amr.c revision 1.14 1 /* $NetBSD: amr.c,v 1.14 2003/10/14 11:33:36 martti Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.14 2003/10/14 11:33:36 martti Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85
86 #include <uvm/uvm_extern.h>
87
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95
96 void amr_attach(struct device *, struct device *, void *);
97 void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
98 void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
99 int amr_init(struct amr_softc *, const char *,
100 struct pci_attach_args *pa);
101 int amr_intr(void *);
102 int amr_match(struct device *, struct cfdata *, void *);
103 int amr_print(void *, const char *);
104 void amr_shutdown(void *);
105 int amr_submatch(struct device *, struct cfdata *, void *);
106 void amr_teardown(struct amr_softc *);
107 void amr_thread(void *);
108 void amr_thread_create(void *);
109
110 int amr_mbox_wait(struct amr_softc *);
111 int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
112 int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
113 int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
114 int amr_std_submit(struct amr_softc *, struct amr_ccb *);
115
116 static inline u_int8_t amr_inb(struct amr_softc *, int);
117 static inline u_int32_t amr_inl(struct amr_softc *, int);
118 static inline void amr_outb(struct amr_softc *, int, u_int8_t);
119 static inline void amr_outl(struct amr_softc *, int, u_int32_t);
120
121 CFATTACH_DECL(amr, sizeof(struct amr_softc),
122 amr_match, amr_attach, NULL, NULL);
123
124 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
125 #define AT_SIG 0x02 /* Check for signature */
126
127 struct amr_pci_type {
128 u_short apt_vendor;
129 u_short apt_product;
130 u_short apt_flags;
131 } const amr_pci_type[] = {
132 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
133 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
134 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
135 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
136 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
137 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
138 };
139
140 struct amr_typestr {
141 const char *at_str;
142 int at_sig;
143 } const amr_typestr[] = {
144 { "Series 431", AMR_SIG_431 },
145 { "Series 438", AMR_SIG_438 },
146 { "Series 466", AMR_SIG_466 },
147 { "Series 467", AMR_SIG_467 },
148 { "Series 490", AMR_SIG_490 },
149 { "Series 762", AMR_SIG_762 },
150 { "HP NetRAID (T5)", AMR_SIG_T5 },
151 { "HP NetRAID (T7)", AMR_SIG_T7 },
152 };
153
154 struct {
155 const char *ds_descr;
156 int ds_happy;
157 } const amr_dstate[] = {
158 { "offline", 0 },
159 { "degraded", 1 },
160 { "optimal", 1 },
161 { "online", 1 },
162 { "failed", 0 },
163 { "rebuilding", 1 },
164 { "hotspare", 0 },
165 };
166
167 void *amr_sdh;
168 int amr_max_segs;
169 int amr_max_xfer;
170
171 static inline u_int8_t
172 amr_inb(struct amr_softc *amr, int off)
173 {
174
175 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
176 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
177 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
178 }
179
180 static inline u_int32_t
181 amr_inl(struct amr_softc *amr, int off)
182 {
183
184 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
185 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
186 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
187 }
188
189 static inline void
190 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
191 {
192
193 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
194 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
195 BUS_SPACE_BARRIER_WRITE);
196 }
197
198 static inline void
199 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
200 {
201
202 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
203 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
204 BUS_SPACE_BARRIER_WRITE);
205 }
206
207 /*
208 * Match a supported device.
209 */
210 int
211 amr_match(struct device *parent, struct cfdata *match, void *aux)
212 {
213 struct pci_attach_args *pa;
214 pcireg_t s;
215 int i;
216
217 pa = (struct pci_attach_args *)aux;
218
219 /*
220 * Don't match the device if it's operating in I2O mode. In this
221 * case it should be handled by the `iop' driver.
222 */
223 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
224 return (0);
225
226 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
227 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
228 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
229 break;
230
231 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
232 return (0);
233
234 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
235 return (1);
236
237 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
238 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
239 }
240
241 /*
242 * Attach a supported device.
243 */
244 void
245 amr_attach(struct device *parent, struct device *self, void *aux)
246 {
247 bus_space_tag_t memt, iot;
248 bus_space_handle_t memh, ioh;
249 struct pci_attach_args *pa;
250 struct amr_attach_args amra;
251 const struct amr_pci_type *apt;
252 struct amr_softc *amr;
253 pci_chipset_tag_t pc;
254 pci_intr_handle_t ih;
255 const char *intrstr;
256 pcireg_t reg;
257 int rseg, i, j, size, rv, memreg, ioreg;
258 bus_size_t memsize, iosize;
259 struct amr_ccb *ac;
260
261 aprint_naive(": RAID controller\n");
262
263 amr = (struct amr_softc *)self;
264 pa = (struct pci_attach_args *)aux;
265 pc = pa->pa_pc;
266
267 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
268 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
269 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
270 break;
271 apt = amr_pci_type + i;
272
273 memreg = ioreg = 0;
274 for (i = 0x10; i <= 0x14; i += 4) {
275 reg = pci_conf_read(pc, pa->pa_tag, i);
276 switch (PCI_MAPREG_TYPE(reg)) {
277 case PCI_MAPREG_TYPE_MEM:
278 if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0)
279 memreg = i;
280 break;
281 case PCI_MAPREG_TYPE_IO:
282 if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0)
283 ioreg = i;
284 break;
285 }
286 }
287
288 if (memreg != 0)
289 if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
290 &memt, &memh, NULL, NULL))
291 memreg = 0;
292 if (ioreg != 0)
293 if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
294 &iot, &ioh, NULL, NULL))
295 ioreg = 0;
296
297 if (memreg) {
298 amr->amr_iot = memt;
299 amr->amr_ioh = memh;
300 amr->amr_ios = memsize;
301 } else if (ioreg) {
302 amr->amr_iot = iot;
303 amr->amr_ioh = ioh;
304 amr->amr_ios = iosize;
305 } else {
306 aprint_error("can't map control registers\n");
307 amr_teardown(amr);
308 return;
309 }
310
311 amr->amr_flags |= AMRF_PCI_REGS;
312 amr->amr_dmat = pa->pa_dmat;
313 amr->amr_pc = pa->pa_pc;
314
315 /* Enable the device. */
316 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
317 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
318 reg | PCI_COMMAND_MASTER_ENABLE);
319
320 /* Map and establish the interrupt. */
321 if (pci_intr_map(pa, &ih)) {
322 aprint_error("can't map interrupt\n");
323 amr_teardown(amr);
324 return;
325 }
326 intrstr = pci_intr_string(pc, ih);
327 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
328 if (amr->amr_ih == NULL) {
329 aprint_error("can't establish interrupt");
330 if (intrstr != NULL)
331 aprint_normal(" at %s", intrstr);
332 aprint_normal("\n");
333 amr_teardown(amr);
334 return;
335 }
336 amr->amr_flags |= AMRF_PCI_INTR;
337
338 /*
339 * Allocate space for the mailbox and S/G lists. Some controllers
340 * don't like S/G lists to be located below 0x2000, so we allocate
341 * enough slop to enable us to compensate.
342 *
343 * The standard mailbox structure needs to be aligned on a 16-byte
344 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
345 * size, which preceeds the standard mailbox.
346 */
347 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
348 amr->amr_dmasize = size;
349
350 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, NULL,
351 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
352 aprint_error("%s: unable to allocate buffer, rv = %d\n",
353 amr->amr_dv.dv_xname, rv);
354 amr_teardown(amr);
355 return;
356 }
357 amr->amr_flags |= AMRF_DMA_ALLOC;
358
359 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
360 (caddr_t *)&amr->amr_mbox,
361 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
362 aprint_error("%s: unable to map buffer, rv = %d\n",
363 amr->amr_dv.dv_xname, rv);
364 amr_teardown(amr);
365 return;
366 }
367 amr->amr_flags |= AMRF_DMA_MAP;
368
369 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
370 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
371 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
372 amr->amr_dv.dv_xname, rv);
373 amr_teardown(amr);
374 return;
375 }
376 amr->amr_flags |= AMRF_DMA_CREATE;
377
378 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
379 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
380 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
381 amr->amr_dv.dv_xname, rv);
382 amr_teardown(amr);
383 return;
384 }
385 amr->amr_flags |= AMRF_DMA_LOAD;
386
387 memset(amr->amr_mbox, 0, size);
388
389 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
390 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
391 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
392 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
393
394 /*
395 * Allocate and initalise the command control blocks.
396 */
397 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
398 amr->amr_ccbs = ac;
399 SLIST_INIT(&amr->amr_ccb_freelist);
400 TAILQ_INIT(&amr->amr_ccb_active);
401 amr->amr_flags |= AMRF_CCBS;
402
403 if (amr_max_xfer == 0) {
404 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
405 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
406 }
407
408 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
409 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
410 amr_max_segs, amr_max_xfer, 0,
411 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
412 if (rv != 0)
413 break;
414
415 ac->ac_ident = i;
416 amr_ccb_free(amr, ac);
417 }
418 if (i != AMR_MAX_CMDS) {
419 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
420 amr_teardown(amr);
421 return;
422 }
423
424 /*
425 * Take care of model-specific tasks.
426 */
427 if ((apt->apt_flags & AT_QUARTZ) != 0) {
428 amr->amr_submit = amr_quartz_submit;
429 amr->amr_get_work = amr_quartz_get_work;
430 } else {
431 amr->amr_submit = amr_std_submit;
432 amr->amr_get_work = amr_std_get_work;
433
434 /* Notify the controller of the mailbox location. */
435 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
436 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
437
438 /* Clear outstanding interrupts and enable interrupts. */
439 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
440 amr_outb(amr, AMR_SREG_TOGL,
441 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
442 }
443
444 /*
445 * Retrieve parameters, and tell the world about us.
446 */
447 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
448 amr->amr_flags |= AMRF_ENQBUF;
449 amr->amr_maxqueuecnt = i;
450 aprint_normal(": AMI RAID ");
451 if (amr_init(amr, intrstr, pa) != 0) {
452 amr_teardown(amr);
453 return;
454 }
455
456 /*
457 * Cap the maximum number of outstanding commands. AMI's Linux
458 * driver doesn't trust the controller's reported value, and lockups
459 * have been seen when we do.
460 */
461 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
462 if (amr->amr_maxqueuecnt > i)
463 amr->amr_maxqueuecnt = i;
464
465 /* Set our `shutdownhook' before we start any device activity. */
466 if (amr_sdh == NULL)
467 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
468
469 /* Attach sub-devices. */
470 for (j = 0; j < amr->amr_numdrives; j++) {
471 if (amr->amr_drive[j].al_size == 0)
472 continue;
473 amra.amra_unit = j;
474 amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
475 amr_print, amr_submatch);
476 }
477
478 SIMPLEQ_INIT(&amr->amr_ccb_queue);
479
480 /* XXX This doesn't work for newer boards yet. */
481 if ((apt->apt_flags & AT_QUARTZ) == 0)
482 kthread_create(amr_thread_create, amr);
483 }
484
485 /*
486 * Free up resources.
487 */
488 void
489 amr_teardown(struct amr_softc *amr)
490 {
491 struct amr_ccb *ac;
492 int fl;
493
494 fl = amr->amr_flags;
495
496 if ((fl & AMRF_THREAD) != 0) {
497 amr->amr_flags |= AMRF_THREAD_EXIT;
498 wakeup(amr_thread);
499 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
500 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
501 }
502 if ((fl & AMRF_CCBS) != 0) {
503 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
504 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
505 }
506 free(amr->amr_ccbs, M_DEVBUF);
507 }
508 if ((fl & AMRF_ENQBUF) != 0)
509 free(amr->amr_enqbuf, M_DEVBUF);
510 if ((fl & AMRF_DMA_LOAD) != 0)
511 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
512 if ((fl & AMRF_DMA_MAP) != 0)
513 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
514 amr->amr_dmasize);
515 if ((fl & AMRF_DMA_ALLOC) != 0)
516 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
517 if ((fl & AMRF_DMA_CREATE) != 0)
518 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
519 if ((fl & AMRF_PCI_INTR) != 0)
520 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
521 if ((fl & AMRF_PCI_REGS) != 0)
522 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
523 }
524
525 /*
526 * Print autoconfiguration message for a sub-device.
527 */
528 int
529 amr_print(void *aux, const char *pnp)
530 {
531 struct amr_attach_args *amra;
532
533 amra = (struct amr_attach_args *)aux;
534
535 if (pnp != NULL)
536 aprint_normal("block device at %s", pnp);
537 aprint_normal(" unit %d", amra->amra_unit);
538 return (UNCONF);
539 }
540
541 /*
542 * Match a sub-device.
543 */
544 int
545 amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
546 {
547 struct amr_attach_args *amra;
548
549 amra = (struct amr_attach_args *)aux;
550
551 if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
552 cf->amracf_unit != amra->amra_unit)
553 return (0);
554
555 return (config_match(parent, cf, aux));
556 }
557
558 /*
559 * Retrieve operational parameters and describe the controller.
560 */
561 int
562 amr_init(struct amr_softc *amr, const char *intrstr,
563 struct pci_attach_args *pa)
564 {
565 struct amr_adapter_info *aa;
566 struct amr_prodinfo *ap;
567 struct amr_enquiry *ae;
568 struct amr_enquiry3 *aex;
569 const char *prodstr;
570 u_int i, sig, ishp;
571 char buf[64];
572
573 /*
574 * Try to get 40LD product info, which tells us what the card is
575 * labelled as.
576 */
577 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
578 amr->amr_enqbuf);
579 if (ap != NULL) {
580 aprint_normal("<%.80s>\n", ap->ap_product);
581 if (intrstr != NULL)
582 aprint_normal("%s: interrupting at %s\n",
583 amr->amr_dv.dv_xname, intrstr);
584 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
585 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
586 le16toh(ap->ap_memsize));
587
588 amr->amr_maxqueuecnt = ap->ap_maxio;
589
590 /*
591 * Fetch and record state of logical drives.
592 */
593 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
594 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
595 if (aex == NULL) {
596 aprint_error("%s ENQUIRY3 failed\n",
597 amr->amr_dv.dv_xname);
598 return (-1);
599 }
600
601 if (aex->ae_numldrives > AMR_MAX_UNITS) {
602 aprint_error(
603 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
604 "\n", amr->amr_dv.dv_xname,
605 ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
606 amr->amr_numdrives = AMR_MAX_UNITS;
607 } else
608 amr->amr_numdrives = aex->ae_numldrives;
609
610 for (i = 0; i < amr->amr_numdrives; i++) {
611 amr->amr_drive[i].al_size =
612 le32toh(aex->ae_drivesize[i]);
613 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
614 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
615 }
616
617 return (0);
618 }
619
620 /*
621 * Try 8LD extended ENQUIRY to get the controller signature. Once
622 * found, search for a product description.
623 */
624 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
625 if (ae != NULL) {
626 i = 0;
627 sig = le32toh(ae->ae_signature);
628
629 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
630 if (amr_typestr[i].at_sig == sig)
631 break;
632 i++;
633 }
634 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
635 sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
636 prodstr = buf;
637 } else
638 prodstr = amr_typestr[i].at_str;
639 } else {
640 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
641 if (ae == NULL) {
642 aprint_error("%s: unsupported controller\n",
643 amr->amr_dv.dv_xname);
644 return (-1);
645 }
646
647 switch (PCI_PRODUCT(pa->pa_id)) {
648 case PCI_PRODUCT_AMI_MEGARAID:
649 prodstr = "Series 428";
650 break;
651 case PCI_PRODUCT_AMI_MEGARAID2:
652 prodstr = "Series 434";
653 break;
654 default:
655 sprintf(buf, "unknown PCI dev (0x%04x)",
656 PCI_PRODUCT(pa->pa_id));
657 prodstr = buf;
658 break;
659 }
660 }
661
662 /*
663 * HP NetRaid controllers have a special encoding of the firmware
664 * and BIOS versions. The AMI version seems to have it as strings
665 * whereas the HP version does it with a leading uppercase character
666 * and two binary numbers.
667 */
668 aa = &ae->ae_adapter;
669
670 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
671 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
672 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
673 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
674 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
675 /* The AMI 438 is a NetRaid 3si in HP-land. */
676 prodstr = "HP NetRaid 3si";
677 }
678 ishp = 1;
679 } else
680 ishp = 0;
681
682 aprint_normal("<%s>\n", prodstr);
683 if (intrstr != NULL)
684 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
685 intrstr);
686
687 if (ishp)
688 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
689 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
690 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
691 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
692 else
693 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
694 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
695 aa->aa_memorysize);
696
697 amr->amr_maxqueuecnt = aa->aa_maxio;
698
699 /*
700 * Record state of logical drives.
701 */
702 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
703 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
704 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
705 AMR_MAX_UNITS);
706 amr->amr_numdrives = AMR_MAX_UNITS;
707 } else
708 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
709
710 for (i = 0; i < AMR_MAX_UNITS; i++) {
711 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
712 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
713 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
714 }
715
716 return (0);
717 }
718
719 /*
720 * Flush the internal cache on each configured controller. Called at
721 * shutdown time.
722 */
723 void
724 amr_shutdown(void *cookie)
725 {
726 extern struct cfdriver amr_cd;
727 struct amr_softc *amr;
728 struct amr_ccb *ac;
729 int i, rv, s;
730
731 for (i = 0; i < amr_cd.cd_ndevs; i++) {
732 if ((amr = device_lookup(&amr_cd, i)) == NULL)
733 continue;
734
735 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
736 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
737 s = splbio();
738 rv = amr_ccb_poll(amr, ac, 30000);
739 splx(s);
740 amr_ccb_free(amr, ac);
741 }
742 if (rv != 0)
743 printf("%s: unable to flush cache (%d)\n",
744 amr->amr_dv.dv_xname, rv);
745 }
746 }
747
748 /*
749 * Interrupt service routine.
750 */
751 int
752 amr_intr(void *cookie)
753 {
754 struct amr_softc *amr;
755 struct amr_ccb *ac;
756 struct amr_mailbox_resp mbox;
757 u_int i, forus, idx;
758
759 amr = cookie;
760 forus = 0;
761
762 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
763 /* Iterate over completed commands in this result. */
764 for (i = 0; i < mbox.mb_nstatus; i++) {
765 idx = mbox.mb_completed[i] - 1;
766 ac = amr->amr_ccbs + idx;
767
768 if (idx >= amr->amr_maxqueuecnt) {
769 printf("%s: bad status (bogus ID: %u=%u)\n",
770 amr->amr_dv.dv_xname, i, idx);
771 continue;
772 }
773
774 if ((ac->ac_flags & AC_ACTIVE) == 0) {
775 printf("%s: bad status (not active; 0x04%x)\n",
776 amr->amr_dv.dv_xname, ac->ac_flags);
777 continue;
778 }
779
780 ac->ac_status = mbox.mb_status;
781 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
782 AC_COMPLETE;
783 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
784
785 if ((ac->ac_flags & AC_MOAN) != 0)
786 printf("%s: ccb %d completed\n",
787 amr->amr_dv.dv_xname, ac->ac_ident);
788
789 /* Pass notification to upper layers. */
790 if (ac->ac_handler != NULL)
791 (*ac->ac_handler)(ac);
792 else
793 wakeup(ac);
794 }
795 forus = 1;
796 }
797
798 if (forus)
799 amr_ccb_enqueue(amr, NULL);
800
801 return (forus);
802 }
803
804 /*
805 * Create the watchdog thread.
806 */
807 void
808 amr_thread_create(void *cookie)
809 {
810 struct amr_softc *amr;
811 int rv;
812
813 amr = cookie;
814
815 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
816 amr->amr_flags ^= AMRF_THREAD_EXIT;
817 wakeup(&amr->amr_flags);
818 return;
819 }
820
821 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
822 amr->amr_dv.dv_xname);
823 if (rv != 0)
824 aprint_error("%s: unable to create thread (%d)",
825 amr->amr_dv.dv_xname, rv);
826 else
827 amr->amr_flags |= AMRF_THREAD;
828 }
829
830 /*
831 * Watchdog thread.
832 */
833 void
834 amr_thread(void *cookie)
835 {
836 struct amr_softc *amr;
837 struct amr_ccb *ac;
838 struct amr_logdrive *al;
839 struct amr_enquiry *ae;
840 time_t curtime;
841 int rv, i, s;
842
843 amr = cookie;
844 ae = amr->amr_enqbuf;
845
846 for (;;) {
847 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
848
849 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
850 amr->amr_flags ^= AMRF_THREAD_EXIT;
851 wakeup(&amr->amr_flags);
852 kthread_exit(0);
853 }
854
855 s = splbio();
856 amr_intr(cookie);
857 curtime = (time_t)mono_time.tv_sec;
858 ac = TAILQ_FIRST(&amr->amr_ccb_active);
859 while (ac != NULL) {
860 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
861 break;
862 if ((ac->ac_flags & AC_MOAN) == 0) {
863 printf("%s: ccb %d timed out; mailbox:\n",
864 amr->amr_dv.dv_xname, ac->ac_ident);
865 amr_ccb_dump(amr, ac);
866 ac->ac_flags |= AC_MOAN;
867 }
868 ac = TAILQ_NEXT(ac, ac_chain.tailq);
869 }
870 splx(s);
871
872 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
873 printf("%s: ccb_alloc failed (%d)\n",
874 amr->amr_dv.dv_xname, rv);
875 continue;
876 }
877
878 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
879
880 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
881 AMR_ENQUIRY_BUFSIZE, 0);
882 if (rv != 0) {
883 printf("%s: ccb_map failed (%d)\n",
884 amr->amr_dv.dv_xname, rv);
885 amr_ccb_free(amr, ac);
886 continue;
887 }
888
889 rv = amr_ccb_wait(amr, ac);
890 amr_ccb_unmap(amr, ac);
891 if (rv != 0) {
892 printf("%s: enquiry failed (st=%d)\n",
893 amr->amr_dv.dv_xname, ac->ac_status);
894 continue;
895 }
896 amr_ccb_free(amr, ac);
897
898 al = amr->amr_drive;
899 for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
900 if (al->al_dv == NULL)
901 continue;
902 if (al->al_state == ae->ae_ldrv.al_state[i])
903 continue;
904
905 printf("%s: state changed: %s -> %s\n",
906 al->al_dv->dv_xname,
907 amr_drive_state(al->al_state, NULL),
908 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
909
910 al->al_state = ae->ae_ldrv.al_state[i];
911 }
912 }
913 }
914
915 /*
916 * Return a text description of a logical drive's current state.
917 */
918 const char *
919 amr_drive_state(int state, int *happy)
920 {
921 const char *str;
922
923 state = AMR_DRV_CURSTATE(state);
924 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
925 if (happy)
926 *happy = 1;
927 str = "status unknown";
928 } else {
929 if (happy)
930 *happy = amr_dstate[state].ds_happy;
931 str = amr_dstate[state].ds_descr;
932 }
933
934 return (str);
935 }
936
937 /*
938 * Run a generic enquiry-style command.
939 */
940 void *
941 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
942 u_int8_t cmdqual, void *buf)
943 {
944 struct amr_ccb *ac;
945 u_int8_t *mb;
946 int rv;
947
948 if (amr_ccb_alloc(amr, &ac) != 0)
949 return (NULL);
950
951 /* Build the command proper. */
952 mb = (u_int8_t *)&ac->ac_cmd;
953 mb[0] = cmd;
954 mb[2] = cmdsub;
955 mb[3] = cmdqual;
956
957 rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
958 if (rv == 0) {
959 rv = amr_ccb_poll(amr, ac, 2000);
960 amr_ccb_unmap(amr, ac);
961 }
962 amr_ccb_free(amr, ac);
963
964 return (rv ? NULL : buf);
965 }
966
967 /*
968 * Allocate and initialise a CCB.
969 */
970 int
971 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
972 {
973 int s;
974
975 s = splbio();
976 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
977 splx(s);
978 return (EAGAIN);
979 }
980 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
981 splx(s);
982
983 return (0);
984 }
985
986 /*
987 * Free a CCB.
988 */
989 void
990 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
991 {
992 int s;
993
994 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
995 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
996 ac->ac_cmd.mb_busy = 1;
997 ac->ac_handler = NULL;
998 ac->ac_flags = 0;
999
1000 s = splbio();
1001 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1002 splx(s);
1003 }
1004
1005 /*
1006 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1007 * the order that they were enqueued and try to submit their command blocks
1008 * to the controller for execution.
1009 */
1010 void
1011 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1012 {
1013 int s;
1014
1015 s = splbio();
1016
1017 if (ac != NULL)
1018 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1019
1020 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1021 if ((*amr->amr_submit)(amr, ac) != 0)
1022 break;
1023 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1024 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1025 }
1026
1027 splx(s);
1028 }
1029
1030 /*
1031 * Map the specified CCB's data buffer onto the bus, and fill the
1032 * scatter-gather list.
1033 */
1034 int
1035 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1036 int out)
1037 {
1038 struct amr_sgentry *sge;
1039 struct amr_mailbox_cmd *mb;
1040 int nsegs, i, rv, sgloff;
1041 bus_dmamap_t xfer;
1042
1043 xfer = ac->ac_xfer_map;
1044
1045 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1046 BUS_DMA_NOWAIT);
1047 if (rv != 0)
1048 return (rv);
1049
1050 mb = &ac->ac_cmd;
1051 ac->ac_xfer_size = size;
1052 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1053 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1054
1055 /* We don't need to use a scatter/gather list for just 1 segment. */
1056 nsegs = xfer->dm_nsegs;
1057 if (nsegs == 1) {
1058 mb->mb_nsgelem = 0;
1059 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1060 ac->ac_flags |= AC_NOSGL;
1061 } else {
1062 mb->mb_nsgelem = nsegs;
1063 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1064
1065 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1066 for (i = 0; i < nsegs; i++, sge++) {
1067 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1068 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1069 }
1070 }
1071
1072 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1073 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1074
1075 if ((ac->ac_flags & AC_NOSGL) == 0)
1076 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1077 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1078
1079 return (0);
1080 }
1081
1082 /*
1083 * Unmap the specified CCB's data buffer.
1084 */
1085 void
1086 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1087 {
1088
1089 if ((ac->ac_flags & AC_NOSGL) == 0)
1090 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1091 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1092 BUS_DMASYNC_POSTWRITE);
1093 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1094 (ac->ac_flags & AC_XFER_IN) != 0 ?
1095 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1096 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1097 }
1098
1099 /*
1100 * Submit a command to the controller and poll on completion. Return
1101 * non-zero on timeout or error. Must be called with interrupts blocked.
1102 */
1103 int
1104 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1105 {
1106 int rv;
1107
1108 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1109 return (rv);
1110 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1111
1112 for (timo *= 10; timo != 0; timo--) {
1113 amr_intr(amr);
1114 if ((ac->ac_flags & AC_COMPLETE) != 0)
1115 break;
1116 DELAY(100);
1117 }
1118
1119 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1120 }
1121
1122 /*
1123 * Submit a command to the controller and sleep on completion. Return
1124 * non-zero on error.
1125 */
1126 int
1127 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1128 {
1129 int s;
1130
1131 s = splbio();
1132 amr_ccb_enqueue(amr, ac);
1133 tsleep(ac, PRIBIO, "amrcmd", 0);
1134 splx(s);
1135
1136 return (ac->ac_status != 0 ? EIO : 0);
1137 }
1138
1139 /*
1140 * Wait for the mailbox to become available.
1141 */
1142 int
1143 amr_mbox_wait(struct amr_softc *amr)
1144 {
1145 int timo;
1146
1147 for (timo = 10000; timo != 0; timo--) {
1148 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1149 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1150 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1151 break;
1152 DELAY(100);
1153 }
1154
1155 if (timo == 0)
1156 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1157
1158 return (timo != 0 ? 0 : EAGAIN);
1159 }
1160
1161 /*
1162 * Tell the controller that the mailbox contains a valid command. Must be
1163 * called with interrupts blocked.
1164 */
1165 int
1166 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1167 {
1168 u_int32_t v;
1169
1170 amr->amr_mbox->mb_poll = 0;
1171 amr->amr_mbox->mb_ack = 0;
1172 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1173 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1174 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1175 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1176 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1177 return (EAGAIN);
1178
1179 v = amr_inl(amr, AMR_QREG_IDB);
1180 if ((v & AMR_QIDB_SUBMIT) != 0) {
1181 amr->amr_mbox->mb_cmd.mb_busy = 0;
1182 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1183 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1184 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1185 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1186 return (EAGAIN);
1187 }
1188
1189 amr->amr_mbox->mb_segment = 0;
1190 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1191 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1192 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1193
1194 ac->ac_start_time = (time_t)mono_time.tv_sec;
1195 ac->ac_flags |= AC_ACTIVE;
1196 amr_outl(amr, AMR_QREG_IDB,
1197 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1198 return (0);
1199 }
1200
1201 int
1202 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1203 {
1204
1205 amr->amr_mbox->mb_poll = 0;
1206 amr->amr_mbox->mb_ack = 0;
1207 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1208 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1209 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1210 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1211 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1212 return (EAGAIN);
1213
1214 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1215 amr->amr_mbox->mb_cmd.mb_busy = 0;
1216 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1217 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1218 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1219 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1220 return (EAGAIN);
1221 }
1222
1223 amr->amr_mbox->mb_segment = 0;
1224 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1225 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1226 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1227
1228 ac->ac_start_time = (time_t)mono_time.tv_sec;
1229 ac->ac_flags |= AC_ACTIVE;
1230 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1231 return (0);
1232 }
1233
1234 /*
1235 * Claim any work that the controller has completed; acknowledge completion,
1236 * save details of the completion in (mbsave). Must be called with
1237 * interrupts blocked.
1238 */
1239 int
1240 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1241 {
1242
1243 /* Work waiting for us? */
1244 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1245 return (-1);
1246
1247 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1248 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1249
1250 /* Save the mailbox, which contains a list of completed commands. */
1251 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1252
1253 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1254 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1255
1256 /* Ack the interrupt and mailbox transfer. */
1257 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1258 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1259
1260 /*
1261 * This waits for the controller to notice that we've taken the
1262 * command from it. It's very inefficient, and we shouldn't do it,
1263 * but if we remove this code, we stop completing commands under
1264 * load.
1265 *
1266 * Peter J says we shouldn't do this. The documentation says we
1267 * should. Who is right?
1268 */
1269 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1270 DELAY(10);
1271
1272 return (0);
1273 }
1274
1275 int
1276 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1277 {
1278 u_int8_t istat;
1279
1280 /* Check for valid interrupt status. */
1281 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1282 return (-1);
1283
1284 /* Ack the interrupt. */
1285 amr_outb(amr, AMR_SREG_INTR, istat);
1286
1287 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1288 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1289
1290 /* Save mailbox, which contains a list of completed commands. */
1291 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1292
1293 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1294 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1295
1296 /* Ack mailbox transfer. */
1297 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1298
1299 return (0);
1300 }
1301
1302 void
1303 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1304 {
1305 int i;
1306
1307 printf("%s: ", amr->amr_dv.dv_xname);
1308 for (i = 0; i < 4; i++)
1309 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1310 printf("\n");
1311 }
1312