Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.19.2.3
      1 /*	$NetBSD: amr.c,v 1.19.2.3 2004/11/12 06:27:33 jmc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999,2000 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67  */
     68 
     69 /*
     70  * Driver for AMI RAID controllers.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.19.2.3 2004/11/12 06:27:33 jmc Exp $");
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/device.h>
     80 #include <sys/queue.h>
     81 #include <sys/proc.h>
     82 #include <sys/buf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/kthread.h>
     85 
     86 #include <uvm/uvm_extern.h>
     87 
     88 #include <machine/endian.h>
     89 #include <machine/bus.h>
     90 
     91 #include <dev/pci/pcidevs.h>
     92 #include <dev/pci/pcivar.h>
     93 #include <dev/pci/amrreg.h>
     94 #include <dev/pci/amrvar.h>
     95 
     96 void	amr_attach(struct device *, struct device *, void *);
     97 void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
     98 void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
     99 int	amr_init(struct amr_softc *, const char *,
    100 			 struct pci_attach_args *pa);
    101 int	amr_intr(void *);
    102 int	amr_match(struct device *, struct cfdata *, void *);
    103 int	amr_print(void *, const char *);
    104 void	amr_shutdown(void *);
    105 int	amr_submatch(struct device *, struct cfdata *, void *);
    106 void	amr_teardown(struct amr_softc *);
    107 void	amr_thread(void *);
    108 void	amr_thread_create(void *);
    109 
    110 int	amr_mbox_wait(struct amr_softc *);
    111 int	amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    112 int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    113 int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    114 int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    115 
    116 static inline u_int8_t	amr_inb(struct amr_softc *, int);
    117 static inline u_int32_t	amr_inl(struct amr_softc *, int);
    118 static inline void	amr_outb(struct amr_softc *, int, u_int8_t);
    119 static inline void	amr_outl(struct amr_softc *, int, u_int32_t);
    120 
    121 CFATTACH_DECL(amr, sizeof(struct amr_softc),
    122     amr_match, amr_attach, NULL, NULL);
    123 
    124 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    125 #define	AT_SIG		0x02	/* Check for signature */
    126 
    127 struct amr_pci_type {
    128 	u_short	apt_vendor;
    129 	u_short	apt_product;
    130 	u_short	apt_flags;
    131 } const amr_pci_type[] = {
    132 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    133 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    134 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    135 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    136 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    137 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    138 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    139 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
    140 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
    141 };
    142 
    143 struct amr_typestr {
    144 	const char	*at_str;
    145 	int		at_sig;
    146 } const amr_typestr[] = {
    147 	{ "Series 431",			AMR_SIG_431 },
    148 	{ "Series 438",			AMR_SIG_438 },
    149 	{ "Series 466",			AMR_SIG_466 },
    150 	{ "Series 467",			AMR_SIG_467 },
    151 	{ "Series 490",			AMR_SIG_490 },
    152 	{ "Series 762",			AMR_SIG_762 },
    153 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    154 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    155 };
    156 
    157 struct {
    158 	const char	*ds_descr;
    159 	int	ds_happy;
    160 } const amr_dstate[] = {
    161 	{ "offline",	0 },
    162 	{ "degraded",	1 },
    163 	{ "optimal",	1 },
    164 	{ "online",	1 },
    165 	{ "failed",	0 },
    166 	{ "rebuilding",	1 },
    167 	{ "hotspare",	0 },
    168 };
    169 
    170 void	*amr_sdh;
    171 int	amr_max_segs;
    172 int	amr_max_xfer;
    173 
    174 static inline u_int8_t
    175 amr_inb(struct amr_softc *amr, int off)
    176 {
    177 
    178 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    179 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    180 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    181 }
    182 
    183 static inline u_int32_t
    184 amr_inl(struct amr_softc *amr, int off)
    185 {
    186 
    187 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    188 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    189 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    190 }
    191 
    192 static inline void
    193 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    194 {
    195 
    196 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    197 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    198 	    BUS_SPACE_BARRIER_WRITE);
    199 }
    200 
    201 static inline void
    202 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    203 {
    204 
    205 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    206 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    207 	    BUS_SPACE_BARRIER_WRITE);
    208 }
    209 
    210 /*
    211  * Match a supported device.
    212  */
    213 int
    214 amr_match(struct device *parent, struct cfdata *match, void *aux)
    215 {
    216 	struct pci_attach_args *pa;
    217 	pcireg_t s;
    218 	int i;
    219 
    220 	pa = (struct pci_attach_args *)aux;
    221 
    222 	/*
    223 	 * Don't match the device if it's operating in I2O mode.  In this
    224 	 * case it should be handled by the `iop' driver.
    225 	 */
    226 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    227 		return (0);
    228 
    229 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    230 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    231 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    232 		    	break;
    233 
    234 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    235 		return (0);
    236 
    237 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    238 		return (1);
    239 
    240 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    241 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    242 }
    243 
    244 /*
    245  * Attach a supported device.
    246  */
    247 void
    248 amr_attach(struct device *parent, struct device *self, void *aux)
    249 {
    250 	struct pci_attach_args *pa;
    251 	struct amr_attach_args amra;
    252 	const struct amr_pci_type *apt;
    253 	struct amr_softc *amr;
    254 	pci_chipset_tag_t pc;
    255 	pci_intr_handle_t ih;
    256 	const char *intrstr;
    257 	pcireg_t reg;
    258 	int rseg, i, j, size, rv, memreg, ioreg;
    259         struct amr_ccb *ac;
    260 
    261 	aprint_naive(": RAID controller\n");
    262 
    263 	amr = (struct amr_softc *)self;
    264 	pa = (struct pci_attach_args *)aux;
    265 	pc = pa->pa_pc;
    266 
    267 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    268 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    269 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    270 			break;
    271 	apt = amr_pci_type + i;
    272 
    273 	memreg = ioreg = 0;
    274 	for (i = 0x10; i <= 0x14; i += 4) {
    275 		reg = pci_conf_read(pc, pa->pa_tag, i);
    276 		switch (PCI_MAPREG_TYPE(reg)) {
    277 		case PCI_MAPREG_TYPE_MEM:
    278 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
    279 				memreg = i;
    280 			break;
    281 		case PCI_MAPREG_TYPE_IO:
    282 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
    283 				ioreg = i;
    284 			break;
    285 
    286 		}
    287 	}
    288 
    289 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    290 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    291 		;
    292 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    293 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    294 		;
    295 	else {
    296 		aprint_error("can't map control registers\n");
    297 		amr_teardown(amr);
    298 		return;
    299 	}
    300 
    301 	amr->amr_flags |= AMRF_PCI_REGS;
    302 	amr->amr_dmat = pa->pa_dmat;
    303 	amr->amr_pc = pa->pa_pc;
    304 
    305 	/* Enable the device. */
    306 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    307 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    308 	    reg | PCI_COMMAND_MASTER_ENABLE);
    309 
    310 	/* Map and establish the interrupt. */
    311 	if (pci_intr_map(pa, &ih)) {
    312 		aprint_error("can't map interrupt\n");
    313 		amr_teardown(amr);
    314 		return;
    315 	}
    316 	intrstr = pci_intr_string(pc, ih);
    317 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    318 	if (amr->amr_ih == NULL) {
    319 		aprint_error("can't establish interrupt");
    320 		if (intrstr != NULL)
    321 			aprint_normal(" at %s", intrstr);
    322 		aprint_normal("\n");
    323 		amr_teardown(amr);
    324 		return;
    325 	}
    326 	amr->amr_flags |= AMRF_PCI_INTR;
    327 
    328 	/*
    329 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    330 	 * don't like S/G lists to be located below 0x2000, so we allocate
    331 	 * enough slop to enable us to compensate.
    332 	 *
    333 	 * The standard mailbox structure needs to be aligned on a 16-byte
    334 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    335 	 * size, which preceeds the standard mailbox.
    336 	 */
    337 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    338 	amr->amr_dmasize = size;
    339 
    340 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
    341 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    342 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    343 		    amr->amr_dv.dv_xname, rv);
    344 		amr_teardown(amr);
    345 		return;
    346 	}
    347 	amr->amr_flags |= AMRF_DMA_ALLOC;
    348 
    349 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    350 	    (caddr_t *)&amr->amr_mbox,
    351 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    352 		aprint_error("%s: unable to map buffer, rv = %d\n",
    353 		    amr->amr_dv.dv_xname, rv);
    354 		amr_teardown(amr);
    355 		return;
    356 	}
    357 	amr->amr_flags |= AMRF_DMA_MAP;
    358 
    359 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    360 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    361 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    362 		    amr->amr_dv.dv_xname, rv);
    363 		amr_teardown(amr);
    364 		return;
    365 	}
    366 	amr->amr_flags |= AMRF_DMA_CREATE;
    367 
    368 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    369 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    370 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    371 		    amr->amr_dv.dv_xname, rv);
    372 		amr_teardown(amr);
    373 		return;
    374 	}
    375 	amr->amr_flags |= AMRF_DMA_LOAD;
    376 
    377 	memset(amr->amr_mbox, 0, size);
    378 
    379 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    380 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    381 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
    382 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    383 
    384 	/*
    385 	 * Allocate and initalise the command control blocks.
    386 	 */
    387 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    388 	amr->amr_ccbs = ac;
    389 	SLIST_INIT(&amr->amr_ccb_freelist);
    390 	TAILQ_INIT(&amr->amr_ccb_active);
    391 	amr->amr_flags |= AMRF_CCBS;
    392 
    393 	if (amr_max_xfer == 0) {
    394 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    395 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    396 	}
    397 
    398 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    399 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    400 		    amr_max_segs, amr_max_xfer, 0,
    401 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    402 		if (rv != 0)
    403 			break;
    404 
    405 		ac->ac_ident = i;
    406 		amr_ccb_free(amr, ac);
    407 	}
    408 	if (i != AMR_MAX_CMDS) {
    409 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    410 		amr_teardown(amr);
    411 		return;
    412 	}
    413 
    414 	/*
    415 	 * Take care of model-specific tasks.
    416 	 */
    417 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    418 		amr->amr_submit = amr_quartz_submit;
    419 		amr->amr_get_work = amr_quartz_get_work;
    420 	} else {
    421 		amr->amr_submit = amr_std_submit;
    422 		amr->amr_get_work = amr_std_get_work;
    423 
    424 		/* Notify the controller of the mailbox location. */
    425 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    426 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    427 
    428 		/* Clear outstanding interrupts and enable interrupts. */
    429 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    430 		amr_outb(amr, AMR_SREG_TOGL,
    431 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    432 	}
    433 
    434 	/*
    435 	 * Retrieve parameters, and tell the world about us.
    436 	 */
    437 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    438 	amr->amr_flags |= AMRF_ENQBUF;
    439 	amr->amr_maxqueuecnt = i;
    440 	aprint_normal(": AMI RAID ");
    441 	if (amr_init(amr, intrstr, pa) != 0) {
    442 		amr_teardown(amr);
    443 		return;
    444 	}
    445 
    446 	/*
    447 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    448 	 * driver doesn't trust the controller's reported value, and lockups
    449 	 * have been seen when we do.
    450 	 */
    451 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    452 	if (amr->amr_maxqueuecnt > i)
    453 		amr->amr_maxqueuecnt = i;
    454 
    455 	/* Set our `shutdownhook' before we start any device activity. */
    456 	if (amr_sdh == NULL)
    457 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    458 
    459 	/* Attach sub-devices. */
    460 	for (j = 0; j < amr->amr_numdrives; j++) {
    461 		if (amr->amr_drive[j].al_size == 0)
    462 			continue;
    463 		amra.amra_unit = j;
    464 		amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
    465 		    amr_print, amr_submatch);
    466 	}
    467 
    468 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    469 
    470 	/* XXX This doesn't work for newer boards yet. */
    471 	if ((apt->apt_flags & AT_QUARTZ) == 0)
    472 		kthread_create(amr_thread_create, amr);
    473 }
    474 
    475 /*
    476  * Free up resources.
    477  */
    478 void
    479 amr_teardown(struct amr_softc *amr)
    480 {
    481 	struct amr_ccb *ac;
    482 	int fl;
    483 
    484 	fl = amr->amr_flags;
    485 
    486 	if ((fl & AMRF_THREAD) != 0) {
    487 		amr->amr_flags |= AMRF_THREAD_EXIT;
    488 		wakeup(amr_thread);
    489 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    490 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    491 	}
    492 	if ((fl & AMRF_CCBS) != 0) {
    493 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    494 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    495 		}
    496 		free(amr->amr_ccbs, M_DEVBUF);
    497 	}
    498 	if ((fl & AMRF_ENQBUF) != 0)
    499 		free(amr->amr_enqbuf, M_DEVBUF);
    500 	if ((fl & AMRF_DMA_LOAD) != 0)
    501 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    502 	if ((fl & AMRF_DMA_MAP) != 0)
    503 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
    504 		    amr->amr_dmasize);
    505 	if ((fl & AMRF_DMA_ALLOC) != 0)
    506 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    507 	if ((fl & AMRF_DMA_CREATE) != 0)
    508 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    509 	if ((fl & AMRF_PCI_INTR) != 0)
    510 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    511 	if ((fl & AMRF_PCI_REGS) != 0)
    512 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    513 }
    514 
    515 /*
    516  * Print autoconfiguration message for a sub-device.
    517  */
    518 int
    519 amr_print(void *aux, const char *pnp)
    520 {
    521 	struct amr_attach_args *amra;
    522 
    523 	amra = (struct amr_attach_args *)aux;
    524 
    525 	if (pnp != NULL)
    526 		aprint_normal("block device at %s", pnp);
    527 	aprint_normal(" unit %d", amra->amra_unit);
    528 	return (UNCONF);
    529 }
    530 
    531 /*
    532  * Match a sub-device.
    533  */
    534 int
    535 amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
    536 {
    537 	struct amr_attach_args *amra;
    538 
    539 	amra = (struct amr_attach_args *)aux;
    540 
    541 	if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
    542 	    cf->amracf_unit != amra->amra_unit)
    543 		return (0);
    544 
    545 	return (config_match(parent, cf, aux));
    546 }
    547 
    548 /*
    549  * Retrieve operational parameters and describe the controller.
    550  */
    551 int
    552 amr_init(struct amr_softc *amr, const char *intrstr,
    553 	 struct pci_attach_args *pa)
    554 {
    555 	struct amr_adapter_info *aa;
    556 	struct amr_prodinfo *ap;
    557 	struct amr_enquiry *ae;
    558 	struct amr_enquiry3 *aex;
    559 	const char *prodstr;
    560 	u_int i, sig, ishp;
    561 	char buf[64];
    562 
    563 	/*
    564 	 * Try to get 40LD product info, which tells us what the card is
    565 	 * labelled as.
    566 	 */
    567 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    568 	    amr->amr_enqbuf);
    569 	if (ap != NULL) {
    570 		aprint_normal("<%.80s>\n", ap->ap_product);
    571 		if (intrstr != NULL)
    572 			aprint_normal("%s: interrupting at %s\n",
    573 			    amr->amr_dv.dv_xname, intrstr);
    574 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    575 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    576 		    le16toh(ap->ap_memsize));
    577 
    578 		amr->amr_maxqueuecnt = ap->ap_maxio;
    579 
    580 		/*
    581 		 * Fetch and record state of logical drives.
    582 		 */
    583 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    584 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    585 		if (aex == NULL) {
    586 			aprint_error("%s ENQUIRY3 failed\n",
    587 			    amr->amr_dv.dv_xname);
    588 			return (-1);
    589 		}
    590 
    591 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    592 			aprint_error(
    593 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    594 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
    595 			    amr->amr_numdrives);
    596 			amr->amr_numdrives = AMR_MAX_UNITS;
    597 		} else
    598 			amr->amr_numdrives = aex->ae_numldrives;
    599 
    600 		for (i = 0; i < amr->amr_numdrives; i++) {
    601 			amr->amr_drive[i].al_size =
    602 			    le32toh(aex->ae_drivesize[i]);
    603 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    604 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    605 		}
    606 
    607 		return (0);
    608 	}
    609 
    610 	/*
    611 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    612 	 * found, search for a product description.
    613 	 */
    614 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    615 	if (ae != NULL) {
    616 		i = 0;
    617 		sig = le32toh(ae->ae_signature);
    618 
    619 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    620 			if (amr_typestr[i].at_sig == sig)
    621 				break;
    622 			i++;
    623 		}
    624 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    625 			sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
    626 			prodstr = buf;
    627 		} else
    628 			prodstr = amr_typestr[i].at_str;
    629 	} else {
    630 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    631 		if (ae == NULL) {
    632 			aprint_error("%s: unsupported controller\n",
    633 			    amr->amr_dv.dv_xname);
    634 			return (-1);
    635 		}
    636 
    637 		switch (PCI_PRODUCT(pa->pa_id)) {
    638 		case PCI_PRODUCT_AMI_MEGARAID:
    639 			prodstr = "Series 428";
    640 			break;
    641 		case PCI_PRODUCT_AMI_MEGARAID2:
    642 			prodstr = "Series 434";
    643 			break;
    644 		default:
    645 			sprintf(buf, "unknown PCI dev (0x%04x)",
    646 			    PCI_PRODUCT(pa->pa_id));
    647 			prodstr = buf;
    648 			break;
    649 		}
    650 	}
    651 
    652 	/*
    653 	 * HP NetRaid controllers have a special encoding of the firmware
    654 	 * and BIOS versions.  The AMI version seems to have it as strings
    655 	 * whereas the HP version does it with a leading uppercase character
    656 	 * and two binary numbers.
    657 	*/
    658 	aa = &ae->ae_adapter;
    659 
    660 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    661 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    662 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    663 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    664 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    665 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    666 			prodstr = "HP NetRaid 3si";
    667 		}
    668 		ishp = 1;
    669 	} else
    670 		ishp = 0;
    671 
    672 	aprint_normal("<%s>\n", prodstr);
    673 	if (intrstr != NULL)
    674 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    675 		    intrstr);
    676 
    677 	if (ishp)
    678 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    679 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    680 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    681 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    682 	else
    683 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    684 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    685 		    aa->aa_memorysize);
    686 
    687 	amr->amr_maxqueuecnt = aa->aa_maxio;
    688 
    689 	/*
    690 	 * Record state of logical drives.
    691 	 */
    692 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    693 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    694 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    695 		    AMR_MAX_UNITS);
    696 		amr->amr_numdrives = AMR_MAX_UNITS;
    697 	} else
    698 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    699 
    700 	for (i = 0; i < AMR_MAX_UNITS; i++) {
    701 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    702 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    703 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    704 	}
    705 
    706 	return (0);
    707 }
    708 
    709 /*
    710  * Flush the internal cache on each configured controller.  Called at
    711  * shutdown time.
    712  */
    713 void
    714 amr_shutdown(void *cookie)
    715 {
    716         extern struct cfdriver amr_cd;
    717 	struct amr_softc *amr;
    718 	struct amr_ccb *ac;
    719 	int i, rv, s;
    720 
    721 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    722 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    723 			continue;
    724 
    725 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    726 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    727 			s = splbio();
    728 			rv = amr_ccb_poll(amr, ac, 30000);
    729 			splx(s);
    730 			amr_ccb_free(amr, ac);
    731 		}
    732 		if (rv != 0)
    733 			printf("%s: unable to flush cache (%d)\n",
    734 			    amr->amr_dv.dv_xname, rv);
    735 	}
    736 }
    737 
    738 /*
    739  * Interrupt service routine.
    740  */
    741 int
    742 amr_intr(void *cookie)
    743 {
    744 	struct amr_softc *amr;
    745 	struct amr_ccb *ac;
    746 	struct amr_mailbox_resp mbox;
    747 	u_int i, forus, idx;
    748 
    749 	amr = cookie;
    750 	forus = 0;
    751 
    752 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    753 		/* Iterate over completed commands in this result. */
    754 		for (i = 0; i < mbox.mb_nstatus; i++) {
    755 			idx = mbox.mb_completed[i] - 1;
    756 			ac = amr->amr_ccbs + idx;
    757 
    758 			if (idx >= amr->amr_maxqueuecnt) {
    759 				printf("%s: bad status (bogus ID: %u=%u)\n",
    760 				    amr->amr_dv.dv_xname, i, idx);
    761 				continue;
    762 			}
    763 
    764 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    765 				printf("%s: bad status (not active; 0x04%x)\n",
    766 				    amr->amr_dv.dv_xname, ac->ac_flags);
    767 				continue;
    768 			}
    769 
    770 			ac->ac_status = mbox.mb_status;
    771 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    772 			    AC_COMPLETE;
    773 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    774 
    775 			if ((ac->ac_flags & AC_MOAN) != 0)
    776 				printf("%s: ccb %d completed\n",
    777 				    amr->amr_dv.dv_xname, ac->ac_ident);
    778 
    779 			/* Pass notification to upper layers. */
    780 			if (ac->ac_handler != NULL)
    781 				(*ac->ac_handler)(ac);
    782 			else
    783 				wakeup(ac);
    784 		}
    785 		forus = 1;
    786 	}
    787 
    788 	if (forus)
    789 		amr_ccb_enqueue(amr, NULL);
    790 
    791 	return (forus);
    792 }
    793 
    794 /*
    795  * Create the watchdog thread.
    796  */
    797 void
    798 amr_thread_create(void *cookie)
    799 {
    800 	struct amr_softc *amr;
    801 	int rv;
    802 
    803 	amr = cookie;
    804 
    805 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    806 		amr->amr_flags ^= AMRF_THREAD_EXIT;
    807 		wakeup(&amr->amr_flags);
    808 		return;
    809 	}
    810 
    811 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
    812 	    amr->amr_dv.dv_xname);
    813  	if (rv != 0)
    814 		aprint_error("%s: unable to create thread (%d)",
    815  		    amr->amr_dv.dv_xname, rv);
    816  	else
    817  		amr->amr_flags |= AMRF_THREAD;
    818 }
    819 
    820 /*
    821  * Watchdog thread.
    822  */
    823 void
    824 amr_thread(void *cookie)
    825 {
    826 	struct amr_softc *amr;
    827 	struct amr_ccb *ac;
    828 	struct amr_logdrive *al;
    829 	struct amr_enquiry *ae;
    830 	time_t curtime;
    831 	int rv, i, s;
    832 
    833 	amr = cookie;
    834 	ae = amr->amr_enqbuf;
    835 
    836 	for (;;) {
    837 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    838 
    839 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    840 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    841 			wakeup(&amr->amr_flags);
    842 			kthread_exit(0);
    843 		}
    844 
    845 		s = splbio();
    846 		amr_intr(cookie);
    847 		curtime = (time_t)mono_time.tv_sec;
    848 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    849 		while (ac != NULL) {
    850 			if (ac->ac_start_time + AMR_TIMEOUT > curtime)
    851 				break;
    852 			if ((ac->ac_flags & AC_MOAN) == 0) {
    853 				printf("%s: ccb %d timed out; mailbox:\n",
    854 				    amr->amr_dv.dv_xname, ac->ac_ident);
    855 				amr_ccb_dump(amr, ac);
    856 				ac->ac_flags |= AC_MOAN;
    857 			}
    858 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    859 		}
    860 		splx(s);
    861 
    862 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    863 			printf("%s: ccb_alloc failed (%d)\n",
    864  			    amr->amr_dv.dv_xname, rv);
    865 			continue;
    866 		}
    867 
    868 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    869 
    870 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    871 		    AMR_ENQUIRY_BUFSIZE, 0);
    872 		if (rv != 0) {
    873 			printf("%s: ccb_map failed (%d)\n",
    874  			    amr->amr_dv.dv_xname, rv);
    875 			amr_ccb_free(amr, ac);
    876 			continue;
    877 		}
    878 
    879 		rv = amr_ccb_wait(amr, ac);
    880 		amr_ccb_unmap(amr, ac);
    881 		if (rv != 0) {
    882 			printf("%s: enquiry failed (st=%d)\n",
    883  			    amr->amr_dv.dv_xname, ac->ac_status);
    884 			continue;
    885 		}
    886 		amr_ccb_free(amr, ac);
    887 
    888 		al = amr->amr_drive;
    889 		for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
    890 			if (al->al_dv == NULL)
    891 				continue;
    892 			if (al->al_state == ae->ae_ldrv.al_state[i])
    893 				continue;
    894 
    895 			printf("%s: state changed: %s -> %s\n",
    896 			    al->al_dv->dv_xname,
    897 			    amr_drive_state(al->al_state, NULL),
    898 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    899 
    900 			al->al_state = ae->ae_ldrv.al_state[i];
    901 		}
    902 	}
    903 }
    904 
    905 /*
    906  * Return a text description of a logical drive's current state.
    907  */
    908 const char *
    909 amr_drive_state(int state, int *happy)
    910 {
    911 	const char *str;
    912 
    913 	state = AMR_DRV_CURSTATE(state);
    914 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    915 		if (happy)
    916 			*happy = 1;
    917 		str = "status unknown";
    918 	} else {
    919 		if (happy)
    920 			*happy = amr_dstate[state].ds_happy;
    921 		str = amr_dstate[state].ds_descr;
    922 	}
    923 
    924 	return (str);
    925 }
    926 
    927 /*
    928  * Run a generic enquiry-style command.
    929  */
    930 void *
    931 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    932 	    u_int8_t cmdqual, void *buf)
    933 {
    934 	struct amr_ccb *ac;
    935 	u_int8_t *mb;
    936 	int rv;
    937 
    938 	if (amr_ccb_alloc(amr, &ac) != 0)
    939 		return (NULL);
    940 
    941 	/* Build the command proper. */
    942 	mb = (u_int8_t *)&ac->ac_cmd;
    943 	mb[0] = cmd;
    944 	mb[2] = cmdsub;
    945 	mb[3] = cmdqual;
    946 
    947 	rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
    948 	if (rv == 0) {
    949 		rv = amr_ccb_poll(amr, ac, 2000);
    950 		amr_ccb_unmap(amr, ac);
    951 	}
    952 	amr_ccb_free(amr, ac);
    953 
    954 	return (rv ? NULL : buf);
    955 }
    956 
    957 /*
    958  * Allocate and initialise a CCB.
    959  */
    960 int
    961 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    962 {
    963 	int s;
    964 
    965 	s = splbio();
    966 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    967 		splx(s);
    968 		return (EAGAIN);
    969 	}
    970 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    971 	splx(s);
    972 
    973 	return (0);
    974 }
    975 
    976 /*
    977  * Free a CCB.
    978  */
    979 void
    980 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    981 {
    982 	int s;
    983 
    984 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    985 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    986 	ac->ac_cmd.mb_busy = 1;
    987 	ac->ac_handler = NULL;
    988 	ac->ac_flags = 0;
    989 
    990 	s = splbio();
    991 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
    992 	splx(s);
    993 }
    994 
    995 /*
    996  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
    997  * the order that they were enqueued and try to submit their command blocks
    998  * to the controller for execution.
    999  */
   1000 void
   1001 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1002 {
   1003 	int s;
   1004 
   1005 	s = splbio();
   1006 
   1007 	if (ac != NULL)
   1008 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1009 
   1010 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1011 		if ((*amr->amr_submit)(amr, ac) != 0)
   1012 			break;
   1013 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1014 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1015 	}
   1016 
   1017 	splx(s);
   1018 }
   1019 
   1020 /*
   1021  * Map the specified CCB's data buffer onto the bus, and fill the
   1022  * scatter-gather list.
   1023  */
   1024 int
   1025 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1026 	    int out)
   1027 {
   1028 	struct amr_sgentry *sge;
   1029 	struct amr_mailbox_cmd *mb;
   1030 	int nsegs, i, rv, sgloff;
   1031 	bus_dmamap_t xfer;
   1032 
   1033 	xfer = ac->ac_xfer_map;
   1034 
   1035 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1036 	    BUS_DMA_NOWAIT);
   1037 	if (rv != 0)
   1038 		return (rv);
   1039 
   1040 	mb = &ac->ac_cmd;
   1041 	ac->ac_xfer_size = size;
   1042 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
   1043 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1044 
   1045 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1046 	nsegs = xfer->dm_nsegs;
   1047 	if (nsegs == 1) {
   1048 		mb->mb_nsgelem = 0;
   1049 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1050 		ac->ac_flags |= AC_NOSGL;
   1051 	} else {
   1052 		mb->mb_nsgelem = nsegs;
   1053 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1054 
   1055 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
   1056 		for (i = 0; i < nsegs; i++, sge++) {
   1057 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1058 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1059 		}
   1060 	}
   1061 
   1062 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
   1063 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
   1064 
   1065 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1066 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1067 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1068 
   1069 	return (0);
   1070 }
   1071 
   1072 /*
   1073  * Unmap the specified CCB's data buffer.
   1074  */
   1075 void
   1076 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1077 {
   1078 
   1079 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1080 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1081 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1082 		    BUS_DMASYNC_POSTWRITE);
   1083 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1084 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
   1085 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1086 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1087 }
   1088 
   1089 /*
   1090  * Submit a command to the controller and poll on completion.  Return
   1091  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1092  */
   1093 int
   1094 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1095 {
   1096 	int rv;
   1097 
   1098 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1099 		return (rv);
   1100 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1101 
   1102 	for (timo *= 10; timo != 0; timo--) {
   1103 		amr_intr(amr);
   1104 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1105 			break;
   1106 		DELAY(100);
   1107 	}
   1108 
   1109 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1110 }
   1111 
   1112 /*
   1113  * Submit a command to the controller and sleep on completion.  Return
   1114  * non-zero on error.
   1115  */
   1116 int
   1117 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1118 {
   1119 	int s;
   1120 
   1121 	s = splbio();
   1122 	amr_ccb_enqueue(amr, ac);
   1123 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1124 	splx(s);
   1125 
   1126 	return (ac->ac_status != 0 ? EIO : 0);
   1127 }
   1128 
   1129 /*
   1130  * Wait for the mailbox to become available.
   1131  */
   1132 int
   1133 amr_mbox_wait(struct amr_softc *amr)
   1134 {
   1135 	int timo;
   1136 
   1137 	for (timo = 10000; timo != 0; timo--) {
   1138 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1139 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1140 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1141 			break;
   1142 		DELAY(100);
   1143 	}
   1144 
   1145 	if (timo == 0)
   1146 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1147 
   1148 	return (timo != 0 ? 0 : EAGAIN);
   1149 }
   1150 
   1151 /*
   1152  * Tell the controller that the mailbox contains a valid command.  Must be
   1153  * called with interrupts blocked.
   1154  */
   1155 int
   1156 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1157 {
   1158 	u_int32_t v;
   1159 
   1160 	amr->amr_mbox->mb_poll = 0;
   1161 	amr->amr_mbox->mb_ack = 0;
   1162 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1163 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1164 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1165 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1166 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1167 		return (EAGAIN);
   1168 
   1169 	v = amr_inl(amr, AMR_QREG_IDB);
   1170 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1171 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1172 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1173 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1174 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1175 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1176 		return (EAGAIN);
   1177 	}
   1178 
   1179 	amr->amr_mbox->mb_segment = 0;
   1180 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1181 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1182 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1183 
   1184 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1185 	ac->ac_flags |= AC_ACTIVE;
   1186 	amr_outl(amr, AMR_QREG_IDB,
   1187 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1188 	return (0);
   1189 }
   1190 
   1191 int
   1192 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1193 {
   1194 
   1195 	amr->amr_mbox->mb_poll = 0;
   1196 	amr->amr_mbox->mb_ack = 0;
   1197 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1198 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1199 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1200 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1201 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1202 		return (EAGAIN);
   1203 
   1204 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1205 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1206 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1207 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1208 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1209 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1210 		return (EAGAIN);
   1211 	}
   1212 
   1213 	amr->amr_mbox->mb_segment = 0;
   1214 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1215 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1216 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1217 
   1218 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1219 	ac->ac_flags |= AC_ACTIVE;
   1220 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1221 	return (0);
   1222 }
   1223 
   1224 /*
   1225  * Claim any work that the controller has completed; acknowledge completion,
   1226  * save details of the completion in (mbsave).  Must be called with
   1227  * interrupts blocked.
   1228  */
   1229 int
   1230 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1231 {
   1232 
   1233 	/* Work waiting for us? */
   1234 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1235 		return (-1);
   1236 
   1237 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1238 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1239 
   1240 	/* Save the mailbox, which contains a list of completed commands. */
   1241 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1242 
   1243 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1244 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1245 
   1246 	/* Ack the interrupt and mailbox transfer. */
   1247 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1248 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1249 
   1250 	/*
   1251 	 * This waits for the controller to notice that we've taken the
   1252 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1253 	 * but if we remove this code, we stop completing commands under
   1254 	 * load.
   1255 	 *
   1256 	 * Peter J says we shouldn't do this.  The documentation says we
   1257 	 * should.  Who is right?
   1258 	 */
   1259 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1260 		DELAY(10);
   1261 
   1262 	return (0);
   1263 }
   1264 
   1265 int
   1266 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1267 {
   1268 	u_int8_t istat;
   1269 
   1270 	/* Check for valid interrupt status. */
   1271 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1272 		return (-1);
   1273 
   1274 	/* Ack the interrupt. */
   1275 	amr_outb(amr, AMR_SREG_INTR, istat);
   1276 
   1277 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1278 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1279 
   1280 	/* Save mailbox, which contains a list of completed commands. */
   1281 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1282 
   1283 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1284 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1285 
   1286 	/* Ack mailbox transfer. */
   1287 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1288 
   1289 	return (0);
   1290 }
   1291 
   1292 void
   1293 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1294 {
   1295 	int i;
   1296 
   1297 	printf("%s: ", amr->amr_dv.dv_xname);
   1298 	for (i = 0; i < 4; i++)
   1299 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1300 	printf("\n");
   1301 }
   1302