amr.c revision 1.16 1 /* $NetBSD: amr.c,v 1.16 2003/10/25 18:31:11 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.16 2003/10/25 18:31:11 christos Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85
86 #include <uvm/uvm_extern.h>
87
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95
96 void amr_attach(struct device *, struct device *, void *);
97 void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
98 void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
99 int amr_init(struct amr_softc *, const char *,
100 struct pci_attach_args *pa);
101 int amr_intr(void *);
102 int amr_match(struct device *, struct cfdata *, void *);
103 int amr_print(void *, const char *);
104 void amr_shutdown(void *);
105 int amr_submatch(struct device *, struct cfdata *, void *);
106 void amr_teardown(struct amr_softc *);
107 void amr_thread(void *);
108 void amr_thread_create(void *);
109
110 int amr_mbox_wait(struct amr_softc *);
111 int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
112 int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
113 int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
114 int amr_std_submit(struct amr_softc *, struct amr_ccb *);
115
116 static inline u_int8_t amr_inb(struct amr_softc *, int);
117 static inline u_int32_t amr_inl(struct amr_softc *, int);
118 static inline void amr_outb(struct amr_softc *, int, u_int8_t);
119 static inline void amr_outl(struct amr_softc *, int, u_int32_t);
120
121 CFATTACH_DECL(amr, sizeof(struct amr_softc),
122 amr_match, amr_attach, NULL, NULL);
123
124 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
125 #define AT_SIG 0x02 /* Check for signature */
126
127 struct amr_pci_type {
128 u_short apt_vendor;
129 u_short apt_product;
130 u_short apt_flags;
131 } const amr_pci_type[] = {
132 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
133 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
134 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
135 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
136 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
137 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
138 };
139
140 struct amr_typestr {
141 const char *at_str;
142 int at_sig;
143 } const amr_typestr[] = {
144 { "Series 431", AMR_SIG_431 },
145 { "Series 438", AMR_SIG_438 },
146 { "Series 466", AMR_SIG_466 },
147 { "Series 467", AMR_SIG_467 },
148 { "Series 490", AMR_SIG_490 },
149 { "Series 762", AMR_SIG_762 },
150 { "HP NetRAID (T5)", AMR_SIG_T5 },
151 { "HP NetRAID (T7)", AMR_SIG_T7 },
152 };
153
154 struct {
155 const char *ds_descr;
156 int ds_happy;
157 } const amr_dstate[] = {
158 { "offline", 0 },
159 { "degraded", 1 },
160 { "optimal", 1 },
161 { "online", 1 },
162 { "failed", 0 },
163 { "rebuilding", 1 },
164 { "hotspare", 0 },
165 };
166
167 void *amr_sdh;
168 int amr_max_segs;
169 int amr_max_xfer;
170
171 static inline u_int8_t
172 amr_inb(struct amr_softc *amr, int off)
173 {
174
175 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
176 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
177 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
178 }
179
180 static inline u_int32_t
181 amr_inl(struct amr_softc *amr, int off)
182 {
183
184 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
185 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
186 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
187 }
188
189 static inline void
190 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
191 {
192
193 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
194 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
195 BUS_SPACE_BARRIER_WRITE);
196 }
197
198 static inline void
199 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
200 {
201
202 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
203 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
204 BUS_SPACE_BARRIER_WRITE);
205 }
206
207 /*
208 * Match a supported device.
209 */
210 int
211 amr_match(struct device *parent, struct cfdata *match, void *aux)
212 {
213 struct pci_attach_args *pa;
214 pcireg_t s;
215 int i;
216
217 pa = (struct pci_attach_args *)aux;
218
219 /*
220 * Don't match the device if it's operating in I2O mode. In this
221 * case it should be handled by the `iop' driver.
222 */
223 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
224 return (0);
225
226 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
227 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
228 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
229 break;
230
231 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
232 return (0);
233
234 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
235 return (1);
236
237 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
238 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
239 }
240
241 /*
242 * Attach a supported device.
243 */
244 void
245 amr_attach(struct device *parent, struct device *self, void *aux)
246 {
247 bus_space_tag_t memt, iot;
248 bus_space_handle_t memh, ioh;
249 struct pci_attach_args *pa;
250 struct amr_attach_args amra;
251 const struct amr_pci_type *apt;
252 struct amr_softc *amr;
253 pci_chipset_tag_t pc;
254 pci_intr_handle_t ih;
255 const char *intrstr;
256 pcireg_t reg;
257 int rseg, i, j, size, rv, memreg, ioreg;
258 bus_size_t memsize = 0, iosize = 0;
259 struct amr_ccb *ac;
260
261 aprint_naive(": RAID controller\n");
262
263 amr = (struct amr_softc *)self;
264 pa = (struct pci_attach_args *)aux;
265 pc = pa->pa_pc;
266
267 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
268 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
269 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
270 break;
271 apt = amr_pci_type + i;
272
273 memreg = ioreg = 0;
274 for (i = 0x10; i <= 0x14; i += 4) {
275 reg = pci_conf_read(pc, pa->pa_tag, i);
276 switch (PCI_MAPREG_TYPE(reg)) {
277 case PCI_MAPREG_TYPE_MEM:
278 if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0)
279 memreg = i;
280 break;
281 case PCI_MAPREG_TYPE_IO:
282 if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0)
283 ioreg = i;
284 break;
285
286 }
287 }
288
289 if (memreg != 0)
290 if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
291 &memt, &memh, NULL, NULL))
292 memreg = 0;
293 if (ioreg != 0)
294 if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
295 &iot, &ioh, NULL, NULL))
296 ioreg = 0;
297
298 if (memreg) {
299 amr->amr_iot = memt;
300 amr->amr_ioh = memh;
301 amr->amr_ios = memsize;
302 } else if (ioreg) {
303 amr->amr_iot = iot;
304 amr->amr_ioh = ioh;
305 amr->amr_ios = iosize;
306 } else {
307 aprint_error("can't map control registers\n");
308 amr_teardown(amr);
309 return;
310 }
311
312 amr->amr_flags |= AMRF_PCI_REGS;
313 amr->amr_dmat = pa->pa_dmat;
314 amr->amr_pc = pa->pa_pc;
315
316 /* Enable the device. */
317 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
318 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
319 reg | PCI_COMMAND_MASTER_ENABLE);
320
321 /* Map and establish the interrupt. */
322 if (pci_intr_map(pa, &ih)) {
323 aprint_error("can't map interrupt\n");
324 amr_teardown(amr);
325 return;
326 }
327 intrstr = pci_intr_string(pc, ih);
328 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
329 if (amr->amr_ih == NULL) {
330 aprint_error("can't establish interrupt");
331 if (intrstr != NULL)
332 aprint_normal(" at %s", intrstr);
333 aprint_normal("\n");
334 amr_teardown(amr);
335 return;
336 }
337 amr->amr_flags |= AMRF_PCI_INTR;
338
339 /*
340 * Allocate space for the mailbox and S/G lists. Some controllers
341 * don't like S/G lists to be located below 0x2000, so we allocate
342 * enough slop to enable us to compensate.
343 *
344 * The standard mailbox structure needs to be aligned on a 16-byte
345 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
346 * size, which preceeds the standard mailbox.
347 */
348 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
349 amr->amr_dmasize = size;
350
351 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
352 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
353 aprint_error("%s: unable to allocate buffer, rv = %d\n",
354 amr->amr_dv.dv_xname, rv);
355 amr_teardown(amr);
356 return;
357 }
358 amr->amr_flags |= AMRF_DMA_ALLOC;
359
360 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
361 (caddr_t *)&amr->amr_mbox,
362 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
363 aprint_error("%s: unable to map buffer, rv = %d\n",
364 amr->amr_dv.dv_xname, rv);
365 amr_teardown(amr);
366 return;
367 }
368 amr->amr_flags |= AMRF_DMA_MAP;
369
370 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
371 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
372 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
373 amr->amr_dv.dv_xname, rv);
374 amr_teardown(amr);
375 return;
376 }
377 amr->amr_flags |= AMRF_DMA_CREATE;
378
379 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
380 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
381 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
382 amr->amr_dv.dv_xname, rv);
383 amr_teardown(amr);
384 return;
385 }
386 amr->amr_flags |= AMRF_DMA_LOAD;
387
388 memset(amr->amr_mbox, 0, size);
389
390 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
391 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
392 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
393 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
394
395 /*
396 * Allocate and initalise the command control blocks.
397 */
398 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
399 amr->amr_ccbs = ac;
400 SLIST_INIT(&amr->amr_ccb_freelist);
401 TAILQ_INIT(&amr->amr_ccb_active);
402 amr->amr_flags |= AMRF_CCBS;
403
404 if (amr_max_xfer == 0) {
405 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
406 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
407 }
408
409 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
410 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
411 amr_max_segs, amr_max_xfer, 0,
412 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
413 if (rv != 0)
414 break;
415
416 ac->ac_ident = i;
417 amr_ccb_free(amr, ac);
418 }
419 if (i != AMR_MAX_CMDS) {
420 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
421 amr_teardown(amr);
422 return;
423 }
424
425 /*
426 * Take care of model-specific tasks.
427 */
428 if ((apt->apt_flags & AT_QUARTZ) != 0) {
429 amr->amr_submit = amr_quartz_submit;
430 amr->amr_get_work = amr_quartz_get_work;
431 } else {
432 amr->amr_submit = amr_std_submit;
433 amr->amr_get_work = amr_std_get_work;
434
435 /* Notify the controller of the mailbox location. */
436 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
437 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
438
439 /* Clear outstanding interrupts and enable interrupts. */
440 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
441 amr_outb(amr, AMR_SREG_TOGL,
442 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
443 }
444
445 /*
446 * Retrieve parameters, and tell the world about us.
447 */
448 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
449 amr->amr_flags |= AMRF_ENQBUF;
450 amr->amr_maxqueuecnt = i;
451 aprint_normal(": AMI RAID ");
452 if (amr_init(amr, intrstr, pa) != 0) {
453 amr_teardown(amr);
454 return;
455 }
456
457 /*
458 * Cap the maximum number of outstanding commands. AMI's Linux
459 * driver doesn't trust the controller's reported value, and lockups
460 * have been seen when we do.
461 */
462 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
463 if (amr->amr_maxqueuecnt > i)
464 amr->amr_maxqueuecnt = i;
465
466 /* Set our `shutdownhook' before we start any device activity. */
467 if (amr_sdh == NULL)
468 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
469
470 /* Attach sub-devices. */
471 for (j = 0; j < amr->amr_numdrives; j++) {
472 if (amr->amr_drive[j].al_size == 0)
473 continue;
474 amra.amra_unit = j;
475 amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
476 amr_print, amr_submatch);
477 }
478
479 SIMPLEQ_INIT(&amr->amr_ccb_queue);
480
481 /* XXX This doesn't work for newer boards yet. */
482 if ((apt->apt_flags & AT_QUARTZ) == 0)
483 kthread_create(amr_thread_create, amr);
484 }
485
486 /*
487 * Free up resources.
488 */
489 void
490 amr_teardown(struct amr_softc *amr)
491 {
492 struct amr_ccb *ac;
493 int fl;
494
495 fl = amr->amr_flags;
496
497 if ((fl & AMRF_THREAD) != 0) {
498 amr->amr_flags |= AMRF_THREAD_EXIT;
499 wakeup(amr_thread);
500 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
501 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
502 }
503 if ((fl & AMRF_CCBS) != 0) {
504 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
505 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
506 }
507 free(amr->amr_ccbs, M_DEVBUF);
508 }
509 if ((fl & AMRF_ENQBUF) != 0)
510 free(amr->amr_enqbuf, M_DEVBUF);
511 if ((fl & AMRF_DMA_LOAD) != 0)
512 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
513 if ((fl & AMRF_DMA_MAP) != 0)
514 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
515 amr->amr_dmasize);
516 if ((fl & AMRF_DMA_ALLOC) != 0)
517 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
518 if ((fl & AMRF_DMA_CREATE) != 0)
519 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
520 if ((fl & AMRF_PCI_INTR) != 0)
521 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
522 if ((fl & AMRF_PCI_REGS) != 0)
523 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
524 }
525
526 /*
527 * Print autoconfiguration message for a sub-device.
528 */
529 int
530 amr_print(void *aux, const char *pnp)
531 {
532 struct amr_attach_args *amra;
533
534 amra = (struct amr_attach_args *)aux;
535
536 if (pnp != NULL)
537 aprint_normal("block device at %s", pnp);
538 aprint_normal(" unit %d", amra->amra_unit);
539 return (UNCONF);
540 }
541
542 /*
543 * Match a sub-device.
544 */
545 int
546 amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
547 {
548 struct amr_attach_args *amra;
549
550 amra = (struct amr_attach_args *)aux;
551
552 if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
553 cf->amracf_unit != amra->amra_unit)
554 return (0);
555
556 return (config_match(parent, cf, aux));
557 }
558
559 /*
560 * Retrieve operational parameters and describe the controller.
561 */
562 int
563 amr_init(struct amr_softc *amr, const char *intrstr,
564 struct pci_attach_args *pa)
565 {
566 struct amr_adapter_info *aa;
567 struct amr_prodinfo *ap;
568 struct amr_enquiry *ae;
569 struct amr_enquiry3 *aex;
570 const char *prodstr;
571 u_int i, sig, ishp;
572 char buf[64];
573
574 /*
575 * Try to get 40LD product info, which tells us what the card is
576 * labelled as.
577 */
578 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
579 amr->amr_enqbuf);
580 if (ap != NULL) {
581 aprint_normal("<%.80s>\n", ap->ap_product);
582 if (intrstr != NULL)
583 aprint_normal("%s: interrupting at %s\n",
584 amr->amr_dv.dv_xname, intrstr);
585 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
586 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
587 le16toh(ap->ap_memsize));
588
589 amr->amr_maxqueuecnt = ap->ap_maxio;
590
591 /*
592 * Fetch and record state of logical drives.
593 */
594 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
595 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
596 if (aex == NULL) {
597 aprint_error("%s ENQUIRY3 failed\n",
598 amr->amr_dv.dv_xname);
599 return (-1);
600 }
601
602 if (aex->ae_numldrives > AMR_MAX_UNITS) {
603 aprint_error(
604 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
605 "\n", amr->amr_dv.dv_xname,
606 ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
607 amr->amr_numdrives = AMR_MAX_UNITS;
608 } else
609 amr->amr_numdrives = aex->ae_numldrives;
610
611 for (i = 0; i < amr->amr_numdrives; i++) {
612 amr->amr_drive[i].al_size =
613 le32toh(aex->ae_drivesize[i]);
614 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
615 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
616 }
617
618 return (0);
619 }
620
621 /*
622 * Try 8LD extended ENQUIRY to get the controller signature. Once
623 * found, search for a product description.
624 */
625 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
626 if (ae != NULL) {
627 i = 0;
628 sig = le32toh(ae->ae_signature);
629
630 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
631 if (amr_typestr[i].at_sig == sig)
632 break;
633 i++;
634 }
635 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
636 sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
637 prodstr = buf;
638 } else
639 prodstr = amr_typestr[i].at_str;
640 } else {
641 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
642 if (ae == NULL) {
643 aprint_error("%s: unsupported controller\n",
644 amr->amr_dv.dv_xname);
645 return (-1);
646 }
647
648 switch (PCI_PRODUCT(pa->pa_id)) {
649 case PCI_PRODUCT_AMI_MEGARAID:
650 prodstr = "Series 428";
651 break;
652 case PCI_PRODUCT_AMI_MEGARAID2:
653 prodstr = "Series 434";
654 break;
655 default:
656 sprintf(buf, "unknown PCI dev (0x%04x)",
657 PCI_PRODUCT(pa->pa_id));
658 prodstr = buf;
659 break;
660 }
661 }
662
663 /*
664 * HP NetRaid controllers have a special encoding of the firmware
665 * and BIOS versions. The AMI version seems to have it as strings
666 * whereas the HP version does it with a leading uppercase character
667 * and two binary numbers.
668 */
669 aa = &ae->ae_adapter;
670
671 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
672 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
673 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
674 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
675 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
676 /* The AMI 438 is a NetRaid 3si in HP-land. */
677 prodstr = "HP NetRaid 3si";
678 }
679 ishp = 1;
680 } else
681 ishp = 0;
682
683 aprint_normal("<%s>\n", prodstr);
684 if (intrstr != NULL)
685 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
686 intrstr);
687
688 if (ishp)
689 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
690 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
691 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
692 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
693 else
694 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
695 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
696 aa->aa_memorysize);
697
698 amr->amr_maxqueuecnt = aa->aa_maxio;
699
700 /*
701 * Record state of logical drives.
702 */
703 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
704 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
705 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
706 AMR_MAX_UNITS);
707 amr->amr_numdrives = AMR_MAX_UNITS;
708 } else
709 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
710
711 for (i = 0; i < AMR_MAX_UNITS; i++) {
712 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
713 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
714 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
715 }
716
717 return (0);
718 }
719
720 /*
721 * Flush the internal cache on each configured controller. Called at
722 * shutdown time.
723 */
724 void
725 amr_shutdown(void *cookie)
726 {
727 extern struct cfdriver amr_cd;
728 struct amr_softc *amr;
729 struct amr_ccb *ac;
730 int i, rv, s;
731
732 for (i = 0; i < amr_cd.cd_ndevs; i++) {
733 if ((amr = device_lookup(&amr_cd, i)) == NULL)
734 continue;
735
736 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
737 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
738 s = splbio();
739 rv = amr_ccb_poll(amr, ac, 30000);
740 splx(s);
741 amr_ccb_free(amr, ac);
742 }
743 if (rv != 0)
744 printf("%s: unable to flush cache (%d)\n",
745 amr->amr_dv.dv_xname, rv);
746 }
747 }
748
749 /*
750 * Interrupt service routine.
751 */
752 int
753 amr_intr(void *cookie)
754 {
755 struct amr_softc *amr;
756 struct amr_ccb *ac;
757 struct amr_mailbox_resp mbox;
758 u_int i, forus, idx;
759
760 amr = cookie;
761 forus = 0;
762
763 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
764 /* Iterate over completed commands in this result. */
765 for (i = 0; i < mbox.mb_nstatus; i++) {
766 idx = mbox.mb_completed[i] - 1;
767 ac = amr->amr_ccbs + idx;
768
769 if (idx >= amr->amr_maxqueuecnt) {
770 printf("%s: bad status (bogus ID: %u=%u)\n",
771 amr->amr_dv.dv_xname, i, idx);
772 continue;
773 }
774
775 if ((ac->ac_flags & AC_ACTIVE) == 0) {
776 printf("%s: bad status (not active; 0x04%x)\n",
777 amr->amr_dv.dv_xname, ac->ac_flags);
778 continue;
779 }
780
781 ac->ac_status = mbox.mb_status;
782 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
783 AC_COMPLETE;
784 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
785
786 if ((ac->ac_flags & AC_MOAN) != 0)
787 printf("%s: ccb %d completed\n",
788 amr->amr_dv.dv_xname, ac->ac_ident);
789
790 /* Pass notification to upper layers. */
791 if (ac->ac_handler != NULL)
792 (*ac->ac_handler)(ac);
793 else
794 wakeup(ac);
795 }
796 forus = 1;
797 }
798
799 if (forus)
800 amr_ccb_enqueue(amr, NULL);
801
802 return (forus);
803 }
804
805 /*
806 * Create the watchdog thread.
807 */
808 void
809 amr_thread_create(void *cookie)
810 {
811 struct amr_softc *amr;
812 int rv;
813
814 amr = cookie;
815
816 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
817 amr->amr_flags ^= AMRF_THREAD_EXIT;
818 wakeup(&amr->amr_flags);
819 return;
820 }
821
822 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
823 amr->amr_dv.dv_xname);
824 if (rv != 0)
825 aprint_error("%s: unable to create thread (%d)",
826 amr->amr_dv.dv_xname, rv);
827 else
828 amr->amr_flags |= AMRF_THREAD;
829 }
830
831 /*
832 * Watchdog thread.
833 */
834 void
835 amr_thread(void *cookie)
836 {
837 struct amr_softc *amr;
838 struct amr_ccb *ac;
839 struct amr_logdrive *al;
840 struct amr_enquiry *ae;
841 time_t curtime;
842 int rv, i, s;
843
844 amr = cookie;
845 ae = amr->amr_enqbuf;
846
847 for (;;) {
848 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
849
850 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
851 amr->amr_flags ^= AMRF_THREAD_EXIT;
852 wakeup(&amr->amr_flags);
853 kthread_exit(0);
854 }
855
856 s = splbio();
857 amr_intr(cookie);
858 curtime = (time_t)mono_time.tv_sec;
859 ac = TAILQ_FIRST(&amr->amr_ccb_active);
860 while (ac != NULL) {
861 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
862 break;
863 if ((ac->ac_flags & AC_MOAN) == 0) {
864 printf("%s: ccb %d timed out; mailbox:\n",
865 amr->amr_dv.dv_xname, ac->ac_ident);
866 amr_ccb_dump(amr, ac);
867 ac->ac_flags |= AC_MOAN;
868 }
869 ac = TAILQ_NEXT(ac, ac_chain.tailq);
870 }
871 splx(s);
872
873 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
874 printf("%s: ccb_alloc failed (%d)\n",
875 amr->amr_dv.dv_xname, rv);
876 continue;
877 }
878
879 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
880
881 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
882 AMR_ENQUIRY_BUFSIZE, 0);
883 if (rv != 0) {
884 printf("%s: ccb_map failed (%d)\n",
885 amr->amr_dv.dv_xname, rv);
886 amr_ccb_free(amr, ac);
887 continue;
888 }
889
890 rv = amr_ccb_wait(amr, ac);
891 amr_ccb_unmap(amr, ac);
892 if (rv != 0) {
893 printf("%s: enquiry failed (st=%d)\n",
894 amr->amr_dv.dv_xname, ac->ac_status);
895 continue;
896 }
897 amr_ccb_free(amr, ac);
898
899 al = amr->amr_drive;
900 for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
901 if (al->al_dv == NULL)
902 continue;
903 if (al->al_state == ae->ae_ldrv.al_state[i])
904 continue;
905
906 printf("%s: state changed: %s -> %s\n",
907 al->al_dv->dv_xname,
908 amr_drive_state(al->al_state, NULL),
909 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
910
911 al->al_state = ae->ae_ldrv.al_state[i];
912 }
913 }
914 }
915
916 /*
917 * Return a text description of a logical drive's current state.
918 */
919 const char *
920 amr_drive_state(int state, int *happy)
921 {
922 const char *str;
923
924 state = AMR_DRV_CURSTATE(state);
925 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
926 if (happy)
927 *happy = 1;
928 str = "status unknown";
929 } else {
930 if (happy)
931 *happy = amr_dstate[state].ds_happy;
932 str = amr_dstate[state].ds_descr;
933 }
934
935 return (str);
936 }
937
938 /*
939 * Run a generic enquiry-style command.
940 */
941 void *
942 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
943 u_int8_t cmdqual, void *buf)
944 {
945 struct amr_ccb *ac;
946 u_int8_t *mb;
947 int rv;
948
949 if (amr_ccb_alloc(amr, &ac) != 0)
950 return (NULL);
951
952 /* Build the command proper. */
953 mb = (u_int8_t *)&ac->ac_cmd;
954 mb[0] = cmd;
955 mb[2] = cmdsub;
956 mb[3] = cmdqual;
957
958 rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
959 if (rv == 0) {
960 rv = amr_ccb_poll(amr, ac, 2000);
961 amr_ccb_unmap(amr, ac);
962 }
963 amr_ccb_free(amr, ac);
964
965 return (rv ? NULL : buf);
966 }
967
968 /*
969 * Allocate and initialise a CCB.
970 */
971 int
972 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
973 {
974 int s;
975
976 s = splbio();
977 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
978 splx(s);
979 return (EAGAIN);
980 }
981 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
982 splx(s);
983
984 return (0);
985 }
986
987 /*
988 * Free a CCB.
989 */
990 void
991 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
992 {
993 int s;
994
995 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
996 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
997 ac->ac_cmd.mb_busy = 1;
998 ac->ac_handler = NULL;
999 ac->ac_flags = 0;
1000
1001 s = splbio();
1002 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1003 splx(s);
1004 }
1005
1006 /*
1007 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1008 * the order that they were enqueued and try to submit their command blocks
1009 * to the controller for execution.
1010 */
1011 void
1012 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1013 {
1014 int s;
1015
1016 s = splbio();
1017
1018 if (ac != NULL)
1019 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1020
1021 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1022 if ((*amr->amr_submit)(amr, ac) != 0)
1023 break;
1024 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1025 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1026 }
1027
1028 splx(s);
1029 }
1030
1031 /*
1032 * Map the specified CCB's data buffer onto the bus, and fill the
1033 * scatter-gather list.
1034 */
1035 int
1036 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1037 int out)
1038 {
1039 struct amr_sgentry *sge;
1040 struct amr_mailbox_cmd *mb;
1041 int nsegs, i, rv, sgloff;
1042 bus_dmamap_t xfer;
1043
1044 xfer = ac->ac_xfer_map;
1045
1046 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1047 BUS_DMA_NOWAIT);
1048 if (rv != 0)
1049 return (rv);
1050
1051 mb = &ac->ac_cmd;
1052 ac->ac_xfer_size = size;
1053 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1054 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1055
1056 /* We don't need to use a scatter/gather list for just 1 segment. */
1057 nsegs = xfer->dm_nsegs;
1058 if (nsegs == 1) {
1059 mb->mb_nsgelem = 0;
1060 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1061 ac->ac_flags |= AC_NOSGL;
1062 } else {
1063 mb->mb_nsgelem = nsegs;
1064 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1065
1066 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1067 for (i = 0; i < nsegs; i++, sge++) {
1068 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1069 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1070 }
1071 }
1072
1073 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1074 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1075
1076 if ((ac->ac_flags & AC_NOSGL) == 0)
1077 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1078 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1079
1080 return (0);
1081 }
1082
1083 /*
1084 * Unmap the specified CCB's data buffer.
1085 */
1086 void
1087 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1088 {
1089
1090 if ((ac->ac_flags & AC_NOSGL) == 0)
1091 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1092 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1093 BUS_DMASYNC_POSTWRITE);
1094 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1095 (ac->ac_flags & AC_XFER_IN) != 0 ?
1096 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1097 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1098 }
1099
1100 /*
1101 * Submit a command to the controller and poll on completion. Return
1102 * non-zero on timeout or error. Must be called with interrupts blocked.
1103 */
1104 int
1105 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1106 {
1107 int rv;
1108
1109 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1110 return (rv);
1111 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1112
1113 for (timo *= 10; timo != 0; timo--) {
1114 amr_intr(amr);
1115 if ((ac->ac_flags & AC_COMPLETE) != 0)
1116 break;
1117 DELAY(100);
1118 }
1119
1120 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1121 }
1122
1123 /*
1124 * Submit a command to the controller and sleep on completion. Return
1125 * non-zero on error.
1126 */
1127 int
1128 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1129 {
1130 int s;
1131
1132 s = splbio();
1133 amr_ccb_enqueue(amr, ac);
1134 tsleep(ac, PRIBIO, "amrcmd", 0);
1135 splx(s);
1136
1137 return (ac->ac_status != 0 ? EIO : 0);
1138 }
1139
1140 /*
1141 * Wait for the mailbox to become available.
1142 */
1143 int
1144 amr_mbox_wait(struct amr_softc *amr)
1145 {
1146 int timo;
1147
1148 for (timo = 10000; timo != 0; timo--) {
1149 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1150 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1151 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1152 break;
1153 DELAY(100);
1154 }
1155
1156 if (timo == 0)
1157 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1158
1159 return (timo != 0 ? 0 : EAGAIN);
1160 }
1161
1162 /*
1163 * Tell the controller that the mailbox contains a valid command. Must be
1164 * called with interrupts blocked.
1165 */
1166 int
1167 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1168 {
1169 u_int32_t v;
1170
1171 amr->amr_mbox->mb_poll = 0;
1172 amr->amr_mbox->mb_ack = 0;
1173 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1174 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1175 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1176 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1177 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1178 return (EAGAIN);
1179
1180 v = amr_inl(amr, AMR_QREG_IDB);
1181 if ((v & AMR_QIDB_SUBMIT) != 0) {
1182 amr->amr_mbox->mb_cmd.mb_busy = 0;
1183 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1184 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1185 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1186 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1187 return (EAGAIN);
1188 }
1189
1190 amr->amr_mbox->mb_segment = 0;
1191 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1192 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1193 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1194
1195 ac->ac_start_time = (time_t)mono_time.tv_sec;
1196 ac->ac_flags |= AC_ACTIVE;
1197 amr_outl(amr, AMR_QREG_IDB,
1198 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1199 return (0);
1200 }
1201
1202 int
1203 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1204 {
1205
1206 amr->amr_mbox->mb_poll = 0;
1207 amr->amr_mbox->mb_ack = 0;
1208 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1209 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1210 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1211 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1212 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1213 return (EAGAIN);
1214
1215 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1216 amr->amr_mbox->mb_cmd.mb_busy = 0;
1217 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1218 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1219 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1220 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1221 return (EAGAIN);
1222 }
1223
1224 amr->amr_mbox->mb_segment = 0;
1225 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1226 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1227 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1228
1229 ac->ac_start_time = (time_t)mono_time.tv_sec;
1230 ac->ac_flags |= AC_ACTIVE;
1231 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1232 return (0);
1233 }
1234
1235 /*
1236 * Claim any work that the controller has completed; acknowledge completion,
1237 * save details of the completion in (mbsave). Must be called with
1238 * interrupts blocked.
1239 */
1240 int
1241 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1242 {
1243
1244 /* Work waiting for us? */
1245 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1246 return (-1);
1247
1248 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1249 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1250
1251 /* Save the mailbox, which contains a list of completed commands. */
1252 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1253
1254 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1255 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1256
1257 /* Ack the interrupt and mailbox transfer. */
1258 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1259 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1260
1261 /*
1262 * This waits for the controller to notice that we've taken the
1263 * command from it. It's very inefficient, and we shouldn't do it,
1264 * but if we remove this code, we stop completing commands under
1265 * load.
1266 *
1267 * Peter J says we shouldn't do this. The documentation says we
1268 * should. Who is right?
1269 */
1270 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1271 DELAY(10);
1272
1273 return (0);
1274 }
1275
1276 int
1277 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1278 {
1279 u_int8_t istat;
1280
1281 /* Check for valid interrupt status. */
1282 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1283 return (-1);
1284
1285 /* Ack the interrupt. */
1286 amr_outb(amr, AMR_SREG_INTR, istat);
1287
1288 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1289 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1290
1291 /* Save mailbox, which contains a list of completed commands. */
1292 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1293
1294 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1295 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1296
1297 /* Ack mailbox transfer. */
1298 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1299
1300 return (0);
1301 }
1302
1303 void
1304 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1305 {
1306 int i;
1307
1308 printf("%s: ", amr->amr_dv.dv_xname);
1309 for (i = 0; i < 4; i++)
1310 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1311 printf("\n");
1312 }
1313