current state.
    917  */
    918 const char *
    919 amr_drive_state(int state, int *happy)
    920 {
    921 	const char *str;
    922 
    923 	state = AMR_DRV_CURSTATE(state);
    924 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    925 		if (happy)
    926 			*happy = 1;
    927 		str = "status unknown";
    928 	} else {
    929 		if (happy)
    930 			*happy = amr_dstate[state].ds_happy;
    931 		str = amr_dstate[state].ds_descr;
    932 	}
    933 
    934 	return (str);
    935 }
    936 
    937 /*
    938  * Run a generic enquiry-style command.
    939  */
    940 void *
    941 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    942 	    u_int8_t cmdqual, void *buf)
    943 {
    944 	struct amr_ccb *ac;
    945 	u_int8_t *mb;
    946 	int rv;
    947 
    948 	if (amr_ccb_alloc(amr, &ac) != 0)
    949 		return (NULL);
    950 
    951 	/* Build the command proper. */
    952 	mb = (u_int8_t *)&ac->ac_cmd;
    953 	mb[0] = cmd;
    954 	mb[2] = cmdsub;
    955 	mb[3] = cmdqual;
    956 
    957 	rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
    958 	if (rv == 0) {
    959 		rv = amr_ccb_poll(amr, ac, 2000);
    960 		amr_ccb_unmap(amr, ac);
    961 	}
    962 	amr_ccb_free(amr, ac);
    963 
    964 	return (rv ? NULL : buf);
    965 }
    966 
    967 /*
    968  * Allocate and initialise a CCB.
    969  */
    970 int
    971 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    972 {
    973 	int s;
    974 
    975 	s = splbio();
    976 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    977 		splx(s);
    978 		return (EAGAIN);
    979 	}
    980 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    981 	splx(s);
    982 
    983 	return (0);
    984 }
    985 
    986 /*
    987  * Free a CCB.
    988  */
    989 void
    990 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    991 {
    992 	int s;
    993 
    994 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    995 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    996 	ac->ac_cmd.mb_busy = 1;
    997 	ac->ac_handler = NULL;
    998 	ac->ac_flags = 0;
    999 
   1000 	s = splbio();
   1001 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
   1002 	splx(s);
   1003 }
   1004 
   1005 /*
   1006  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1007  * the order that they were enqueued and try to submit their command blocks
   1008  * to the controller for execution.
   1009  */
   1010 void
   1011 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1012 {
   1013 	int s;
   1014 
   1015 	s = splbio();
   1016 
   1017 	if (ac != NULL)
   1018 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1019 
   1020 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1021 		if ((*amr->amr_submit)(amr, ac) != 0)
   1022 			break;
   1023 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1024 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1025 	}
   1026 
   1027 	splx(s);
   1028 }
   1029 
   1030 /*
   1031  * Map the specified CCB's data buffer onto the bus, and fill the
   1032  * scatter-gather list.
   1033  */
   1034 int
   1035 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1036 	    int out)
   1037 {
   1038 	struct amr_sgentry *sge;
   1039 	struct amr_mailbox_cmd *mb;
   1040 	int nsegs, i, rv, sgloff;
   1041 	bus_dmamap_t xfer;
   1042 
   1043 	xfer = ac->ac_xfer_map;
   1044 
   1045 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1046 	    BUS_DMA_NOWAIT);
   1047 	if (rv != 0)
   1048 		return (rv);
   1049 
   1050 	mb = &ac->ac_cmd;
   1051 	ac->ac_xfer_size = size;
   1052 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
   1053 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1054 
   1055 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1056 	nsegs = xfer->dm_nsegs;
   1057 	if (nsegs == 1) {
   1058 		mb->mb_nsgelem = 0;
   1059 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1060 		ac->ac_flags |= AC_NOSGL;
   1061 	} else {
   1062 		mb->mb_nsgelem = nsegs;
   1063 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1064 
   1065 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
   1066 		for (i = 0; i < nsegs; i++, sge++) {
   1067 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1068 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1069 		}
   1070 	}
   1071 
   1072 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
   1073 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
   1074 
   1075 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1076 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1077 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1078 
   1079 	return (0);
   1080 }
   1081 
   1082 /*
   1083  * Unmap the specified CCB's data buffer.
   1084  */
   1085 void
   1086 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1087 {
   1088 
   1089 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1090 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1091 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1092 		    BUS_DMASYNC_POSTWRITE);
   1093 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1094 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
   1095 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1096 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1097 }
   1098 
   1099 /*
   1100  * Submit a command to the controller and poll on completion.  Return
   1101  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1102  */
   1103 int
   1104 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1105 {
   1106 	int rv;
   1107 
   1108 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1109 		return (rv);
   1110 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1111 
   1112 	for (timo *= 10; timo != 0; timo--) {
   1113 		amr_intr(amr);
   1114 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1115 			break;
   1116 		DELAY(100);
   1117 	}
   1118 
   1119 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1120 }
   1121 
   1122 /*
   1123  * Submit a command to the controller and sleep on completion.  Return
   1124  * non-zero on error.
   1125  */
   1126 int
   1127 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1128 {
   1129 	int s;
   1130 
   1131 	s = splbio();
   1132 	amr_ccb_enqueue(amr, ac);
   1133 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1134 	splx(s);
   1135 
   1136 	return (ac->ac_status != 0 ? EIO : 0);
   1137 }
   1138 
   1139 /*
   1140  * Wait for the mailbox to become available.
   1141  */
   1142 int
   1143 amr_mbox_wait(struct amr_softc *amr)
   1144 {
   1145 	int timo;
   1146 
   1147 	for (timo = 10000; timo != 0; timo--) {
   1148 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1149 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1150 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1151 			break;
   1152 		DELAY(100);
   1153 	}
   1154 
   1155 	if (timo == 0)
   1156 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1157 
   1158 	return (timo != 0 ? 0 : EAGAIN);
   1159 }
   1160 
   1161 /*
   1162  * Tell the controller that the mailbox contains a valid command.  Must be
   1163  * called with interrupts blocked.
   1164  */
   1165 int
   1166 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1167 {
   1168 	u_int32_t v;
   1169 
   1170 	amr->amr_mbox->mb_poll = 0;
   1171 	amr->amr_mbox->mb_ack = 0;
   1172 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1173 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1174 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1175 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1176 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1177 		return (EAGAIN);
   1178 
   1179 	v = amr_inl(amr, AMR_QREG_IDB);
   1180 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1181 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1182 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1183 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1184 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1185 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1186 		return (EAGAIN);
   1187 	}
   1188 
   1189 	amr->amr_mbox->mb_segment = 0;
   1190 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1191 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1192 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1193 
   1194 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1195 	ac->ac_flags |= AC_ACTIVE;
   1196 	amr_outl(amr, AMR_QREG_IDB,
   1197 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1198 	return (0);
   1199 }
   1200 
   1201 int
   1202 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1203 {
   1204 
   1205 	amr->amr_mbox->mb_poll = 0;
   1206 	amr->amr_mbox->mb_ack = 0;
   1207 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1208 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1209 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1210 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1211 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1212 		return (EAGAIN);
   1213 
   1214 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1215 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1216 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1217 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1218 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1219 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1220 		return (EAGAIN);
   1221 	}
   1222 
   1223 	amr->amr_mbox->mb_segment = 0;
   1224 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1225 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1226 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1227 
   1228 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1229 	ac->ac_flags |= AC_ACTIVE;
   1230 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1231 	return (0);
   1232 }
   1233 
   1234 /*
   1235  * Claim any work that the controller has completed; acknowledge completion,
   1236  * save details of the completion in (mbsave).  Must be called with
   1237  * interrupts blocked.
   1238  */
   1239 int
   1240 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1241 {
   1242 
   1243 	/* Work waiting for us? */
   1244 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1245 		return (-1);
   1246 
   1247 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1248 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1249 
   1250 	/* Save the mailbox, which contains a list of completed commands. */
   1251 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1252 
   1253 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1254 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1255 
   1256 	/* Ack the interrupt and mailbox transfer. */
   1257 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1258 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1259 
   1260 	/*
   1261 	 * This waits for the controller to notice that we've taken the
   1262 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1263 	 * but if we remove this code, we stop completing commands under
   1264 	 * load.
   1265 	 *
   1266 	 * Peter J says we shouldn't do this.  The documentation says we
   1267 	 * should.  Who is right?
   1268 	 */
   1269 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1270 		DELAY(10);
   1271 
   1272 	return (0);
   1273 }
   1274 
   1275 int
   1276 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1277 {
   1278 	u_int8_t istat;
   1279 
   1280 	/* Check for valid interrupt status. */
   1281 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1282 		return (-1);
   1283 
   1284 	/* Ack the interrupt. */
   1285 	amr_outb(amr, AMR_SREG_INTR, istat);
   1286 
   1287 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1288 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1289 
   1290 	/* Save mailbox, which contains a list of completed commands. */
   1291 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1292 
   1293 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1294 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1295 
   1296 	/* Ack mailbox transfer. */
   1297 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1298 
   1299 	return (0);
   1300 }
   1301 
   1302 void
   1303 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1304 {
   1305 	int i;
   1306 
   1307 	printf("%s: ", amr->amr_dv.dv_xname);
   1308 	for (i = 0; i < 4; i++)
   1309 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1310 	printf("\n");
   1311 }
   1312