amr.c revision 1.24 1 /* $NetBSD: amr.c,v 1.24 2004/10/28 07:22:24 martti Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.24 2004/10/28 07:22:24 martti Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85
86 #include <uvm/uvm_extern.h>
87
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95
96 #include "locators.h"
97
98 void amr_attach(struct device *, struct device *, void *);
99 void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
100 void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
101 int amr_init(struct amr_softc *, const char *,
102 struct pci_attach_args *pa);
103 int amr_intr(void *);
104 int amr_match(struct device *, struct cfdata *, void *);
105 int amr_print(void *, const char *);
106 void amr_shutdown(void *);
107 int amr_submatch(struct device *, struct cfdata *,
108 const locdesc_t *, void *);
109 void amr_teardown(struct amr_softc *);
110 void amr_thread(void *);
111 void amr_thread_create(void *);
112
113 int amr_mbox_wait(struct amr_softc *);
114 int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
115 int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
116 int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
117 int amr_std_submit(struct amr_softc *, struct amr_ccb *);
118
119 static inline u_int8_t amr_inb(struct amr_softc *, int);
120 static inline u_int32_t amr_inl(struct amr_softc *, int);
121 static inline void amr_outb(struct amr_softc *, int, u_int8_t);
122 static inline void amr_outl(struct amr_softc *, int, u_int32_t);
123
124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
125 amr_match, amr_attach, NULL, NULL);
126
127 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
128 #define AT_SIG 0x02 /* Check for signature */
129
130 struct amr_pci_type {
131 u_short apt_vendor;
132 u_short apt_product;
133 u_short apt_flags;
134 } const amr_pci_type[] = {
135 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
136 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
137 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
138 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
139 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
140 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
141 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
142 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
143 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
144 };
145
146 struct amr_typestr {
147 const char *at_str;
148 int at_sig;
149 } const amr_typestr[] = {
150 { "Series 431", AMR_SIG_431 },
151 { "Series 438", AMR_SIG_438 },
152 { "Series 466", AMR_SIG_466 },
153 { "Series 467", AMR_SIG_467 },
154 { "Series 490", AMR_SIG_490 },
155 { "Series 762", AMR_SIG_762 },
156 { "HP NetRAID (T5)", AMR_SIG_T5 },
157 { "HP NetRAID (T7)", AMR_SIG_T7 },
158 };
159
160 struct {
161 const char *ds_descr;
162 int ds_happy;
163 } const amr_dstate[] = {
164 { "offline", 0 },
165 { "degraded", 1 },
166 { "optimal", 1 },
167 { "online", 1 },
168 { "failed", 0 },
169 { "rebuilding", 1 },
170 { "hotspare", 0 },
171 };
172
173 void *amr_sdh;
174 int amr_max_segs;
175 int amr_max_xfer;
176
177 static inline u_int8_t
178 amr_inb(struct amr_softc *amr, int off)
179 {
180
181 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
182 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
183 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
184 }
185
186 static inline u_int32_t
187 amr_inl(struct amr_softc *amr, int off)
188 {
189
190 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
191 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
192 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
193 }
194
195 static inline void
196 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
197 {
198
199 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
200 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
201 BUS_SPACE_BARRIER_WRITE);
202 }
203
204 static inline void
205 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
206 {
207
208 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
209 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
210 BUS_SPACE_BARRIER_WRITE);
211 }
212
213 /*
214 * Match a supported device.
215 */
216 int
217 amr_match(struct device *parent, struct cfdata *match, void *aux)
218 {
219 struct pci_attach_args *pa;
220 pcireg_t s;
221 int i;
222
223 pa = (struct pci_attach_args *)aux;
224
225 /*
226 * Don't match the device if it's operating in I2O mode. In this
227 * case it should be handled by the `iop' driver.
228 */
229 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
230 return (0);
231
232 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
233 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
234 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
235 break;
236
237 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
238 return (0);
239
240 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
241 return (1);
242
243 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
244 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
245 }
246
247 /*
248 * Attach a supported device.
249 */
250 void
251 amr_attach(struct device *parent, struct device *self, void *aux)
252 {
253 struct pci_attach_args *pa;
254 struct amr_attach_args amra;
255 const struct amr_pci_type *apt;
256 struct amr_softc *amr;
257 pci_chipset_tag_t pc;
258 pci_intr_handle_t ih;
259 const char *intrstr;
260 pcireg_t reg;
261 int rseg, i, j, size, rv, memreg, ioreg;
262 struct amr_ccb *ac;
263 int help[2];
264 locdesc_t *ldesc = (void *)help; /* XXX */
265
266 aprint_naive(": RAID controller\n");
267
268 amr = (struct amr_softc *)self;
269 pa = (struct pci_attach_args *)aux;
270 pc = pa->pa_pc;
271
272 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
273 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
274 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
275 break;
276 apt = amr_pci_type + i;
277
278 memreg = ioreg = 0;
279 for (i = 0x10; i <= 0x14; i += 4) {
280 reg = pci_conf_read(pc, pa->pa_tag, i);
281 switch (PCI_MAPREG_TYPE(reg)) {
282 case PCI_MAPREG_TYPE_MEM:
283 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
284 memreg = i;
285 break;
286 case PCI_MAPREG_TYPE_IO:
287 if (PCI_MAPREG_IO_SIZE(reg) != 0)
288 ioreg = i;
289 break;
290
291 }
292 }
293
294 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
295 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
296 ;
297 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
298 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
299 ;
300 else {
301 aprint_error("can't map control registers\n");
302 amr_teardown(amr);
303 return;
304 }
305
306 amr->amr_flags |= AMRF_PCI_REGS;
307 amr->amr_dmat = pa->pa_dmat;
308 amr->amr_pc = pa->pa_pc;
309
310 /* Enable the device. */
311 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
312 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
313 reg | PCI_COMMAND_MASTER_ENABLE);
314
315 /* Map and establish the interrupt. */
316 if (pci_intr_map(pa, &ih)) {
317 aprint_error("can't map interrupt\n");
318 amr_teardown(amr);
319 return;
320 }
321 intrstr = pci_intr_string(pc, ih);
322 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
323 if (amr->amr_ih == NULL) {
324 aprint_error("can't establish interrupt");
325 if (intrstr != NULL)
326 aprint_normal(" at %s", intrstr);
327 aprint_normal("\n");
328 amr_teardown(amr);
329 return;
330 }
331 amr->amr_flags |= AMRF_PCI_INTR;
332
333 /*
334 * Allocate space for the mailbox and S/G lists. Some controllers
335 * don't like S/G lists to be located below 0x2000, so we allocate
336 * enough slop to enable us to compensate.
337 *
338 * The standard mailbox structure needs to be aligned on a 16-byte
339 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
340 * size, which preceeds the standard mailbox.
341 */
342 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
343 amr->amr_dmasize = size;
344
345 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
346 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
347 aprint_error("%s: unable to allocate buffer, rv = %d\n",
348 amr->amr_dv.dv_xname, rv);
349 amr_teardown(amr);
350 return;
351 }
352 amr->amr_flags |= AMRF_DMA_ALLOC;
353
354 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
355 (caddr_t *)&amr->amr_mbox,
356 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
357 aprint_error("%s: unable to map buffer, rv = %d\n",
358 amr->amr_dv.dv_xname, rv);
359 amr_teardown(amr);
360 return;
361 }
362 amr->amr_flags |= AMRF_DMA_MAP;
363
364 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
365 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
366 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
367 amr->amr_dv.dv_xname, rv);
368 amr_teardown(amr);
369 return;
370 }
371 amr->amr_flags |= AMRF_DMA_CREATE;
372
373 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
374 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
375 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
376 amr->amr_dv.dv_xname, rv);
377 amr_teardown(amr);
378 return;
379 }
380 amr->amr_flags |= AMRF_DMA_LOAD;
381
382 memset(amr->amr_mbox, 0, size);
383
384 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
385 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
386 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
387 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
388
389 /*
390 * Allocate and initalise the command control blocks.
391 */
392 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
393 amr->amr_ccbs = ac;
394 SLIST_INIT(&amr->amr_ccb_freelist);
395 TAILQ_INIT(&amr->amr_ccb_active);
396 amr->amr_flags |= AMRF_CCBS;
397
398 if (amr_max_xfer == 0) {
399 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
400 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
401 }
402
403 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
404 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
405 amr_max_segs, amr_max_xfer, 0,
406 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
407 if (rv != 0)
408 break;
409
410 ac->ac_ident = i;
411 amr_ccb_free(amr, ac);
412 }
413 if (i != AMR_MAX_CMDS) {
414 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
415 amr_teardown(amr);
416 return;
417 }
418
419 /*
420 * Take care of model-specific tasks.
421 */
422 if ((apt->apt_flags & AT_QUARTZ) != 0) {
423 amr->amr_submit = amr_quartz_submit;
424 amr->amr_get_work = amr_quartz_get_work;
425 } else {
426 amr->amr_submit = amr_std_submit;
427 amr->amr_get_work = amr_std_get_work;
428
429 /* Notify the controller of the mailbox location. */
430 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
431 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
432
433 /* Clear outstanding interrupts and enable interrupts. */
434 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
435 amr_outb(amr, AMR_SREG_TOGL,
436 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
437 }
438
439 /*
440 * Retrieve parameters, and tell the world about us.
441 */
442 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
443 amr->amr_flags |= AMRF_ENQBUF;
444 amr->amr_maxqueuecnt = i;
445 aprint_normal(": AMI RAID ");
446 if (amr_init(amr, intrstr, pa) != 0) {
447 amr_teardown(amr);
448 return;
449 }
450
451 /*
452 * Cap the maximum number of outstanding commands. AMI's Linux
453 * driver doesn't trust the controller's reported value, and lockups
454 * have been seen when we do.
455 */
456 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
457 if (amr->amr_maxqueuecnt > i)
458 amr->amr_maxqueuecnt = i;
459
460 /* Set our `shutdownhook' before we start any device activity. */
461 if (amr_sdh == NULL)
462 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
463
464 /* Attach sub-devices. */
465 for (j = 0; j < amr->amr_numdrives; j++) {
466 if (amr->amr_drive[j].al_size == 0)
467 continue;
468 amra.amra_unit = j;
469
470 ldesc->len = 1;
471 ldesc->locs[AMRCF_UNIT] = j;
472
473 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
474 "amr", ldesc, &amra, amr_print, amr_submatch);
475 }
476
477 SIMPLEQ_INIT(&amr->amr_ccb_queue);
478
479 /* XXX This doesn't work for newer boards yet. */
480 if ((apt->apt_flags & AT_QUARTZ) == 0)
481 kthread_create(amr_thread_create, amr);
482 }
483
484 /*
485 * Free up resources.
486 */
487 void
488 amr_teardown(struct amr_softc *amr)
489 {
490 struct amr_ccb *ac;
491 int fl;
492
493 fl = amr->amr_flags;
494
495 if ((fl & AMRF_THREAD) != 0) {
496 amr->amr_flags |= AMRF_THREAD_EXIT;
497 wakeup(amr_thread);
498 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
499 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
500 }
501 if ((fl & AMRF_CCBS) != 0) {
502 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
503 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
504 }
505 free(amr->amr_ccbs, M_DEVBUF);
506 }
507 if ((fl & AMRF_ENQBUF) != 0)
508 free(amr->amr_enqbuf, M_DEVBUF);
509 if ((fl & AMRF_DMA_LOAD) != 0)
510 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
511 if ((fl & AMRF_DMA_MAP) != 0)
512 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
513 amr->amr_dmasize);
514 if ((fl & AMRF_DMA_ALLOC) != 0)
515 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
516 if ((fl & AMRF_DMA_CREATE) != 0)
517 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
518 if ((fl & AMRF_PCI_INTR) != 0)
519 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
520 if ((fl & AMRF_PCI_REGS) != 0)
521 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
522 }
523
524 /*
525 * Print autoconfiguration message for a sub-device.
526 */
527 int
528 amr_print(void *aux, const char *pnp)
529 {
530 struct amr_attach_args *amra;
531
532 amra = (struct amr_attach_args *)aux;
533
534 if (pnp != NULL)
535 aprint_normal("block device at %s", pnp);
536 aprint_normal(" unit %d", amra->amra_unit);
537 return (UNCONF);
538 }
539
540 /*
541 * Match a sub-device.
542 */
543 int
544 amr_submatch(struct device *parent, struct cfdata *cf,
545 const locdesc_t *ldesc, void *aux)
546 {
547 struct amr_attach_args *amra;
548
549 amra = (struct amr_attach_args *)aux;
550
551 if (cf->cf_loc[AMRCF_UNIT] != AMRCF_UNIT_DEFAULT &&
552 cf->cf_loc[AMRCF_UNIT] != ldesc->locs[AMRCF_UNIT])
553 return (0);
554
555 return (config_match(parent, cf, aux));
556 }
557
558 /*
559 * Retrieve operational parameters and describe the controller.
560 */
561 int
562 amr_init(struct amr_softc *amr, const char *intrstr,
563 struct pci_attach_args *pa)
564 {
565 struct amr_adapter_info *aa;
566 struct amr_prodinfo *ap;
567 struct amr_enquiry *ae;
568 struct amr_enquiry3 *aex;
569 const char *prodstr;
570 u_int i, sig, ishp;
571 char buf[64];
572
573 /*
574 * Try to get 40LD product info, which tells us what the card is
575 * labelled as.
576 */
577 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
578 amr->amr_enqbuf);
579 if (ap != NULL) {
580 aprint_normal("<%.80s>\n", ap->ap_product);
581 if (intrstr != NULL)
582 aprint_normal("%s: interrupting at %s\n",
583 amr->amr_dv.dv_xname, intrstr);
584 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
585 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
586 le16toh(ap->ap_memsize));
587
588 amr->amr_maxqueuecnt = ap->ap_maxio;
589
590 /*
591 * Fetch and record state of logical drives.
592 */
593 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
594 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
595 if (aex == NULL) {
596 aprint_error("%s ENQUIRY3 failed\n",
597 amr->amr_dv.dv_xname);
598 return (-1);
599 }
600
601 if (aex->ae_numldrives > AMR_MAX_UNITS) {
602 aprint_error(
603 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
604 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
605 amr->amr_numdrives);
606 amr->amr_numdrives = AMR_MAX_UNITS;
607 } else
608 amr->amr_numdrives = aex->ae_numldrives;
609
610 for (i = 0; i < amr->amr_numdrives; i++) {
611 amr->amr_drive[i].al_size =
612 le32toh(aex->ae_drivesize[i]);
613 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
614 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
615 }
616
617 return (0);
618 }
619
620 /*
621 * Try 8LD extended ENQUIRY to get the controller signature. Once
622 * found, search for a product description.
623 */
624 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
625 if (ae != NULL) {
626 i = 0;
627 sig = le32toh(ae->ae_signature);
628
629 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
630 if (amr_typestr[i].at_sig == sig)
631 break;
632 i++;
633 }
634 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
635 snprintf(buf, sizeof(buf),
636 "unknown ENQUIRY2 sig (0x%08x)", sig);
637 prodstr = buf;
638 } else
639 prodstr = amr_typestr[i].at_str;
640 } else {
641 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
642 if (ae == NULL) {
643 aprint_error("%s: unsupported controller\n",
644 amr->amr_dv.dv_xname);
645 return (-1);
646 }
647
648 switch (PCI_PRODUCT(pa->pa_id)) {
649 case PCI_PRODUCT_AMI_MEGARAID:
650 prodstr = "Series 428";
651 break;
652 case PCI_PRODUCT_AMI_MEGARAID2:
653 prodstr = "Series 434";
654 break;
655 default:
656 snprintf(buf, sizeof(buf), "unknown PCI dev (0x%04x)",
657 PCI_PRODUCT(pa->pa_id));
658 prodstr = buf;
659 break;
660 }
661 }
662
663 /*
664 * HP NetRaid controllers have a special encoding of the firmware
665 * and BIOS versions. The AMI version seems to have it as strings
666 * whereas the HP version does it with a leading uppercase character
667 * and two binary numbers.
668 */
669 aa = &ae->ae_adapter;
670
671 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
672 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
673 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
674 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
675 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
676 /* The AMI 438 is a NetRaid 3si in HP-land. */
677 prodstr = "HP NetRaid 3si";
678 }
679 ishp = 1;
680 } else
681 ishp = 0;
682
683 aprint_normal("<%s>\n", prodstr);
684 if (intrstr != NULL)
685 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
686 intrstr);
687
688 if (ishp)
689 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
690 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
691 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
692 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
693 else
694 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
695 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
696 aa->aa_memorysize);
697
698 amr->amr_maxqueuecnt = aa->aa_maxio;
699
700 /*
701 * Record state of logical drives.
702 */
703 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
704 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
705 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
706 AMR_MAX_UNITS);
707 amr->amr_numdrives = AMR_MAX_UNITS;
708 } else
709 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
710
711 for (i = 0; i < AMR_MAX_UNITS; i++) {
712 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
713 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
714 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
715 }
716
717 return (0);
718 }
719
720 /*
721 * Flush the internal cache on each configured controller. Called at
722 * shutdown time.
723 */
724 void
725 amr_shutdown(void *cookie)
726 {
727 extern struct cfdriver amr_cd;
728 struct amr_softc *amr;
729 struct amr_ccb *ac;
730 int i, rv, s;
731
732 for (i = 0; i < amr_cd.cd_ndevs; i++) {
733 if ((amr = device_lookup(&amr_cd, i)) == NULL)
734 continue;
735
736 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
737 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
738 s = splbio();
739 rv = amr_ccb_poll(amr, ac, 30000);
740 splx(s);
741 amr_ccb_free(amr, ac);
742 }
743 if (rv != 0)
744 printf("%s: unable to flush cache (%d)\n",
745 amr->amr_dv.dv_xname, rv);
746 }
747 }
748
749 /*
750 * Interrupt service routine.
751 */
752 int
753 amr_intr(void *cookie)
754 {
755 struct amr_softc *amr;
756 struct amr_ccb *ac;
757 struct amr_mailbox_resp mbox;
758 u_int i, forus, idx;
759
760 amr = cookie;
761 forus = 0;
762
763 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
764 /* Iterate over completed commands in this result. */
765 for (i = 0; i < mbox.mb_nstatus; i++) {
766 idx = mbox.mb_completed[i] - 1;
767 ac = amr->amr_ccbs + idx;
768
769 if (idx >= amr->amr_maxqueuecnt) {
770 printf("%s: bad status (bogus ID: %u=%u)\n",
771 amr->amr_dv.dv_xname, i, idx);
772 continue;
773 }
774
775 if ((ac->ac_flags & AC_ACTIVE) == 0) {
776 printf("%s: bad status (not active; 0x04%x)\n",
777 amr->amr_dv.dv_xname, ac->ac_flags);
778 continue;
779 }
780
781 ac->ac_status = mbox.mb_status;
782 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
783 AC_COMPLETE;
784 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
785
786 if ((ac->ac_flags & AC_MOAN) != 0)
787 printf("%s: ccb %d completed\n",
788 amr->amr_dv.dv_xname, ac->ac_ident);
789
790 /* Pass notification to upper layers. */
791 if (ac->ac_handler != NULL)
792 (*ac->ac_handler)(ac);
793 else
794 wakeup(ac);
795 }
796 forus = 1;
797 }
798
799 if (forus)
800 amr_ccb_enqueue(amr, NULL);
801
802 return (forus);
803 }
804
805 /*
806 * Create the watchdog thread.
807 */
808 void
809 amr_thread_create(void *cookie)
810 {
811 struct amr_softc *amr;
812 int rv;
813
814 amr = cookie;
815
816 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
817 amr->amr_flags ^= AMRF_THREAD_EXIT;
818 wakeup(&amr->amr_flags);
819 return;
820 }
821
822 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
823 amr->amr_dv.dv_xname);
824 if (rv != 0)
825 aprint_error("%s: unable to create thread (%d)",
826 amr->amr_dv.dv_xname, rv);
827 else
828 amr->amr_flags |= AMRF_THREAD;
829 }
830
831 /*
832 * Watchdog thread.
833 */
834 void
835 amr_thread(void *cookie)
836 {
837 struct amr_softc *amr;
838 struct amr_ccb *ac;
839 struct amr_logdrive *al;
840 struct amr_enquiry *ae;
841 time_t curtime;
842 int rv, i, s;
843
844 amr = cookie;
845 ae = amr->amr_enqbuf;
846
847 for (;;) {
848 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
849
850 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
851 amr->amr_flags ^= AMRF_THREAD_EXIT;
852 wakeup(&amr->amr_flags);
853 kthread_exit(0);
854 }
855
856 s = splbio();
857 amr_intr(cookie);
858 curtime = (time_t)mono_time.tv_sec;
859 ac = TAILQ_FIRST(&amr->amr_ccb_active);
860 while (ac != NULL) {
861 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
862 break;
863 if ((ac->ac_flags & AC_MOAN) == 0) {
864 printf("%s: ccb %d timed out; mailbox:\n",
865 amr->amr_dv.dv_xname, ac->ac_ident);
866 amr_ccb_dump(amr, ac);
867 ac->ac_flags |= AC_MOAN;
868 }
869 ac = TAILQ_NEXT(ac, ac_chain.tailq);
870 }
871 splx(s);
872
873 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
874 printf("%s: ccb_alloc failed (%d)\n",
875 amr->amr_dv.dv_xname, rv);
876 continue;
877 }
878
879 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
880
881 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
882 AMR_ENQUIRY_BUFSIZE, 0);
883 if (rv != 0) {
884 printf("%s: ccb_map failed (%d)\n",
885 amr->amr_dv.dv_xname, rv);
886 amr_ccb_free(amr, ac);
887 continue;
888 }
889
890 rv = amr_ccb_wait(amr, ac);
891 amr_ccb_unmap(amr, ac);
892 if (rv != 0) {
893 printf("%s: enquiry failed (st=%d)\n",
894 amr->amr_dv.dv_xname, ac->ac_status);
895 continue;
896 }
897 amr_ccb_free(amr, ac);
898
899 al = amr->amr_drive;
900 for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
901 if (al->al_dv == NULL)
902 continue;
903 if (al->al_state == ae->ae_ldrv.al_state[i])
904 continue;
905
906 printf("%s: state changed: %s -> %s\n",
907 al->al_dv->dv_xname,
908 amr_drive_state(al->al_state, NULL),
909 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
910
911 al->al_state = ae->ae_ldrv.al_state[i];
912 }
913 }
914 }
915
916 /*
917 * Return a text description of a logical drive's current state.
918 */
919 const char *
920 amr_drive_state(int state, int *happy)
921 {
922 const char *str;
923
924 state = AMR_DRV_CURSTATE(state);
925 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
926 if (happy)
927 *happy = 1;
928 str = "status unknown";
929 } else {
930 if (happy)
931 *happy = amr_dstate[state].ds_happy;
932 str = amr_dstate[state].ds_descr;
933 }
934
935 return (str);
936 }
937
938 /*
939 * Run a generic enquiry-style command.
940 */
941 void *
942 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
943 u_int8_t cmdqual, void *buf)
944 {
945 struct amr_ccb *ac;
946 u_int8_t *mb;
947 int rv;
948
949 if (amr_ccb_alloc(amr, &ac) != 0)
950 return (NULL);
951
952 /* Build the command proper. */
953 mb = (u_int8_t *)&ac->ac_cmd;
954 mb[0] = cmd;
955 mb[2] = cmdsub;
956 mb[3] = cmdqual;
957
958 rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
959 if (rv == 0) {
960 rv = amr_ccb_poll(amr, ac, 2000);
961 amr_ccb_unmap(amr, ac);
962 }
963 amr_ccb_free(amr, ac);
964
965 return (rv ? NULL : buf);
966 }
967
968 /*
969 * Allocate and initialise a CCB.
970 */
971 int
972 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
973 {
974 int s;
975
976 s = splbio();
977 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
978 splx(s);
979 return (EAGAIN);
980 }
981 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
982 splx(s);
983
984 return (0);
985 }
986
987 /*
988 * Free a CCB.
989 */
990 void
991 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
992 {
993 int s;
994
995 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
996 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
997 ac->ac_cmd.mb_busy = 1;
998 ac->ac_handler = NULL;
999 ac->ac_flags = 0;
1000
1001 s = splbio();
1002 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1003 splx(s);
1004 }
1005
1006 /*
1007 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1008 * the order that they were enqueued and try to submit their command blocks
1009 * to the controller for execution.
1010 */
1011 void
1012 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1013 {
1014 int s;
1015
1016 s = splbio();
1017
1018 if (ac != NULL)
1019 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1020
1021 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1022 if ((*amr->amr_submit)(amr, ac) != 0)
1023 break;
1024 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1025 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1026 }
1027
1028 splx(s);
1029 }
1030
1031 /*
1032 * Map the specified CCB's data buffer onto the bus, and fill the
1033 * scatter-gather list.
1034 */
1035 int
1036 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1037 int out)
1038 {
1039 struct amr_sgentry *sge;
1040 struct amr_mailbox_cmd *mb;
1041 int nsegs, i, rv, sgloff;
1042 bus_dmamap_t xfer;
1043
1044 xfer = ac->ac_xfer_map;
1045
1046 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1047 BUS_DMA_NOWAIT);
1048 if (rv != 0)
1049 return (rv);
1050
1051 mb = &ac->ac_cmd;
1052 ac->ac_xfer_size = size;
1053 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1054 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1055
1056 /* We don't need to use a scatter/gather list for just 1 segment. */
1057 nsegs = xfer->dm_nsegs;
1058 if (nsegs == 1) {
1059 mb->mb_nsgelem = 0;
1060 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1061 ac->ac_flags |= AC_NOSGL;
1062 } else {
1063 mb->mb_nsgelem = nsegs;
1064 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1065
1066 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1067 for (i = 0; i < nsegs; i++, sge++) {
1068 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1069 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1070 }
1071 }
1072
1073 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1074 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1075
1076 if ((ac->ac_flags & AC_NOSGL) == 0)
1077 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1078 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1079
1080 return (0);
1081 }
1082
1083 /*
1084 * Unmap the specified CCB's data buffer.
1085 */
1086 void
1087 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1088 {
1089
1090 if ((ac->ac_flags & AC_NOSGL) == 0)
1091 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1092 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1093 BUS_DMASYNC_POSTWRITE);
1094 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1095 (ac->ac_flags & AC_XFER_IN) != 0 ?
1096 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1097 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1098 }
1099
1100 /*
1101 * Submit a command to the controller and poll on completion. Return
1102 * non-zero on timeout or error. Must be called with interrupts blocked.
1103 */
1104 int
1105 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1106 {
1107 int rv;
1108
1109 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1110 return (rv);
1111 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1112
1113 for (timo *= 10; timo != 0; timo--) {
1114 amr_intr(amr);
1115 if ((ac->ac_flags & AC_COMPLETE) != 0)
1116 break;
1117 DELAY(100);
1118 }
1119
1120 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1121 }
1122
1123 /*
1124 * Submit a command to the controller and sleep on completion. Return
1125 * non-zero on error.
1126 */
1127 int
1128 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1129 {
1130 int s;
1131
1132 s = splbio();
1133 amr_ccb_enqueue(amr, ac);
1134 tsleep(ac, PRIBIO, "amrcmd", 0);
1135 splx(s);
1136
1137 return (ac->ac_status != 0 ? EIO : 0);
1138 }
1139
1140 /*
1141 * Wait for the mailbox to become available.
1142 */
1143 int
1144 amr_mbox_wait(struct amr_softc *amr)
1145 {
1146 int timo;
1147
1148 for (timo = 10000; timo != 0; timo--) {
1149 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1150 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1151 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1152 break;
1153 DELAY(100);
1154 }
1155
1156 if (timo == 0)
1157 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1158
1159 return (timo != 0 ? 0 : EAGAIN);
1160 }
1161
1162 /*
1163 * Tell the controller that the mailbox contains a valid command. Must be
1164 * called with interrupts blocked.
1165 */
1166 int
1167 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1168 {
1169 u_int32_t v;
1170
1171 amr->amr_mbox->mb_poll = 0;
1172 amr->amr_mbox->mb_ack = 0;
1173 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1174 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1175 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1176 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1177 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1178 return (EAGAIN);
1179
1180 v = amr_inl(amr, AMR_QREG_IDB);
1181 if ((v & AMR_QIDB_SUBMIT) != 0) {
1182 amr->amr_mbox->mb_cmd.mb_busy = 0;
1183 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1184 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1185 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1186 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1187 return (EAGAIN);
1188 }
1189
1190 amr->amr_mbox->mb_segment = 0;
1191 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1192 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1193 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1194
1195 ac->ac_start_time = (time_t)mono_time.tv_sec;
1196 ac->ac_flags |= AC_ACTIVE;
1197 amr_outl(amr, AMR_QREG_IDB,
1198 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1199 return (0);
1200 }
1201
1202 int
1203 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1204 {
1205
1206 amr->amr_mbox->mb_poll = 0;
1207 amr->amr_mbox->mb_ack = 0;
1208 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1209 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1210 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1211 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1212 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1213 return (EAGAIN);
1214
1215 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1216 amr->amr_mbox->mb_cmd.mb_busy = 0;
1217 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1218 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1219 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1220 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1221 return (EAGAIN);
1222 }
1223
1224 amr->amr_mbox->mb_segment = 0;
1225 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1226 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1227 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1228
1229 ac->ac_start_time = (time_t)mono_time.tv_sec;
1230 ac->ac_flags |= AC_ACTIVE;
1231 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1232 return (0);
1233 }
1234
1235 /*
1236 * Claim any work that the controller has completed; acknowledge completion,
1237 * save details of the completion in (mbsave). Must be called with
1238 * interrupts blocked.
1239 */
1240 int
1241 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1242 {
1243
1244 /* Work waiting for us? */
1245 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1246 return (-1);
1247
1248 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1249 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1250
1251 /* Save the mailbox, which contains a list of completed commands. */
1252 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1253
1254 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1255 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1256
1257 /* Ack the interrupt and mailbox transfer. */
1258 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1259 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1260
1261 /*
1262 * This waits for the controller to notice that we've taken the
1263 * command from it. It's very inefficient, and we shouldn't do it,
1264 * but if we remove this code, we stop completing commands under
1265 * load.
1266 *
1267 * Peter J says we shouldn't do this. The documentation says we
1268 * should. Who is right?
1269 */
1270 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1271 DELAY(10);
1272
1273 return (0);
1274 }
1275
1276 int
1277 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1278 {
1279 u_int8_t istat;
1280
1281 /* Check for valid interrupt status. */
1282 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1283 return (-1);
1284
1285 /* Ack the interrupt. */
1286 amr_outb(amr, AMR_SREG_INTR, istat);
1287
1288 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1289 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1290
1291 /* Save mailbox, which contains a list of completed commands. */
1292 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1293
1294 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1295 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1296
1297 /* Ack mailbox transfer. */
1298 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1299
1300 return (0);
1301 }
1302
1303 void
1304 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1305 {
1306 int i;
1307
1308 printf("%s: ", amr->amr_dv.dv_xname);
1309 for (i = 0; i < 4; i++)
1310 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1311 printf("\n");
1312 }
1313