amr.c revision 1.22 1 /* $NetBSD: amr.c,v 1.22 2004/09/13 12:55:48 drochner Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.22 2004/09/13 12:55:48 drochner Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85
86 #include <uvm/uvm_extern.h>
87
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95
96 #include "locators.h"
97
98 void amr_attach(struct device *, struct device *, void *);
99 void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
100 void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
101 int amr_init(struct amr_softc *, const char *,
102 struct pci_attach_args *pa);
103 int amr_intr(void *);
104 int amr_match(struct device *, struct cfdata *, void *);
105 int amr_print(void *, const char *);
106 void amr_shutdown(void *);
107 int amr_submatch(struct device *, struct cfdata *,
108 const locdesc_t *, void *);
109 void amr_teardown(struct amr_softc *);
110 void amr_thread(void *);
111 void amr_thread_create(void *);
112
113 int amr_mbox_wait(struct amr_softc *);
114 int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
115 int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
116 int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
117 int amr_std_submit(struct amr_softc *, struct amr_ccb *);
118
119 static inline u_int8_t amr_inb(struct amr_softc *, int);
120 static inline u_int32_t amr_inl(struct amr_softc *, int);
121 static inline void amr_outb(struct amr_softc *, int, u_int8_t);
122 static inline void amr_outl(struct amr_softc *, int, u_int32_t);
123
124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
125 amr_match, amr_attach, NULL, NULL);
126
127 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
128 #define AT_SIG 0x02 /* Check for signature */
129
130 struct amr_pci_type {
131 u_short apt_vendor;
132 u_short apt_product;
133 u_short apt_flags;
134 } const amr_pci_type[] = {
135 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
136 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
137 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
138 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
139 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
140 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
141 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
142 };
143
144 struct amr_typestr {
145 const char *at_str;
146 int at_sig;
147 } const amr_typestr[] = {
148 { "Series 431", AMR_SIG_431 },
149 { "Series 438", AMR_SIG_438 },
150 { "Series 466", AMR_SIG_466 },
151 { "Series 467", AMR_SIG_467 },
152 { "Series 490", AMR_SIG_490 },
153 { "Series 762", AMR_SIG_762 },
154 { "HP NetRAID (T5)", AMR_SIG_T5 },
155 { "HP NetRAID (T7)", AMR_SIG_T7 },
156 };
157
158 struct {
159 const char *ds_descr;
160 int ds_happy;
161 } const amr_dstate[] = {
162 { "offline", 0 },
163 { "degraded", 1 },
164 { "optimal", 1 },
165 { "online", 1 },
166 { "failed", 0 },
167 { "rebuilding", 1 },
168 { "hotspare", 0 },
169 };
170
171 void *amr_sdh;
172 int amr_max_segs;
173 int amr_max_xfer;
174
175 static inline u_int8_t
176 amr_inb(struct amr_softc *amr, int off)
177 {
178
179 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
180 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
181 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
182 }
183
184 static inline u_int32_t
185 amr_inl(struct amr_softc *amr, int off)
186 {
187
188 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
189 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
190 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
191 }
192
193 static inline void
194 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
195 {
196
197 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
198 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
199 BUS_SPACE_BARRIER_WRITE);
200 }
201
202 static inline void
203 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
204 {
205
206 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
207 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
208 BUS_SPACE_BARRIER_WRITE);
209 }
210
211 /*
212 * Match a supported device.
213 */
214 int
215 amr_match(struct device *parent, struct cfdata *match, void *aux)
216 {
217 struct pci_attach_args *pa;
218 pcireg_t s;
219 int i;
220
221 pa = (struct pci_attach_args *)aux;
222
223 /*
224 * Don't match the device if it's operating in I2O mode. In this
225 * case it should be handled by the `iop' driver.
226 */
227 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
228 return (0);
229
230 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
231 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
232 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
233 break;
234
235 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
236 return (0);
237
238 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
239 return (1);
240
241 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
242 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
243 }
244
245 /*
246 * Attach a supported device.
247 */
248 void
249 amr_attach(struct device *parent, struct device *self, void *aux)
250 {
251 struct pci_attach_args *pa;
252 struct amr_attach_args amra;
253 const struct amr_pci_type *apt;
254 struct amr_softc *amr;
255 pci_chipset_tag_t pc;
256 pci_intr_handle_t ih;
257 const char *intrstr;
258 pcireg_t reg;
259 int rseg, i, j, size, rv, memreg, ioreg;
260 struct amr_ccb *ac;
261 int help[2];
262 locdesc_t *ldesc = (void *)help; /* XXX */
263
264 aprint_naive(": RAID controller\n");
265
266 amr = (struct amr_softc *)self;
267 pa = (struct pci_attach_args *)aux;
268 pc = pa->pa_pc;
269
270 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
271 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
272 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
273 break;
274 apt = amr_pci_type + i;
275
276 memreg = ioreg = 0;
277 for (i = 0x10; i <= 0x14; i += 4) {
278 reg = pci_conf_read(pc, pa->pa_tag, i);
279 switch (PCI_MAPREG_TYPE(reg)) {
280 case PCI_MAPREG_TYPE_MEM:
281 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
282 memreg = i;
283 break;
284 case PCI_MAPREG_TYPE_IO:
285 if (PCI_MAPREG_IO_SIZE(reg) != 0)
286 ioreg = i;
287 break;
288
289 }
290 }
291
292 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
293 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
294 ;
295 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
296 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
297 ;
298 else {
299 aprint_error("can't map control registers\n");
300 amr_teardown(amr);
301 return;
302 }
303
304 amr->amr_flags |= AMRF_PCI_REGS;
305 amr->amr_dmat = pa->pa_dmat;
306 amr->amr_pc = pa->pa_pc;
307
308 /* Enable the device. */
309 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
310 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
311 reg | PCI_COMMAND_MASTER_ENABLE);
312
313 /* Map and establish the interrupt. */
314 if (pci_intr_map(pa, &ih)) {
315 aprint_error("can't map interrupt\n");
316 amr_teardown(amr);
317 return;
318 }
319 intrstr = pci_intr_string(pc, ih);
320 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
321 if (amr->amr_ih == NULL) {
322 aprint_error("can't establish interrupt");
323 if (intrstr != NULL)
324 aprint_normal(" at %s", intrstr);
325 aprint_normal("\n");
326 amr_teardown(amr);
327 return;
328 }
329 amr->amr_flags |= AMRF_PCI_INTR;
330
331 /*
332 * Allocate space for the mailbox and S/G lists. Some controllers
333 * don't like S/G lists to be located below 0x2000, so we allocate
334 * enough slop to enable us to compensate.
335 *
336 * The standard mailbox structure needs to be aligned on a 16-byte
337 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
338 * size, which preceeds the standard mailbox.
339 */
340 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
341 amr->amr_dmasize = size;
342
343 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
344 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
345 aprint_error("%s: unable to allocate buffer, rv = %d\n",
346 amr->amr_dv.dv_xname, rv);
347 amr_teardown(amr);
348 return;
349 }
350 amr->amr_flags |= AMRF_DMA_ALLOC;
351
352 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
353 (caddr_t *)&amr->amr_mbox,
354 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
355 aprint_error("%s: unable to map buffer, rv = %d\n",
356 amr->amr_dv.dv_xname, rv);
357 amr_teardown(amr);
358 return;
359 }
360 amr->amr_flags |= AMRF_DMA_MAP;
361
362 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
363 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
364 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
365 amr->amr_dv.dv_xname, rv);
366 amr_teardown(amr);
367 return;
368 }
369 amr->amr_flags |= AMRF_DMA_CREATE;
370
371 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
372 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
373 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
374 amr->amr_dv.dv_xname, rv);
375 amr_teardown(amr);
376 return;
377 }
378 amr->amr_flags |= AMRF_DMA_LOAD;
379
380 memset(amr->amr_mbox, 0, size);
381
382 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
383 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
384 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
385 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
386
387 /*
388 * Allocate and initalise the command control blocks.
389 */
390 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
391 amr->amr_ccbs = ac;
392 SLIST_INIT(&amr->amr_ccb_freelist);
393 TAILQ_INIT(&amr->amr_ccb_active);
394 amr->amr_flags |= AMRF_CCBS;
395
396 if (amr_max_xfer == 0) {
397 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
398 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
399 }
400
401 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
402 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
403 amr_max_segs, amr_max_xfer, 0,
404 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
405 if (rv != 0)
406 break;
407
408 ac->ac_ident = i;
409 amr_ccb_free(amr, ac);
410 }
411 if (i != AMR_MAX_CMDS) {
412 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
413 amr_teardown(amr);
414 return;
415 }
416
417 /*
418 * Take care of model-specific tasks.
419 */
420 if ((apt->apt_flags & AT_QUARTZ) != 0) {
421 amr->amr_submit = amr_quartz_submit;
422 amr->amr_get_work = amr_quartz_get_work;
423 } else {
424 amr->amr_submit = amr_std_submit;
425 amr->amr_get_work = amr_std_get_work;
426
427 /* Notify the controller of the mailbox location. */
428 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
429 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
430
431 /* Clear outstanding interrupts and enable interrupts. */
432 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
433 amr_outb(amr, AMR_SREG_TOGL,
434 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
435 }
436
437 /*
438 * Retrieve parameters, and tell the world about us.
439 */
440 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
441 amr->amr_flags |= AMRF_ENQBUF;
442 amr->amr_maxqueuecnt = i;
443 aprint_normal(": AMI RAID ");
444 if (amr_init(amr, intrstr, pa) != 0) {
445 amr_teardown(amr);
446 return;
447 }
448
449 /*
450 * Cap the maximum number of outstanding commands. AMI's Linux
451 * driver doesn't trust the controller's reported value, and lockups
452 * have been seen when we do.
453 */
454 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
455 if (amr->amr_maxqueuecnt > i)
456 amr->amr_maxqueuecnt = i;
457
458 /* Set our `shutdownhook' before we start any device activity. */
459 if (amr_sdh == NULL)
460 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
461
462 /* Attach sub-devices. */
463 for (j = 0; j < amr->amr_numdrives; j++) {
464 if (amr->amr_drive[j].al_size == 0)
465 continue;
466 amra.amra_unit = j;
467
468 ldesc->len = 1;
469 ldesc->locs[AMRCF_UNIT] = j;
470
471 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
472 "amr", ldesc, &amra, amr_print, amr_submatch);
473 }
474
475 SIMPLEQ_INIT(&amr->amr_ccb_queue);
476
477 /* XXX This doesn't work for newer boards yet. */
478 if ((apt->apt_flags & AT_QUARTZ) == 0)
479 kthread_create(amr_thread_create, amr);
480 }
481
482 /*
483 * Free up resources.
484 */
485 void
486 amr_teardown(struct amr_softc *amr)
487 {
488 struct amr_ccb *ac;
489 int fl;
490
491 fl = amr->amr_flags;
492
493 if ((fl & AMRF_THREAD) != 0) {
494 amr->amr_flags |= AMRF_THREAD_EXIT;
495 wakeup(amr_thread);
496 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
497 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
498 }
499 if ((fl & AMRF_CCBS) != 0) {
500 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
501 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
502 }
503 free(amr->amr_ccbs, M_DEVBUF);
504 }
505 if ((fl & AMRF_ENQBUF) != 0)
506 free(amr->amr_enqbuf, M_DEVBUF);
507 if ((fl & AMRF_DMA_LOAD) != 0)
508 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
509 if ((fl & AMRF_DMA_MAP) != 0)
510 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
511 amr->amr_dmasize);
512 if ((fl & AMRF_DMA_ALLOC) != 0)
513 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
514 if ((fl & AMRF_DMA_CREATE) != 0)
515 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
516 if ((fl & AMRF_PCI_INTR) != 0)
517 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
518 if ((fl & AMRF_PCI_REGS) != 0)
519 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
520 }
521
522 /*
523 * Print autoconfiguration message for a sub-device.
524 */
525 int
526 amr_print(void *aux, const char *pnp)
527 {
528 struct amr_attach_args *amra;
529
530 amra = (struct amr_attach_args *)aux;
531
532 if (pnp != NULL)
533 aprint_normal("block device at %s", pnp);
534 aprint_normal(" unit %d", amra->amra_unit);
535 return (UNCONF);
536 }
537
538 /*
539 * Match a sub-device.
540 */
541 int
542 amr_submatch(struct device *parent, struct cfdata *cf,
543 const locdesc_t *ldesc, void *aux)
544 {
545 struct amr_attach_args *amra;
546
547 amra = (struct amr_attach_args *)aux;
548
549 if (cf->cf_loc[AMRCF_UNIT] != AMRCF_UNIT_DEFAULT &&
550 cf->cf_loc[AMRCF_UNIT] != ldesc->locs[AMRCF_UNIT])
551 return (0);
552
553 return (config_match(parent, cf, aux));
554 }
555
556 /*
557 * Retrieve operational parameters and describe the controller.
558 */
559 int
560 amr_init(struct amr_softc *amr, const char *intrstr,
561 struct pci_attach_args *pa)
562 {
563 struct amr_adapter_info *aa;
564 struct amr_prodinfo *ap;
565 struct amr_enquiry *ae;
566 struct amr_enquiry3 *aex;
567 const char *prodstr;
568 u_int i, sig, ishp;
569 char buf[64];
570
571 /*
572 * Try to get 40LD product info, which tells us what the card is
573 * labelled as.
574 */
575 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
576 amr->amr_enqbuf);
577 if (ap != NULL) {
578 aprint_normal("<%.80s>\n", ap->ap_product);
579 if (intrstr != NULL)
580 aprint_normal("%s: interrupting at %s\n",
581 amr->amr_dv.dv_xname, intrstr);
582 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
583 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
584 le16toh(ap->ap_memsize));
585
586 amr->amr_maxqueuecnt = ap->ap_maxio;
587
588 /*
589 * Fetch and record state of logical drives.
590 */
591 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
592 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
593 if (aex == NULL) {
594 aprint_error("%s ENQUIRY3 failed\n",
595 amr->amr_dv.dv_xname);
596 return (-1);
597 }
598
599 if (aex->ae_numldrives > AMR_MAX_UNITS) {
600 aprint_error(
601 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
602 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
603 amr->amr_numdrives);
604 amr->amr_numdrives = AMR_MAX_UNITS;
605 } else
606 amr->amr_numdrives = aex->ae_numldrives;
607
608 for (i = 0; i < amr->amr_numdrives; i++) {
609 amr->amr_drive[i].al_size =
610 le32toh(aex->ae_drivesize[i]);
611 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
612 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
613 }
614
615 return (0);
616 }
617
618 /*
619 * Try 8LD extended ENQUIRY to get the controller signature. Once
620 * found, search for a product description.
621 */
622 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
623 if (ae != NULL) {
624 i = 0;
625 sig = le32toh(ae->ae_signature);
626
627 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
628 if (amr_typestr[i].at_sig == sig)
629 break;
630 i++;
631 }
632 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
633 snprintf(buf, sizeof(buf),
634 "unknown ENQUIRY2 sig (0x%08x)", sig);
635 prodstr = buf;
636 } else
637 prodstr = amr_typestr[i].at_str;
638 } else {
639 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
640 if (ae == NULL) {
641 aprint_error("%s: unsupported controller\n",
642 amr->amr_dv.dv_xname);
643 return (-1);
644 }
645
646 switch (PCI_PRODUCT(pa->pa_id)) {
647 case PCI_PRODUCT_AMI_MEGARAID:
648 prodstr = "Series 428";
649 break;
650 case PCI_PRODUCT_AMI_MEGARAID2:
651 prodstr = "Series 434";
652 break;
653 default:
654 snprintf(buf, sizeof(buf), "unknown PCI dev (0x%04x)",
655 PCI_PRODUCT(pa->pa_id));
656 prodstr = buf;
657 break;
658 }
659 }
660
661 /*
662 * HP NetRaid controllers have a special encoding of the firmware
663 * and BIOS versions. The AMI version seems to have it as strings
664 * whereas the HP version does it with a leading uppercase character
665 * and two binary numbers.
666 */
667 aa = &ae->ae_adapter;
668
669 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
670 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
671 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
672 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
673 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
674 /* The AMI 438 is a NetRaid 3si in HP-land. */
675 prodstr = "HP NetRaid 3si";
676 }
677 ishp = 1;
678 } else
679 ishp = 0;
680
681 aprint_normal("<%s>\n", prodstr);
682 if (intrstr != NULL)
683 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
684 intrstr);
685
686 if (ishp)
687 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
688 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
689 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
690 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
691 else
692 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
693 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
694 aa->aa_memorysize);
695
696 amr->amr_maxqueuecnt = aa->aa_maxio;
697
698 /*
699 * Record state of logical drives.
700 */
701 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
702 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
703 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
704 AMR_MAX_UNITS);
705 amr->amr_numdrives = AMR_MAX_UNITS;
706 } else
707 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
708
709 for (i = 0; i < AMR_MAX_UNITS; i++) {
710 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
711 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
712 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
713 }
714
715 return (0);
716 }
717
718 /*
719 * Flush the internal cache on each configured controller. Called at
720 * shutdown time.
721 */
722 void
723 amr_shutdown(void *cookie)
724 {
725 extern struct cfdriver amr_cd;
726 struct amr_softc *amr;
727 struct amr_ccb *ac;
728 int i, rv, s;
729
730 for (i = 0; i < amr_cd.cd_ndevs; i++) {
731 if ((amr = device_lookup(&amr_cd, i)) == NULL)
732 continue;
733
734 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
735 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
736 s = splbio();
737 rv = amr_ccb_poll(amr, ac, 30000);
738 splx(s);
739 amr_ccb_free(amr, ac);
740 }
741 if (rv != 0)
742 printf("%s: unable to flush cache (%d)\n",
743 amr->amr_dv.dv_xname, rv);
744 }
745 }
746
747 /*
748 * Interrupt service routine.
749 */
750 int
751 amr_intr(void *cookie)
752 {
753 struct amr_softc *amr;
754 struct amr_ccb *ac;
755 struct amr_mailbox_resp mbox;
756 u_int i, forus, idx;
757
758 amr = cookie;
759 forus = 0;
760
761 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
762 /* Iterate over completed commands in this result. */
763 for (i = 0; i < mbox.mb_nstatus; i++) {
764 idx = mbox.mb_completed[i] - 1;
765 ac = amr->amr_ccbs + idx;
766
767 if (idx >= amr->amr_maxqueuecnt) {
768 printf("%s: bad status (bogus ID: %u=%u)\n",
769 amr->amr_dv.dv_xname, i, idx);
770 continue;
771 }
772
773 if ((ac->ac_flags & AC_ACTIVE) == 0) {
774 printf("%s: bad status (not active; 0x04%x)\n",
775 amr->amr_dv.dv_xname, ac->ac_flags);
776 continue;
777 }
778
779 ac->ac_status = mbox.mb_status;
780 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
781 AC_COMPLETE;
782 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
783
784 if ((ac->ac_flags & AC_MOAN) != 0)
785 printf("%s: ccb %d completed\n",
786 amr->amr_dv.dv_xname, ac->ac_ident);
787
788 /* Pass notification to upper layers. */
789 if (ac->ac_handler != NULL)
790 (*ac->ac_handler)(ac);
791 else
792 wakeup(ac);
793 }
794 forus = 1;
795 }
796
797 if (forus)
798 amr_ccb_enqueue(amr, NULL);
799
800 return (forus);
801 }
802
803 /*
804 * Create the watchdog thread.
805 */
806 void
807 amr_thread_create(void *cookie)
808 {
809 struct amr_softc *amr;
810 int rv;
811
812 amr = cookie;
813
814 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
815 amr->amr_flags ^= AMRF_THREAD_EXIT;
816 wakeup(&amr->amr_flags);
817 return;
818 }
819
820 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
821 amr->amr_dv.dv_xname);
822 if (rv != 0)
823 aprint_error("%s: unable to create thread (%d)",
824 amr->amr_dv.dv_xname, rv);
825 else
826 amr->amr_flags |= AMRF_THREAD;
827 }
828
829 /*
830 * Watchdog thread.
831 */
832 void
833 amr_thread(void *cookie)
834 {
835 struct amr_softc *amr;
836 struct amr_ccb *ac;
837 struct amr_logdrive *al;
838 struct amr_enquiry *ae;
839 time_t curtime;
840 int rv, i, s;
841
842 amr = cookie;
843 ae = amr->amr_enqbuf;
844
845 for (;;) {
846 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
847
848 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
849 amr->amr_flags ^= AMRF_THREAD_EXIT;
850 wakeup(&amr->amr_flags);
851 kthread_exit(0);
852 }
853
854 s = splbio();
855 amr_intr(cookie);
856 curtime = (time_t)mono_time.tv_sec;
857 ac = TAILQ_FIRST(&amr->amr_ccb_active);
858 while (ac != NULL) {
859 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
860 break;
861 if ((ac->ac_flags & AC_MOAN) == 0) {
862 printf("%s: ccb %d timed out; mailbox:\n",
863 amr->amr_dv.dv_xname, ac->ac_ident);
864 amr_ccb_dump(amr, ac);
865 ac->ac_flags |= AC_MOAN;
866 }
867 ac = TAILQ_NEXT(ac, ac_chain.tailq);
868 }
869 splx(s);
870
871 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
872 printf("%s: ccb_alloc failed (%d)\n",
873 amr->amr_dv.dv_xname, rv);
874 continue;
875 }
876
877 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
878
879 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
880 AMR_ENQUIRY_BUFSIZE, 0);
881 if (rv != 0) {
882 printf("%s: ccb_map failed (%d)\n",
883 amr->amr_dv.dv_xname, rv);
884 amr_ccb_free(amr, ac);
885 continue;
886 }
887
888 rv = amr_ccb_wait(amr, ac);
889 amr_ccb_unmap(amr, ac);
890 if (rv != 0) {
891 printf("%s: enquiry failed (st=%d)\n",
892 amr->amr_dv.dv_xname, ac->ac_status);
893 continue;
894 }
895 amr_ccb_free(amr, ac);
896
897 al = amr->amr_drive;
898 for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
899 if (al->al_dv == NULL)
900 continue;
901 if (al->al_state == ae->ae_ldrv.al_state[i])
902 continue;
903
904 printf("%s: state changed: %s -> %s\n",
905 al->al_dv->dv_xname,
906 amr_drive_state(al->al_state, NULL),
907 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
908
909 al->al_state = ae->ae_ldrv.al_state[i];
910 }
911 }
912 }
913
914 /*
915 * Return a text description of a logical drive's current state.
916 */
917 const char *
918 amr_drive_state(int state, int *happy)
919 {
920 const char *str;
921
922 state = AMR_DRV_CURSTATE(state);
923 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
924 if (happy)
925 *happy = 1;
926 str = "status unknown";
927 } else {
928 if (happy)
929 *happy = amr_dstate[state].ds_happy;
930 str = amr_dstate[state].ds_descr;
931 }
932
933 return (str);
934 }
935
936 /*
937 * Run a generic enquiry-style command.
938 */
939 void *
940 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
941 u_int8_t cmdqual, void *buf)
942 {
943 struct amr_ccb *ac;
944 u_int8_t *mb;
945 int rv;
946
947 if (amr_ccb_alloc(amr, &ac) != 0)
948 return (NULL);
949
950 /* Build the command proper. */
951 mb = (u_int8_t *)&ac->ac_cmd;
952 mb[0] = cmd;
953 mb[2] = cmdsub;
954 mb[3] = cmdqual;
955
956 rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
957 if (rv == 0) {
958 rv = amr_ccb_poll(amr, ac, 2000);
959 amr_ccb_unmap(amr, ac);
960 }
961 amr_ccb_free(amr, ac);
962
963 return (rv ? NULL : buf);
964 }
965
966 /*
967 * Allocate and initialise a CCB.
968 */
969 int
970 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
971 {
972 int s;
973
974 s = splbio();
975 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
976 splx(s);
977 return (EAGAIN);
978 }
979 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
980 splx(s);
981
982 return (0);
983 }
984
985 /*
986 * Free a CCB.
987 */
988 void
989 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
990 {
991 int s;
992
993 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
994 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
995 ac->ac_cmd.mb_busy = 1;
996 ac->ac_handler = NULL;
997 ac->ac_flags = 0;
998
999 s = splbio();
1000 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1001 splx(s);
1002 }
1003
1004 /*
1005 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1006 * the order that they were enqueued and try to submit their command blocks
1007 * to the controller for execution.
1008 */
1009 void
1010 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1011 {
1012 int s;
1013
1014 s = splbio();
1015
1016 if (ac != NULL)
1017 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1018
1019 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1020 if ((*amr->amr_submit)(amr, ac) != 0)
1021 break;
1022 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1023 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1024 }
1025
1026 splx(s);
1027 }
1028
1029 /*
1030 * Map the specified CCB's data buffer onto the bus, and fill the
1031 * scatter-gather list.
1032 */
1033 int
1034 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1035 int out)
1036 {
1037 struct amr_sgentry *sge;
1038 struct amr_mailbox_cmd *mb;
1039 int nsegs, i, rv, sgloff;
1040 bus_dmamap_t xfer;
1041
1042 xfer = ac->ac_xfer_map;
1043
1044 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1045 BUS_DMA_NOWAIT);
1046 if (rv != 0)
1047 return (rv);
1048
1049 mb = &ac->ac_cmd;
1050 ac->ac_xfer_size = size;
1051 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1052 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1053
1054 /* We don't need to use a scatter/gather list for just 1 segment. */
1055 nsegs = xfer->dm_nsegs;
1056 if (nsegs == 1) {
1057 mb->mb_nsgelem = 0;
1058 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1059 ac->ac_flags |= AC_NOSGL;
1060 } else {
1061 mb->mb_nsgelem = nsegs;
1062 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1063
1064 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1065 for (i = 0; i < nsegs; i++, sge++) {
1066 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1067 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1068 }
1069 }
1070
1071 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1072 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1073
1074 if ((ac->ac_flags & AC_NOSGL) == 0)
1075 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1076 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1077
1078 return (0);
1079 }
1080
1081 /*
1082 * Unmap the specified CCB's data buffer.
1083 */
1084 void
1085 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1086 {
1087
1088 if ((ac->ac_flags & AC_NOSGL) == 0)
1089 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1090 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1091 BUS_DMASYNC_POSTWRITE);
1092 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1093 (ac->ac_flags & AC_XFER_IN) != 0 ?
1094 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1095 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1096 }
1097
1098 /*
1099 * Submit a command to the controller and poll on completion. Return
1100 * non-zero on timeout or error. Must be called with interrupts blocked.
1101 */
1102 int
1103 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1104 {
1105 int rv;
1106
1107 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1108 return (rv);
1109 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1110
1111 for (timo *= 10; timo != 0; timo--) {
1112 amr_intr(amr);
1113 if ((ac->ac_flags & AC_COMPLETE) != 0)
1114 break;
1115 DELAY(100);
1116 }
1117
1118 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1119 }
1120
1121 /*
1122 * Submit a command to the controller and sleep on completion. Return
1123 * non-zero on error.
1124 */
1125 int
1126 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1127 {
1128 int s;
1129
1130 s = splbio();
1131 amr_ccb_enqueue(amr, ac);
1132 tsleep(ac, PRIBIO, "amrcmd", 0);
1133 splx(s);
1134
1135 return (ac->ac_status != 0 ? EIO : 0);
1136 }
1137
1138 /*
1139 * Wait for the mailbox to become available.
1140 */
1141 int
1142 amr_mbox_wait(struct amr_softc *amr)
1143 {
1144 int timo;
1145
1146 for (timo = 10000; timo != 0; timo--) {
1147 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1148 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1149 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1150 break;
1151 DELAY(100);
1152 }
1153
1154 if (timo == 0)
1155 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1156
1157 return (timo != 0 ? 0 : EAGAIN);
1158 }
1159
1160 /*
1161 * Tell the controller that the mailbox contains a valid command. Must be
1162 * called with interrupts blocked.
1163 */
1164 int
1165 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1166 {
1167 u_int32_t v;
1168
1169 amr->amr_mbox->mb_poll = 0;
1170 amr->amr_mbox->mb_ack = 0;
1171 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1172 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1173 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1174 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1175 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1176 return (EAGAIN);
1177
1178 v = amr_inl(amr, AMR_QREG_IDB);
1179 if ((v & AMR_QIDB_SUBMIT) != 0) {
1180 amr->amr_mbox->mb_cmd.mb_busy = 0;
1181 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1182 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1183 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1184 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1185 return (EAGAIN);
1186 }
1187
1188 amr->amr_mbox->mb_segment = 0;
1189 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1190 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1191 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1192
1193 ac->ac_start_time = (time_t)mono_time.tv_sec;
1194 ac->ac_flags |= AC_ACTIVE;
1195 amr_outl(amr, AMR_QREG_IDB,
1196 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1197 return (0);
1198 }
1199
1200 int
1201 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1202 {
1203
1204 amr->amr_mbox->mb_poll = 0;
1205 amr->amr_mbox->mb_ack = 0;
1206 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1207 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1208 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1209 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1210 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1211 return (EAGAIN);
1212
1213 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1214 amr->amr_mbox->mb_cmd.mb_busy = 0;
1215 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1216 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1217 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1218 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1219 return (EAGAIN);
1220 }
1221
1222 amr->amr_mbox->mb_segment = 0;
1223 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1224 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1225 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1226
1227 ac->ac_start_time = (time_t)mono_time.tv_sec;
1228 ac->ac_flags |= AC_ACTIVE;
1229 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1230 return (0);
1231 }
1232
1233 /*
1234 * Claim any work that the controller has completed; acknowledge completion,
1235 * save details of the completion in (mbsave). Must be called with
1236 * interrupts blocked.
1237 */
1238 int
1239 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1240 {
1241
1242 /* Work waiting for us? */
1243 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1244 return (-1);
1245
1246 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1247 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1248
1249 /* Save the mailbox, which contains a list of completed commands. */
1250 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1251
1252 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1253 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1254
1255 /* Ack the interrupt and mailbox transfer. */
1256 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1257 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1258
1259 /*
1260 * This waits for the controller to notice that we've taken the
1261 * command from it. It's very inefficient, and we shouldn't do it,
1262 * but if we remove this code, we stop completing commands under
1263 * load.
1264 *
1265 * Peter J says we shouldn't do this. The documentation says we
1266 * should. Who is right?
1267 */
1268 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1269 DELAY(10);
1270
1271 return (0);
1272 }
1273
1274 int
1275 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1276 {
1277 u_int8_t istat;
1278
1279 /* Check for valid interrupt status. */
1280 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1281 return (-1);
1282
1283 /* Ack the interrupt. */
1284 amr_outb(amr, AMR_SREG_INTR, istat);
1285
1286 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1287 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1288
1289 /* Save mailbox, which contains a list of completed commands. */
1290 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1291
1292 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1293 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1294
1295 /* Ack mailbox transfer. */
1296 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1297
1298 return (0);
1299 }
1300
1301 void
1302 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1303 {
1304 int i;
1305
1306 printf("%s: ", amr->amr_dv.dv_xname);
1307 for (i = 0; i < 4; i++)
1308 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1309 printf("\n");
1310 }
1311