amr.c revision 1.20 1 /* $NetBSD: amr.c,v 1.20 2004/04/22 00:17:12 itojun Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.20 2004/04/22 00:17:12 itojun Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85
86 #include <uvm/uvm_extern.h>
87
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95
96 void amr_attach(struct device *, struct device *, void *);
97 void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
98 void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
99 int amr_init(struct amr_softc *, const char *,
100 struct pci_attach_args *pa);
101 int amr_intr(void *);
102 int amr_match(struct device *, struct cfdata *, void *);
103 int amr_print(void *, const char *);
104 void amr_shutdown(void *);
105 int amr_submatch(struct device *, struct cfdata *, void *);
106 void amr_teardown(struct amr_softc *);
107 void amr_thread(void *);
108 void amr_thread_create(void *);
109
110 int amr_mbox_wait(struct amr_softc *);
111 int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
112 int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
113 int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
114 int amr_std_submit(struct amr_softc *, struct amr_ccb *);
115
116 static inline u_int8_t amr_inb(struct amr_softc *, int);
117 static inline u_int32_t amr_inl(struct amr_softc *, int);
118 static inline void amr_outb(struct amr_softc *, int, u_int8_t);
119 static inline void amr_outl(struct amr_softc *, int, u_int32_t);
120
121 CFATTACH_DECL(amr, sizeof(struct amr_softc),
122 amr_match, amr_attach, NULL, NULL);
123
124 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
125 #define AT_SIG 0x02 /* Check for signature */
126
127 struct amr_pci_type {
128 u_short apt_vendor;
129 u_short apt_product;
130 u_short apt_flags;
131 } const amr_pci_type[] = {
132 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
133 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
134 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
135 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
136 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
137 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
138 };
139
140 struct amr_typestr {
141 const char *at_str;
142 int at_sig;
143 } const amr_typestr[] = {
144 { "Series 431", AMR_SIG_431 },
145 { "Series 438", AMR_SIG_438 },
146 { "Series 466", AMR_SIG_466 },
147 { "Series 467", AMR_SIG_467 },
148 { "Series 490", AMR_SIG_490 },
149 { "Series 762", AMR_SIG_762 },
150 { "HP NetRAID (T5)", AMR_SIG_T5 },
151 { "HP NetRAID (T7)", AMR_SIG_T7 },
152 };
153
154 struct {
155 const char *ds_descr;
156 int ds_happy;
157 } const amr_dstate[] = {
158 { "offline", 0 },
159 { "degraded", 1 },
160 { "optimal", 1 },
161 { "online", 1 },
162 { "failed", 0 },
163 { "rebuilding", 1 },
164 { "hotspare", 0 },
165 };
166
167 void *amr_sdh;
168 int amr_max_segs;
169 int amr_max_xfer;
170
171 static inline u_int8_t
172 amr_inb(struct amr_softc *amr, int off)
173 {
174
175 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
176 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
177 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
178 }
179
180 static inline u_int32_t
181 amr_inl(struct amr_softc *amr, int off)
182 {
183
184 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
185 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
186 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
187 }
188
189 static inline void
190 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
191 {
192
193 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
194 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
195 BUS_SPACE_BARRIER_WRITE);
196 }
197
198 static inline void
199 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
200 {
201
202 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
203 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
204 BUS_SPACE_BARRIER_WRITE);
205 }
206
207 /*
208 * Match a supported device.
209 */
210 int
211 amr_match(struct device *parent, struct cfdata *match, void *aux)
212 {
213 struct pci_attach_args *pa;
214 pcireg_t s;
215 int i;
216
217 pa = (struct pci_attach_args *)aux;
218
219 /*
220 * Don't match the device if it's operating in I2O mode. In this
221 * case it should be handled by the `iop' driver.
222 */
223 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
224 return (0);
225
226 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
227 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
228 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
229 break;
230
231 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
232 return (0);
233
234 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
235 return (1);
236
237 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
238 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
239 }
240
241 /*
242 * Attach a supported device.
243 */
244 void
245 amr_attach(struct device *parent, struct device *self, void *aux)
246 {
247 struct pci_attach_args *pa;
248 struct amr_attach_args amra;
249 const struct amr_pci_type *apt;
250 struct amr_softc *amr;
251 pci_chipset_tag_t pc;
252 pci_intr_handle_t ih;
253 const char *intrstr;
254 pcireg_t reg;
255 int rseg, i, j, size, rv, memreg, ioreg;
256 struct amr_ccb *ac;
257
258 aprint_naive(": RAID controller\n");
259
260 amr = (struct amr_softc *)self;
261 pa = (struct pci_attach_args *)aux;
262 pc = pa->pa_pc;
263
264 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
265 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
266 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
267 break;
268 apt = amr_pci_type + i;
269
270 memreg = ioreg = 0;
271 for (i = 0x10; i <= 0x14; i += 4) {
272 reg = pci_conf_read(pc, pa->pa_tag, i);
273 switch (PCI_MAPREG_TYPE(reg)) {
274 case PCI_MAPREG_TYPE_MEM:
275 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
276 memreg = i;
277 break;
278 case PCI_MAPREG_TYPE_IO:
279 if (PCI_MAPREG_IO_SIZE(reg) != 0)
280 ioreg = i;
281 break;
282
283 }
284 }
285
286 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
287 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
288 ;
289 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
290 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
291 ;
292 else {
293 aprint_error("can't map control registers\n");
294 amr_teardown(amr);
295 return;
296 }
297
298 amr->amr_flags |= AMRF_PCI_REGS;
299 amr->amr_dmat = pa->pa_dmat;
300 amr->amr_pc = pa->pa_pc;
301
302 /* Enable the device. */
303 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
304 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
305 reg | PCI_COMMAND_MASTER_ENABLE);
306
307 /* Map and establish the interrupt. */
308 if (pci_intr_map(pa, &ih)) {
309 aprint_error("can't map interrupt\n");
310 amr_teardown(amr);
311 return;
312 }
313 intrstr = pci_intr_string(pc, ih);
314 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
315 if (amr->amr_ih == NULL) {
316 aprint_error("can't establish interrupt");
317 if (intrstr != NULL)
318 aprint_normal(" at %s", intrstr);
319 aprint_normal("\n");
320 amr_teardown(amr);
321 return;
322 }
323 amr->amr_flags |= AMRF_PCI_INTR;
324
325 /*
326 * Allocate space for the mailbox and S/G lists. Some controllers
327 * don't like S/G lists to be located below 0x2000, so we allocate
328 * enough slop to enable us to compensate.
329 *
330 * The standard mailbox structure needs to be aligned on a 16-byte
331 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
332 * size, which preceeds the standard mailbox.
333 */
334 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
335 amr->amr_dmasize = size;
336
337 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
338 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
339 aprint_error("%s: unable to allocate buffer, rv = %d\n",
340 amr->amr_dv.dv_xname, rv);
341 amr_teardown(amr);
342 return;
343 }
344 amr->amr_flags |= AMRF_DMA_ALLOC;
345
346 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
347 (caddr_t *)&amr->amr_mbox,
348 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
349 aprint_error("%s: unable to map buffer, rv = %d\n",
350 amr->amr_dv.dv_xname, rv);
351 amr_teardown(amr);
352 return;
353 }
354 amr->amr_flags |= AMRF_DMA_MAP;
355
356 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
357 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
358 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
359 amr->amr_dv.dv_xname, rv);
360 amr_teardown(amr);
361 return;
362 }
363 amr->amr_flags |= AMRF_DMA_CREATE;
364
365 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
366 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
367 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
368 amr->amr_dv.dv_xname, rv);
369 amr_teardown(amr);
370 return;
371 }
372 amr->amr_flags |= AMRF_DMA_LOAD;
373
374 memset(amr->amr_mbox, 0, size);
375
376 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
377 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
378 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
379 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
380
381 /*
382 * Allocate and initalise the command control blocks.
383 */
384 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
385 amr->amr_ccbs = ac;
386 SLIST_INIT(&amr->amr_ccb_freelist);
387 TAILQ_INIT(&amr->amr_ccb_active);
388 amr->amr_flags |= AMRF_CCBS;
389
390 if (amr_max_xfer == 0) {
391 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
392 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
393 }
394
395 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
396 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
397 amr_max_segs, amr_max_xfer, 0,
398 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
399 if (rv != 0)
400 break;
401
402 ac->ac_ident = i;
403 amr_ccb_free(amr, ac);
404 }
405 if (i != AMR_MAX_CMDS) {
406 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
407 amr_teardown(amr);
408 return;
409 }
410
411 /*
412 * Take care of model-specific tasks.
413 */
414 if ((apt->apt_flags & AT_QUARTZ) != 0) {
415 amr->amr_submit = amr_quartz_submit;
416 amr->amr_get_work = amr_quartz_get_work;
417 } else {
418 amr->amr_submit = amr_std_submit;
419 amr->amr_get_work = amr_std_get_work;
420
421 /* Notify the controller of the mailbox location. */
422 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
423 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
424
425 /* Clear outstanding interrupts and enable interrupts. */
426 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
427 amr_outb(amr, AMR_SREG_TOGL,
428 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
429 }
430
431 /*
432 * Retrieve parameters, and tell the world about us.
433 */
434 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
435 amr->amr_flags |= AMRF_ENQBUF;
436 amr->amr_maxqueuecnt = i;
437 aprint_normal(": AMI RAID ");
438 if (amr_init(amr, intrstr, pa) != 0) {
439 amr_teardown(amr);
440 return;
441 }
442
443 /*
444 * Cap the maximum number of outstanding commands. AMI's Linux
445 * driver doesn't trust the controller's reported value, and lockups
446 * have been seen when we do.
447 */
448 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
449 if (amr->amr_maxqueuecnt > i)
450 amr->amr_maxqueuecnt = i;
451
452 /* Set our `shutdownhook' before we start any device activity. */
453 if (amr_sdh == NULL)
454 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
455
456 /* Attach sub-devices. */
457 for (j = 0; j < amr->amr_numdrives; j++) {
458 if (amr->amr_drive[j].al_size == 0)
459 continue;
460 amra.amra_unit = j;
461 amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
462 amr_print, amr_submatch);
463 }
464
465 SIMPLEQ_INIT(&amr->amr_ccb_queue);
466
467 /* XXX This doesn't work for newer boards yet. */
468 if ((apt->apt_flags & AT_QUARTZ) == 0)
469 kthread_create(amr_thread_create, amr);
470 }
471
472 /*
473 * Free up resources.
474 */
475 void
476 amr_teardown(struct amr_softc *amr)
477 {
478 struct amr_ccb *ac;
479 int fl;
480
481 fl = amr->amr_flags;
482
483 if ((fl & AMRF_THREAD) != 0) {
484 amr->amr_flags |= AMRF_THREAD_EXIT;
485 wakeup(amr_thread);
486 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
487 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
488 }
489 if ((fl & AMRF_CCBS) != 0) {
490 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
491 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
492 }
493 free(amr->amr_ccbs, M_DEVBUF);
494 }
495 if ((fl & AMRF_ENQBUF) != 0)
496 free(amr->amr_enqbuf, M_DEVBUF);
497 if ((fl & AMRF_DMA_LOAD) != 0)
498 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
499 if ((fl & AMRF_DMA_MAP) != 0)
500 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
501 amr->amr_dmasize);
502 if ((fl & AMRF_DMA_ALLOC) != 0)
503 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
504 if ((fl & AMRF_DMA_CREATE) != 0)
505 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
506 if ((fl & AMRF_PCI_INTR) != 0)
507 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
508 if ((fl & AMRF_PCI_REGS) != 0)
509 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
510 }
511
512 /*
513 * Print autoconfiguration message for a sub-device.
514 */
515 int
516 amr_print(void *aux, const char *pnp)
517 {
518 struct amr_attach_args *amra;
519
520 amra = (struct amr_attach_args *)aux;
521
522 if (pnp != NULL)
523 aprint_normal("block device at %s", pnp);
524 aprint_normal(" unit %d", amra->amra_unit);
525 return (UNCONF);
526 }
527
528 /*
529 * Match a sub-device.
530 */
531 int
532 amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
533 {
534 struct amr_attach_args *amra;
535
536 amra = (struct amr_attach_args *)aux;
537
538 if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
539 cf->amracf_unit != amra->amra_unit)
540 return (0);
541
542 return (config_match(parent, cf, aux));
543 }
544
545 /*
546 * Retrieve operational parameters and describe the controller.
547 */
548 int
549 amr_init(struct amr_softc *amr, const char *intrstr,
550 struct pci_attach_args *pa)
551 {
552 struct amr_adapter_info *aa;
553 struct amr_prodinfo *ap;
554 struct amr_enquiry *ae;
555 struct amr_enquiry3 *aex;
556 const char *prodstr;
557 u_int i, sig, ishp;
558 char buf[64];
559
560 /*
561 * Try to get 40LD product info, which tells us what the card is
562 * labelled as.
563 */
564 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
565 amr->amr_enqbuf);
566 if (ap != NULL) {
567 aprint_normal("<%.80s>\n", ap->ap_product);
568 if (intrstr != NULL)
569 aprint_normal("%s: interrupting at %s\n",
570 amr->amr_dv.dv_xname, intrstr);
571 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
572 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
573 le16toh(ap->ap_memsize));
574
575 amr->amr_maxqueuecnt = ap->ap_maxio;
576
577 /*
578 * Fetch and record state of logical drives.
579 */
580 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
581 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
582 if (aex == NULL) {
583 aprint_error("%s ENQUIRY3 failed\n",
584 amr->amr_dv.dv_xname);
585 return (-1);
586 }
587
588 if (aex->ae_numldrives > AMR_MAX_UNITS) {
589 aprint_error(
590 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
591 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
592 amr->amr_numdrives);
593 amr->amr_numdrives = AMR_MAX_UNITS;
594 } else
595 amr->amr_numdrives = aex->ae_numldrives;
596
597 for (i = 0; i < amr->amr_numdrives; i++) {
598 amr->amr_drive[i].al_size =
599 le32toh(aex->ae_drivesize[i]);
600 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
601 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
602 }
603
604 return (0);
605 }
606
607 /*
608 * Try 8LD extended ENQUIRY to get the controller signature. Once
609 * found, search for a product description.
610 */
611 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
612 if (ae != NULL) {
613 i = 0;
614 sig = le32toh(ae->ae_signature);
615
616 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
617 if (amr_typestr[i].at_sig == sig)
618 break;
619 i++;
620 }
621 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
622 snprintf(buf, sizeof(buf),
623 "unknown ENQUIRY2 sig (0x%08x)", sig);
624 prodstr = buf;
625 } else
626 prodstr = amr_typestr[i].at_str;
627 } else {
628 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
629 if (ae == NULL) {
630 aprint_error("%s: unsupported controller\n",
631 amr->amr_dv.dv_xname);
632 return (-1);
633 }
634
635 switch (PCI_PRODUCT(pa->pa_id)) {
636 case PCI_PRODUCT_AMI_MEGARAID:
637 prodstr = "Series 428";
638 break;
639 case PCI_PRODUCT_AMI_MEGARAID2:
640 prodstr = "Series 434";
641 break;
642 default:
643 snprintf(buf, sizeof(buf), "unknown PCI dev (0x%04x)",
644 PCI_PRODUCT(pa->pa_id));
645 prodstr = buf;
646 break;
647 }
648 }
649
650 /*
651 * HP NetRaid controllers have a special encoding of the firmware
652 * and BIOS versions. The AMI version seems to have it as strings
653 * whereas the HP version does it with a leading uppercase character
654 * and two binary numbers.
655 */
656 aa = &ae->ae_adapter;
657
658 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
659 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
660 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
661 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
662 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
663 /* The AMI 438 is a NetRaid 3si in HP-land. */
664 prodstr = "HP NetRaid 3si";
665 }
666 ishp = 1;
667 } else
668 ishp = 0;
669
670 aprint_normal("<%s>\n", prodstr);
671 if (intrstr != NULL)
672 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
673 intrstr);
674
675 if (ishp)
676 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
677 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
678 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
679 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
680 else
681 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
682 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
683 aa->aa_memorysize);
684
685 amr->amr_maxqueuecnt = aa->aa_maxio;
686
687 /*
688 * Record state of logical drives.
689 */
690 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
691 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
692 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
693 AMR_MAX_UNITS);
694 amr->amr_numdrives = AMR_MAX_UNITS;
695 } else
696 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
697
698 for (i = 0; i < AMR_MAX_UNITS; i++) {
699 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
700 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
701 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
702 }
703
704 return (0);
705 }
706
707 /*
708 * Flush the internal cache on each configured controller. Called at
709 * shutdown time.
710 */
711 void
712 amr_shutdown(void *cookie)
713 {
714 extern struct cfdriver amr_cd;
715 struct amr_softc *amr;
716 struct amr_ccb *ac;
717 int i, rv, s;
718
719 for (i = 0; i < amr_cd.cd_ndevs; i++) {
720 if ((amr = device_lookup(&amr_cd, i)) == NULL)
721 continue;
722
723 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
724 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
725 s = splbio();
726 rv = amr_ccb_poll(amr, ac, 30000);
727 splx(s);
728 amr_ccb_free(amr, ac);
729 }
730 if (rv != 0)
731 printf("%s: unable to flush cache (%d)\n",
732 amr->amr_dv.dv_xname, rv);
733 }
734 }
735
736 /*
737 * Interrupt service routine.
738 */
739 int
740 amr_intr(void *cookie)
741 {
742 struct amr_softc *amr;
743 struct amr_ccb *ac;
744 struct amr_mailbox_resp mbox;
745 u_int i, forus, idx;
746
747 amr = cookie;
748 forus = 0;
749
750 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
751 /* Iterate over completed commands in this result. */
752 for (i = 0; i < mbox.mb_nstatus; i++) {
753 idx = mbox.mb_completed[i] - 1;
754 ac = amr->amr_ccbs + idx;
755
756 if (idx >= amr->amr_maxqueuecnt) {
757 printf("%s: bad status (bogus ID: %u=%u)\n",
758 amr->amr_dv.dv_xname, i, idx);
759 continue;
760 }
761
762 if ((ac->ac_flags & AC_ACTIVE) == 0) {
763 printf("%s: bad status (not active; 0x04%x)\n",
764 amr->amr_dv.dv_xname, ac->ac_flags);
765 continue;
766 }
767
768 ac->ac_status = mbox.mb_status;
769 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
770 AC_COMPLETE;
771 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
772
773 if ((ac->ac_flags & AC_MOAN) != 0)
774 printf("%s: ccb %d completed\n",
775 amr->amr_dv.dv_xname, ac->ac_ident);
776
777 /* Pass notification to upper layers. */
778 if (ac->ac_handler != NULL)
779 (*ac->ac_handler)(ac);
780 else
781 wakeup(ac);
782 }
783 forus = 1;
784 }
785
786 if (forus)
787 amr_ccb_enqueue(amr, NULL);
788
789 return (forus);
790 }
791
792 /*
793 * Create the watchdog thread.
794 */
795 void
796 amr_thread_create(void *cookie)
797 {
798 struct amr_softc *amr;
799 int rv;
800
801 amr = cookie;
802
803 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
804 amr->amr_flags ^= AMRF_THREAD_EXIT;
805 wakeup(&amr->amr_flags);
806 return;
807 }
808
809 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
810 amr->amr_dv.dv_xname);
811 if (rv != 0)
812 aprint_error("%s: unable to create thread (%d)",
813 amr->amr_dv.dv_xname, rv);
814 else
815 amr->amr_flags |= AMRF_THREAD;
816 }
817
818 /*
819 * Watchdog thread.
820 */
821 void
822 amr_thread(void *cookie)
823 {
824 struct amr_softc *amr;
825 struct amr_ccb *ac;
826 struct amr_logdrive *al;
827 struct amr_enquiry *ae;
828 time_t curtime;
829 int rv, i, s;
830
831 amr = cookie;
832 ae = amr->amr_enqbuf;
833
834 for (;;) {
835 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
836
837 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
838 amr->amr_flags ^= AMRF_THREAD_EXIT;
839 wakeup(&amr->amr_flags);
840 kthread_exit(0);
841 }
842
843 s = splbio();
844 amr_intr(cookie);
845 curtime = (time_t)mono_time.tv_sec;
846 ac = TAILQ_FIRST(&amr->amr_ccb_active);
847 while (ac != NULL) {
848 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
849 break;
850 if ((ac->ac_flags & AC_MOAN) == 0) {
851 printf("%s: ccb %d timed out; mailbox:\n",
852 amr->amr_dv.dv_xname, ac->ac_ident);
853 amr_ccb_dump(amr, ac);
854 ac->ac_flags |= AC_MOAN;
855 }
856 ac = TAILQ_NEXT(ac, ac_chain.tailq);
857 }
858 splx(s);
859
860 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
861 printf("%s: ccb_alloc failed (%d)\n",
862 amr->amr_dv.dv_xname, rv);
863 continue;
864 }
865
866 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
867
868 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
869 AMR_ENQUIRY_BUFSIZE, 0);
870 if (rv != 0) {
871 printf("%s: ccb_map failed (%d)\n",
872 amr->amr_dv.dv_xname, rv);
873 amr_ccb_free(amr, ac);
874 continue;
875 }
876
877 rv = amr_ccb_wait(amr, ac);
878 amr_ccb_unmap(amr, ac);
879 if (rv != 0) {
880 printf("%s: enquiry failed (st=%d)\n",
881 amr->amr_dv.dv_xname, ac->ac_status);
882 continue;
883 }
884 amr_ccb_free(amr, ac);
885
886 al = amr->amr_drive;
887 for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
888 if (al->al_dv == NULL)
889 continue;
890 if (al->al_state == ae->ae_ldrv.al_state[i])
891 continue;
892
893 printf("%s: state changed: %s -> %s\n",
894 al->al_dv->dv_xname,
895 amr_drive_state(al->al_state, NULL),
896 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
897
898 al->al_state = ae->ae_ldrv.al_state[i];
899 }
900 }
901 }
902
903 /*
904 * Return a text description of a logical drive's current state.
905 */
906 const char *
907 amr_drive_state(int state, int *happy)
908 {
909 const char *str;
910
911 state = AMR_DRV_CURSTATE(state);
912 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
913 if (happy)
914 *happy = 1;
915 str = "status unknown";
916 } else {
917 if (happy)
918 *happy = amr_dstate[state].ds_happy;
919 str = amr_dstate[state].ds_descr;
920 }
921
922 return (str);
923 }
924
925 /*
926 * Run a generic enquiry-style command.
927 */
928 void *
929 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
930 u_int8_t cmdqual, void *buf)
931 {
932 struct amr_ccb *ac;
933 u_int8_t *mb;
934 int rv;
935
936 if (amr_ccb_alloc(amr, &ac) != 0)
937 return (NULL);
938
939 /* Build the command proper. */
940 mb = (u_int8_t *)&ac->ac_cmd;
941 mb[0] = cmd;
942 mb[2] = cmdsub;
943 mb[3] = cmdqual;
944
945 rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
946 if (rv == 0) {
947 rv = amr_ccb_poll(amr, ac, 2000);
948 amr_ccb_unmap(amr, ac);
949 }
950 amr_ccb_free(amr, ac);
951
952 return (rv ? NULL : buf);
953 }
954
955 /*
956 * Allocate and initialise a CCB.
957 */
958 int
959 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
960 {
961 int s;
962
963 s = splbio();
964 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
965 splx(s);
966 return (EAGAIN);
967 }
968 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
969 splx(s);
970
971 return (0);
972 }
973
974 /*
975 * Free a CCB.
976 */
977 void
978 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
979 {
980 int s;
981
982 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
983 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
984 ac->ac_cmd.mb_busy = 1;
985 ac->ac_handler = NULL;
986 ac->ac_flags = 0;
987
988 s = splbio();
989 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
990 splx(s);
991 }
992
993 /*
994 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
995 * the order that they were enqueued and try to submit their command blocks
996 * to the controller for execution.
997 */
998 void
999 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1000 {
1001 int s;
1002
1003 s = splbio();
1004
1005 if (ac != NULL)
1006 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1007
1008 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1009 if ((*amr->amr_submit)(amr, ac) != 0)
1010 break;
1011 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1012 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1013 }
1014
1015 splx(s);
1016 }
1017
1018 /*
1019 * Map the specified CCB's data buffer onto the bus, and fill the
1020 * scatter-gather list.
1021 */
1022 int
1023 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1024 int out)
1025 {
1026 struct amr_sgentry *sge;
1027 struct amr_mailbox_cmd *mb;
1028 int nsegs, i, rv, sgloff;
1029 bus_dmamap_t xfer;
1030
1031 xfer = ac->ac_xfer_map;
1032
1033 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1034 BUS_DMA_NOWAIT);
1035 if (rv != 0)
1036 return (rv);
1037
1038 mb = &ac->ac_cmd;
1039 ac->ac_xfer_size = size;
1040 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1041 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1042
1043 /* We don't need to use a scatter/gather list for just 1 segment. */
1044 nsegs = xfer->dm_nsegs;
1045 if (nsegs == 1) {
1046 mb->mb_nsgelem = 0;
1047 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1048 ac->ac_flags |= AC_NOSGL;
1049 } else {
1050 mb->mb_nsgelem = nsegs;
1051 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1052
1053 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1054 for (i = 0; i < nsegs; i++, sge++) {
1055 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1056 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1057 }
1058 }
1059
1060 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1061 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1062
1063 if ((ac->ac_flags & AC_NOSGL) == 0)
1064 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1065 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1066
1067 return (0);
1068 }
1069
1070 /*
1071 * Unmap the specified CCB's data buffer.
1072 */
1073 void
1074 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1075 {
1076
1077 if ((ac->ac_flags & AC_NOSGL) == 0)
1078 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1079 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1080 BUS_DMASYNC_POSTWRITE);
1081 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1082 (ac->ac_flags & AC_XFER_IN) != 0 ?
1083 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1084 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1085 }
1086
1087 /*
1088 * Submit a command to the controller and poll on completion. Return
1089 * non-zero on timeout or error. Must be called with interrupts blocked.
1090 */
1091 int
1092 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1093 {
1094 int rv;
1095
1096 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1097 return (rv);
1098 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1099
1100 for (timo *= 10; timo != 0; timo--) {
1101 amr_intr(amr);
1102 if ((ac->ac_flags & AC_COMPLETE) != 0)
1103 break;
1104 DELAY(100);
1105 }
1106
1107 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1108 }
1109
1110 /*
1111 * Submit a command to the controller and sleep on completion. Return
1112 * non-zero on error.
1113 */
1114 int
1115 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1116 {
1117 int s;
1118
1119 s = splbio();
1120 amr_ccb_enqueue(amr, ac);
1121 tsleep(ac, PRIBIO, "amrcmd", 0);
1122 splx(s);
1123
1124 return (ac->ac_status != 0 ? EIO : 0);
1125 }
1126
1127 /*
1128 * Wait for the mailbox to become available.
1129 */
1130 int
1131 amr_mbox_wait(struct amr_softc *amr)
1132 {
1133 int timo;
1134
1135 for (timo = 10000; timo != 0; timo--) {
1136 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1137 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1138 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1139 break;
1140 DELAY(100);
1141 }
1142
1143 if (timo == 0)
1144 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1145
1146 return (timo != 0 ? 0 : EAGAIN);
1147 }
1148
1149 /*
1150 * Tell the controller that the mailbox contains a valid command. Must be
1151 * called with interrupts blocked.
1152 */
1153 int
1154 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1155 {
1156 u_int32_t v;
1157
1158 amr->amr_mbox->mb_poll = 0;
1159 amr->amr_mbox->mb_ack = 0;
1160 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1161 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1162 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1163 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1164 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1165 return (EAGAIN);
1166
1167 v = amr_inl(amr, AMR_QREG_IDB);
1168 if ((v & AMR_QIDB_SUBMIT) != 0) {
1169 amr->amr_mbox->mb_cmd.mb_busy = 0;
1170 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1171 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1172 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1173 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1174 return (EAGAIN);
1175 }
1176
1177 amr->amr_mbox->mb_segment = 0;
1178 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1179 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1180 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1181
1182 ac->ac_start_time = (time_t)mono_time.tv_sec;
1183 ac->ac_flags |= AC_ACTIVE;
1184 amr_outl(amr, AMR_QREG_IDB,
1185 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1186 return (0);
1187 }
1188
1189 int
1190 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1191 {
1192
1193 amr->amr_mbox->mb_poll = 0;
1194 amr->amr_mbox->mb_ack = 0;
1195 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1196 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1197 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1198 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1199 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1200 return (EAGAIN);
1201
1202 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1203 amr->amr_mbox->mb_cmd.mb_busy = 0;
1204 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1205 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1206 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1207 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1208 return (EAGAIN);
1209 }
1210
1211 amr->amr_mbox->mb_segment = 0;
1212 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1213 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1214 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1215
1216 ac->ac_start_time = (time_t)mono_time.tv_sec;
1217 ac->ac_flags |= AC_ACTIVE;
1218 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1219 return (0);
1220 }
1221
1222 /*
1223 * Claim any work that the controller has completed; acknowledge completion,
1224 * save details of the completion in (mbsave). Must be called with
1225 * interrupts blocked.
1226 */
1227 int
1228 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1229 {
1230
1231 /* Work waiting for us? */
1232 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1233 return (-1);
1234
1235 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1236 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1237
1238 /* Save the mailbox, which contains a list of completed commands. */
1239 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1240
1241 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1242 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1243
1244 /* Ack the interrupt and mailbox transfer. */
1245 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1246 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1247
1248 /*
1249 * This waits for the controller to notice that we've taken the
1250 * command from it. It's very inefficient, and we shouldn't do it,
1251 * but if we remove this code, we stop completing commands under
1252 * load.
1253 *
1254 * Peter J says we shouldn't do this. The documentation says we
1255 * should. Who is right?
1256 */
1257 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1258 DELAY(10);
1259
1260 return (0);
1261 }
1262
1263 int
1264 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1265 {
1266 u_int8_t istat;
1267
1268 /* Check for valid interrupt status. */
1269 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1270 return (-1);
1271
1272 /* Ack the interrupt. */
1273 amr_outb(amr, AMR_SREG_INTR, istat);
1274
1275 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1276 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1277
1278 /* Save mailbox, which contains a list of completed commands. */
1279 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1280
1281 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1282 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1283
1284 /* Ack mailbox transfer. */
1285 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1286
1287 return (0);
1288 }
1289
1290 void
1291 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1292 {
1293 int i;
1294
1295 printf("%s: ", amr->amr_dv.dv_xname);
1296 for (i = 0; i < 4; i++)
1297 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1298 printf("\n");
1299 }
1300