Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.25
      1 /*	$NetBSD: amr.c,v 1.25 2005/02/27 00:27:32 perry Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999,2000 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67  */
     68 
     69 /*
     70  * Driver for AMI RAID controllers.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.25 2005/02/27 00:27:32 perry Exp $");
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/device.h>
     80 #include <sys/queue.h>
     81 #include <sys/proc.h>
     82 #include <sys/buf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/kthread.h>
     85 
     86 #include <uvm/uvm_extern.h>
     87 
     88 #include <machine/endian.h>
     89 #include <machine/bus.h>
     90 
     91 #include <dev/pci/pcidevs.h>
     92 #include <dev/pci/pcivar.h>
     93 #include <dev/pci/amrreg.h>
     94 #include <dev/pci/amrvar.h>
     95 
     96 #include "locators.h"
     97 
     98 void	amr_attach(struct device *, struct device *, void *);
     99 void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
    100 void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
    101 int	amr_init(struct amr_softc *, const char *,
    102 			 struct pci_attach_args *pa);
    103 int	amr_intr(void *);
    104 int	amr_match(struct device *, struct cfdata *, void *);
    105 int	amr_print(void *, const char *);
    106 void	amr_shutdown(void *);
    107 int	amr_submatch(struct device *, struct cfdata *,
    108 		     const locdesc_t *, void *);
    109 void	amr_teardown(struct amr_softc *);
    110 void	amr_thread(void *);
    111 void	amr_thread_create(void *);
    112 
    113 int	amr_mbox_wait(struct amr_softc *);
    114 int	amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    115 int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    116 int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    117 int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    118 
    119 static inline u_int8_t	amr_inb(struct amr_softc *, int);
    120 static inline u_int32_t	amr_inl(struct amr_softc *, int);
    121 static inline void	amr_outb(struct amr_softc *, int, u_int8_t);
    122 static inline void	amr_outl(struct amr_softc *, int, u_int32_t);
    123 
    124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
    125     amr_match, amr_attach, NULL, NULL);
    126 
    127 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    128 #define	AT_SIG		0x02	/* Check for signature */
    129 
    130 struct amr_pci_type {
    131 	u_short	apt_vendor;
    132 	u_short	apt_product;
    133 	u_short	apt_flags;
    134 } const amr_pci_type[] = {
    135 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    136 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    137 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    138 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    139 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    140 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    141 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    142 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
    143 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
    144 };
    145 
    146 struct amr_typestr {
    147 	const char	*at_str;
    148 	int		at_sig;
    149 } const amr_typestr[] = {
    150 	{ "Series 431",			AMR_SIG_431 },
    151 	{ "Series 438",			AMR_SIG_438 },
    152 	{ "Series 466",			AMR_SIG_466 },
    153 	{ "Series 467",			AMR_SIG_467 },
    154 	{ "Series 490",			AMR_SIG_490 },
    155 	{ "Series 762",			AMR_SIG_762 },
    156 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    157 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    158 };
    159 
    160 struct {
    161 	const char	*ds_descr;
    162 	int	ds_happy;
    163 } const amr_dstate[] = {
    164 	{ "offline",	0 },
    165 	{ "degraded",	1 },
    166 	{ "optimal",	1 },
    167 	{ "online",	1 },
    168 	{ "failed",	0 },
    169 	{ "rebuilding",	1 },
    170 	{ "hotspare",	0 },
    171 };
    172 
    173 void	*amr_sdh;
    174 int	amr_max_segs;
    175 int	amr_max_xfer;
    176 
    177 static inline u_int8_t
    178 amr_inb(struct amr_softc *amr, int off)
    179 {
    180 
    181 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    182 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    183 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    184 }
    185 
    186 static inline u_int32_t
    187 amr_inl(struct amr_softc *amr, int off)
    188 {
    189 
    190 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    191 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    192 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    193 }
    194 
    195 static inline void
    196 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    197 {
    198 
    199 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    200 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    201 	    BUS_SPACE_BARRIER_WRITE);
    202 }
    203 
    204 static inline void
    205 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    206 {
    207 
    208 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    209 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    210 	    BUS_SPACE_BARRIER_WRITE);
    211 }
    212 
    213 /*
    214  * Match a supported device.
    215  */
    216 int
    217 amr_match(struct device *parent, struct cfdata *match, void *aux)
    218 {
    219 	struct pci_attach_args *pa;
    220 	pcireg_t s;
    221 	int i;
    222 
    223 	pa = (struct pci_attach_args *)aux;
    224 
    225 	/*
    226 	 * Don't match the device if it's operating in I2O mode.  In this
    227 	 * case it should be handled by the `iop' driver.
    228 	 */
    229 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    230 		return (0);
    231 
    232 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    233 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    234 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    235 		    	break;
    236 
    237 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    238 		return (0);
    239 
    240 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    241 		return (1);
    242 
    243 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    244 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    245 }
    246 
    247 /*
    248  * Attach a supported device.
    249  */
    250 void
    251 amr_attach(struct device *parent, struct device *self, void *aux)
    252 {
    253 	struct pci_attach_args *pa;
    254 	struct amr_attach_args amra;
    255 	const struct amr_pci_type *apt;
    256 	struct amr_softc *amr;
    257 	pci_chipset_tag_t pc;
    258 	pci_intr_handle_t ih;
    259 	const char *intrstr;
    260 	pcireg_t reg;
    261 	int rseg, i, j, size, rv, memreg, ioreg;
    262         struct amr_ccb *ac;
    263 	int help[2];
    264 	locdesc_t *ldesc = (void *)help; /* XXX */
    265 
    266 	aprint_naive(": RAID controller\n");
    267 
    268 	amr = (struct amr_softc *)self;
    269 	pa = (struct pci_attach_args *)aux;
    270 	pc = pa->pa_pc;
    271 
    272 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    273 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    274 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    275 			break;
    276 	apt = amr_pci_type + i;
    277 
    278 	memreg = ioreg = 0;
    279 	for (i = 0x10; i <= 0x14; i += 4) {
    280 		reg = pci_conf_read(pc, pa->pa_tag, i);
    281 		switch (PCI_MAPREG_TYPE(reg)) {
    282 		case PCI_MAPREG_TYPE_MEM:
    283 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
    284 				memreg = i;
    285 			break;
    286 		case PCI_MAPREG_TYPE_IO:
    287 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
    288 				ioreg = i;
    289 			break;
    290 
    291 		}
    292 	}
    293 
    294 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    295 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    296 		;
    297 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    298 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    299 		;
    300 	else {
    301 		aprint_error("can't map control registers\n");
    302 		amr_teardown(amr);
    303 		return;
    304 	}
    305 
    306 	amr->amr_flags |= AMRF_PCI_REGS;
    307 	amr->amr_dmat = pa->pa_dmat;
    308 	amr->amr_pc = pa->pa_pc;
    309 
    310 	/* Enable the device. */
    311 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    312 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    313 	    reg | PCI_COMMAND_MASTER_ENABLE);
    314 
    315 	/* Map and establish the interrupt. */
    316 	if (pci_intr_map(pa, &ih)) {
    317 		aprint_error("can't map interrupt\n");
    318 		amr_teardown(amr);
    319 		return;
    320 	}
    321 	intrstr = pci_intr_string(pc, ih);
    322 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    323 	if (amr->amr_ih == NULL) {
    324 		aprint_error("can't establish interrupt");
    325 		if (intrstr != NULL)
    326 			aprint_normal(" at %s", intrstr);
    327 		aprint_normal("\n");
    328 		amr_teardown(amr);
    329 		return;
    330 	}
    331 	amr->amr_flags |= AMRF_PCI_INTR;
    332 
    333 	/*
    334 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    335 	 * don't like S/G lists to be located below 0x2000, so we allocate
    336 	 * enough slop to enable us to compensate.
    337 	 *
    338 	 * The standard mailbox structure needs to be aligned on a 16-byte
    339 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    340 	 * size, which preceeds the standard mailbox.
    341 	 */
    342 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    343 	amr->amr_dmasize = size;
    344 
    345 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
    346 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    347 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    348 		    amr->amr_dv.dv_xname, rv);
    349 		amr_teardown(amr);
    350 		return;
    351 	}
    352 	amr->amr_flags |= AMRF_DMA_ALLOC;
    353 
    354 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    355 	    (caddr_t *)&amr->amr_mbox,
    356 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    357 		aprint_error("%s: unable to map buffer, rv = %d\n",
    358 		    amr->amr_dv.dv_xname, rv);
    359 		amr_teardown(amr);
    360 		return;
    361 	}
    362 	amr->amr_flags |= AMRF_DMA_MAP;
    363 
    364 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    365 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    366 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    367 		    amr->amr_dv.dv_xname, rv);
    368 		amr_teardown(amr);
    369 		return;
    370 	}
    371 	amr->amr_flags |= AMRF_DMA_CREATE;
    372 
    373 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    374 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    375 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    376 		    amr->amr_dv.dv_xname, rv);
    377 		amr_teardown(amr);
    378 		return;
    379 	}
    380 	amr->amr_flags |= AMRF_DMA_LOAD;
    381 
    382 	memset(amr->amr_mbox, 0, size);
    383 
    384 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    385 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    386 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
    387 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    388 
    389 	/*
    390 	 * Allocate and initalise the command control blocks.
    391 	 */
    392 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    393 	amr->amr_ccbs = ac;
    394 	SLIST_INIT(&amr->amr_ccb_freelist);
    395 	TAILQ_INIT(&amr->amr_ccb_active);
    396 	amr->amr_flags |= AMRF_CCBS;
    397 
    398 	if (amr_max_xfer == 0) {
    399 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    400 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    401 	}
    402 
    403 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    404 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    405 		    amr_max_segs, amr_max_xfer, 0,
    406 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    407 		if (rv != 0)
    408 			break;
    409 
    410 		ac->ac_ident = i;
    411 		amr_ccb_free(amr, ac);
    412 	}
    413 	if (i != AMR_MAX_CMDS) {
    414 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    415 		amr_teardown(amr);
    416 		return;
    417 	}
    418 
    419 	/*
    420 	 * Take care of model-specific tasks.
    421 	 */
    422 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    423 		amr->amr_submit = amr_quartz_submit;
    424 		amr->amr_get_work = amr_quartz_get_work;
    425 	} else {
    426 		amr->amr_submit = amr_std_submit;
    427 		amr->amr_get_work = amr_std_get_work;
    428 
    429 		/* Notify the controller of the mailbox location. */
    430 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    431 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    432 
    433 		/* Clear outstanding interrupts and enable interrupts. */
    434 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    435 		amr_outb(amr, AMR_SREG_TOGL,
    436 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    437 	}
    438 
    439 	/*
    440 	 * Retrieve parameters, and tell the world about us.
    441 	 */
    442 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    443 	amr->amr_flags |= AMRF_ENQBUF;
    444 	amr->amr_maxqueuecnt = i;
    445 	aprint_normal(": AMI RAID ");
    446 	if (amr_init(amr, intrstr, pa) != 0) {
    447 		amr_teardown(amr);
    448 		return;
    449 	}
    450 
    451 	/*
    452 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    453 	 * driver doesn't trust the controller's reported value, and lockups
    454 	 * have been seen when we do.
    455 	 */
    456 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    457 	if (amr->amr_maxqueuecnt > i)
    458 		amr->amr_maxqueuecnt = i;
    459 
    460 	/* Set our `shutdownhook' before we start any device activity. */
    461 	if (amr_sdh == NULL)
    462 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    463 
    464 	/* Attach sub-devices. */
    465 	for (j = 0; j < amr->amr_numdrives; j++) {
    466 		if (amr->amr_drive[j].al_size == 0)
    467 			continue;
    468 		amra.amra_unit = j;
    469 
    470 		ldesc->len = 1;
    471 		ldesc->locs[AMRCF_UNIT] = j;
    472 
    473 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
    474 			"amr", ldesc, &amra, amr_print, amr_submatch);
    475 	}
    476 
    477 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    478 
    479 	/* XXX This doesn't work for newer boards yet. */
    480 	if ((apt->apt_flags & AT_QUARTZ) == 0)
    481 		kthread_create(amr_thread_create, amr);
    482 }
    483 
    484 /*
    485  * Free up resources.
    486  */
    487 void
    488 amr_teardown(struct amr_softc *amr)
    489 {
    490 	struct amr_ccb *ac;
    491 	int fl;
    492 
    493 	fl = amr->amr_flags;
    494 
    495 	if ((fl & AMRF_THREAD) != 0) {
    496 		amr->amr_flags |= AMRF_THREAD_EXIT;
    497 		wakeup(amr_thread);
    498 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    499 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    500 	}
    501 	if ((fl & AMRF_CCBS) != 0) {
    502 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    503 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    504 		}
    505 		free(amr->amr_ccbs, M_DEVBUF);
    506 	}
    507 	if ((fl & AMRF_ENQBUF) != 0)
    508 		free(amr->amr_enqbuf, M_DEVBUF);
    509 	if ((fl & AMRF_DMA_LOAD) != 0)
    510 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    511 	if ((fl & AMRF_DMA_MAP) != 0)
    512 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
    513 		    amr->amr_dmasize);
    514 	if ((fl & AMRF_DMA_ALLOC) != 0)
    515 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    516 	if ((fl & AMRF_DMA_CREATE) != 0)
    517 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    518 	if ((fl & AMRF_PCI_INTR) != 0)
    519 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    520 	if ((fl & AMRF_PCI_REGS) != 0)
    521 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    522 }
    523 
    524 /*
    525  * Print autoconfiguration message for a sub-device.
    526  */
    527 int
    528 amr_print(void *aux, const char *pnp)
    529 {
    530 	struct amr_attach_args *amra;
    531 
    532 	amra = (struct amr_attach_args *)aux;
    533 
    534 	if (pnp != NULL)
    535 		aprint_normal("block device at %s", pnp);
    536 	aprint_normal(" unit %d", amra->amra_unit);
    537 	return (UNCONF);
    538 }
    539 
    540 /*
    541  * Match a sub-device.
    542  */
    543 int
    544 amr_submatch(struct device *parent, struct cfdata *cf,
    545 	     const locdesc_t *ldesc, void *aux)
    546 {
    547 	struct amr_attach_args *amra;
    548 
    549 	amra = (struct amr_attach_args *)aux;
    550 
    551 	if (cf->cf_loc[AMRCF_UNIT] != AMRCF_UNIT_DEFAULT &&
    552 	    cf->cf_loc[AMRCF_UNIT] != ldesc->locs[AMRCF_UNIT])
    553 		return (0);
    554 
    555 	return (config_match(parent, cf, aux));
    556 }
    557 
    558 /*
    559  * Retrieve operational parameters and describe the controller.
    560  */
    561 int
    562 amr_init(struct amr_softc *amr, const char *intrstr,
    563 	 struct pci_attach_args *pa)
    564 {
    565 	struct amr_adapter_info *aa;
    566 	struct amr_prodinfo *ap;
    567 	struct amr_enquiry *ae;
    568 	struct amr_enquiry3 *aex;
    569 	const char *prodstr;
    570 	u_int i, sig, ishp;
    571 	char buf[64];
    572 
    573 	/*
    574 	 * Try to get 40LD product info, which tells us what the card is
    575 	 * labelled as.
    576 	 */
    577 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    578 	    amr->amr_enqbuf);
    579 	if (ap != NULL) {
    580 		aprint_normal("<%.80s>\n", ap->ap_product);
    581 		if (intrstr != NULL)
    582 			aprint_normal("%s: interrupting at %s\n",
    583 			    amr->amr_dv.dv_xname, intrstr);
    584 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    585 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    586 		    le16toh(ap->ap_memsize));
    587 
    588 		amr->amr_maxqueuecnt = ap->ap_maxio;
    589 
    590 		/*
    591 		 * Fetch and record state of logical drives.
    592 		 */
    593 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    594 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    595 		if (aex == NULL) {
    596 			aprint_error("%s ENQUIRY3 failed\n",
    597 			    amr->amr_dv.dv_xname);
    598 			return (-1);
    599 		}
    600 
    601 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    602 			aprint_error(
    603 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    604 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
    605 			    amr->amr_numdrives);
    606 			amr->amr_numdrives = AMR_MAX_UNITS;
    607 		} else
    608 			amr->amr_numdrives = aex->ae_numldrives;
    609 
    610 		for (i = 0; i < amr->amr_numdrives; i++) {
    611 			amr->amr_drive[i].al_size =
    612 			    le32toh(aex->ae_drivesize[i]);
    613 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    614 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    615 		}
    616 
    617 		return (0);
    618 	}
    619 
    620 	/*
    621 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    622 	 * found, search for a product description.
    623 	 */
    624 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    625 	if (ae != NULL) {
    626 		i = 0;
    627 		sig = le32toh(ae->ae_signature);
    628 
    629 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    630 			if (amr_typestr[i].at_sig == sig)
    631 				break;
    632 			i++;
    633 		}
    634 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    635 			snprintf(buf, sizeof(buf),
    636 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
    637 			prodstr = buf;
    638 		} else
    639 			prodstr = amr_typestr[i].at_str;
    640 	} else {
    641 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    642 		if (ae == NULL) {
    643 			aprint_error("%s: unsupported controller\n",
    644 			    amr->amr_dv.dv_xname);
    645 			return (-1);
    646 		}
    647 
    648 		switch (PCI_PRODUCT(pa->pa_id)) {
    649 		case PCI_PRODUCT_AMI_MEGARAID:
    650 			prodstr = "Series 428";
    651 			break;
    652 		case PCI_PRODUCT_AMI_MEGARAID2:
    653 			prodstr = "Series 434";
    654 			break;
    655 		default:
    656 			snprintf(buf, sizeof(buf), "unknown PCI dev (0x%04x)",
    657 			    PCI_PRODUCT(pa->pa_id));
    658 			prodstr = buf;
    659 			break;
    660 		}
    661 	}
    662 
    663 	/*
    664 	 * HP NetRaid controllers have a special encoding of the firmware
    665 	 * and BIOS versions.  The AMI version seems to have it as strings
    666 	 * whereas the HP version does it with a leading uppercase character
    667 	 * and two binary numbers.
    668 	*/
    669 	aa = &ae->ae_adapter;
    670 
    671 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    672 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    673 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    674 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    675 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    676 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    677 			prodstr = "HP NetRaid 3si";
    678 		}
    679 		ishp = 1;
    680 	} else
    681 		ishp = 0;
    682 
    683 	aprint_normal("<%s>\n", prodstr);
    684 	if (intrstr != NULL)
    685 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    686 		    intrstr);
    687 
    688 	if (ishp)
    689 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    690 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    691 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    692 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    693 	else
    694 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    695 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    696 		    aa->aa_memorysize);
    697 
    698 	amr->amr_maxqueuecnt = aa->aa_maxio;
    699 
    700 	/*
    701 	 * Record state of logical drives.
    702 	 */
    703 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    704 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    705 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    706 		    AMR_MAX_UNITS);
    707 		amr->amr_numdrives = AMR_MAX_UNITS;
    708 	} else
    709 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    710 
    711 	for (i = 0; i < AMR_MAX_UNITS; i++) {
    712 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    713 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    714 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    715 	}
    716 
    717 	return (0);
    718 }
    719 
    720 /*
    721  * Flush the internal cache on each configured controller.  Called at
    722  * shutdown time.
    723  */
    724 void
    725 amr_shutdown(void *cookie)
    726 {
    727         extern struct cfdriver amr_cd;
    728 	struct amr_softc *amr;
    729 	struct amr_ccb *ac;
    730 	int i, rv, s;
    731 
    732 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    733 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    734 			continue;
    735 
    736 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    737 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    738 			s = splbio();
    739 			rv = amr_ccb_poll(amr, ac, 30000);
    740 			splx(s);
    741 			amr_ccb_free(amr, ac);
    742 		}
    743 		if (rv != 0)
    744 			printf("%s: unable to flush cache (%d)\n",
    745 			    amr->amr_dv.dv_xname, rv);
    746 	}
    747 }
    748 
    749 /*
    750  * Interrupt service routine.
    751  */
    752 int
    753 amr_intr(void *cookie)
    754 {
    755 	struct amr_softc *amr;
    756 	struct amr_ccb *ac;
    757 	struct amr_mailbox_resp mbox;
    758 	u_int i, forus, idx;
    759 
    760 	amr = cookie;
    761 	forus = 0;
    762 
    763 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    764 		/* Iterate over completed commands in this result. */
    765 		for (i = 0; i < mbox.mb_nstatus; i++) {
    766 			idx = mbox.mb_completed[i] - 1;
    767 			ac = amr->amr_ccbs + idx;
    768 
    769 			if (idx >= amr->amr_maxqueuecnt) {
    770 				printf("%s: bad status (bogus ID: %u=%u)\n",
    771 				    amr->amr_dv.dv_xname, i, idx);
    772 				continue;
    773 			}
    774 
    775 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    776 				printf("%s: bad status (not active; 0x04%x)\n",
    777 				    amr->amr_dv.dv_xname, ac->ac_flags);
    778 				continue;
    779 			}
    780 
    781 			ac->ac_status = mbox.mb_status;
    782 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    783 			    AC_COMPLETE;
    784 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    785 
    786 			if ((ac->ac_flags & AC_MOAN) != 0)
    787 				printf("%s: ccb %d completed\n",
    788 				    amr->amr_dv.dv_xname, ac->ac_ident);
    789 
    790 			/* Pass notification to upper layers. */
    791 			if (ac->ac_handler != NULL)
    792 				(*ac->ac_handler)(ac);
    793 			else
    794 				wakeup(ac);
    795 		}
    796 		forus = 1;
    797 	}
    798 
    799 	if (forus)
    800 		amr_ccb_enqueue(amr, NULL);
    801 
    802 	return (forus);
    803 }
    804 
    805 /*
    806  * Create the watchdog thread.
    807  */
    808 void
    809 amr_thread_create(void *cookie)
    810 {
    811 	struct amr_softc *amr;
    812 	int rv;
    813 
    814 	amr = cookie;
    815 
    816 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    817 		amr->amr_flags ^= AMRF_THREAD_EXIT;
    818 		wakeup(&amr->amr_flags);
    819 		return;
    820 	}
    821 
    822 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
    823 	    amr->amr_dv.dv_xname);
    824  	if (rv != 0)
    825 		aprint_error("%s: unable to create thread (%d)",
    826  		    amr->amr_dv.dv_xname, rv);
    827  	else
    828  		amr->amr_flags |= AMRF_THREAD;
    829 }
    830 
    831 /*
    832  * Watchdog thread.
    833  */
    834 void
    835 amr_thread(void *cookie)
    836 {
    837 	struct amr_softc *amr;
    838 	struct amr_ccb *ac;
    839 	struct amr_logdrive *al;
    840 	struct amr_enquiry *ae;
    841 	time_t curtime;
    842 	int rv, i, s;
    843 
    844 	amr = cookie;
    845 	ae = amr->amr_enqbuf;
    846 
    847 	for (;;) {
    848 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    849 
    850 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    851 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    852 			wakeup(&amr->amr_flags);
    853 			kthread_exit(0);
    854 		}
    855 
    856 		s = splbio();
    857 		amr_intr(cookie);
    858 		curtime = (time_t)mono_time.tv_sec;
    859 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    860 		while (ac != NULL) {
    861 			if (ac->ac_start_time + AMR_TIMEOUT > curtime)
    862 				break;
    863 			if ((ac->ac_flags & AC_MOAN) == 0) {
    864 				printf("%s: ccb %d timed out; mailbox:\n",
    865 				    amr->amr_dv.dv_xname, ac->ac_ident);
    866 				amr_ccb_dump(amr, ac);
    867 				ac->ac_flags |= AC_MOAN;
    868 			}
    869 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    870 		}
    871 		splx(s);
    872 
    873 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    874 			printf("%s: ccb_alloc failed (%d)\n",
    875  			    amr->amr_dv.dv_xname, rv);
    876 			continue;
    877 		}
    878 
    879 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    880 
    881 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    882 		    AMR_ENQUIRY_BUFSIZE, 0);
    883 		if (rv != 0) {
    884 			printf("%s: ccb_map failed (%d)\n",
    885  			    amr->amr_dv.dv_xname, rv);
    886 			amr_ccb_free(amr, ac);
    887 			continue;
    888 		}
    889 
    890 		rv = amr_ccb_wait(amr, ac);
    891 		amr_ccb_unmap(amr, ac);
    892 		if (rv != 0) {
    893 			printf("%s: enquiry failed (st=%d)\n",
    894  			    amr->amr_dv.dv_xname, ac->ac_status);
    895 			continue;
    896 		}
    897 		amr_ccb_free(amr, ac);
    898 
    899 		al = amr->amr_drive;
    900 		for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
    901 			if (al->al_dv == NULL)
    902 				continue;
    903 			if (al->al_state == ae->ae_ldrv.al_state[i])
    904 				continue;
    905 
    906 			printf("%s: state changed: %s -> %s\n",
    907 			    al->al_dv->dv_xname,
    908 			    amr_drive_state(al->al_state, NULL),
    909 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    910 
    911 			al->al_state = ae->ae_ldrv.al_state[i];
    912 		}
    913 	}
    914 }
    915 
    916 /*
    917  * Return a text description of a logical drive's current state.
    918  */
    919 const char *
    920 amr_drive_state(int state, int *happy)
    921 {
    922 	const char *str;
    923 
    924 	state = AMR_DRV_CURSTATE(state);
    925 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    926 		if (happy)
    927 			*happy = 1;
    928 		str = "status unknown";
    929 	} else {
    930 		if (happy)
    931 			*happy = amr_dstate[state].ds_happy;
    932 		str = amr_dstate[state].ds_descr;
    933 	}
    934 
    935 	return (str);
    936 }
    937 
    938 /*
    939  * Run a generic enquiry-style command.
    940  */
    941 void *
    942 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    943 	    u_int8_t cmdqual, void *buf)
    944 {
    945 	struct amr_ccb *ac;
    946 	u_int8_t *mb;
    947 	int rv;
    948 
    949 	if (amr_ccb_alloc(amr, &ac) != 0)
    950 		return (NULL);
    951 
    952 	/* Build the command proper. */
    953 	mb = (u_int8_t *)&ac->ac_cmd;
    954 	mb[0] = cmd;
    955 	mb[2] = cmdsub;
    956 	mb[3] = cmdqual;
    957 
    958 	rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
    959 	if (rv == 0) {
    960 		rv = amr_ccb_poll(amr, ac, 2000);
    961 		amr_ccb_unmap(amr, ac);
    962 	}
    963 	amr_ccb_free(amr, ac);
    964 
    965 	return (rv ? NULL : buf);
    966 }
    967 
    968 /*
    969  * Allocate and initialise a CCB.
    970  */
    971 int
    972 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    973 {
    974 	int s;
    975 
    976 	s = splbio();
    977 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    978 		splx(s);
    979 		return (EAGAIN);
    980 	}
    981 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    982 	splx(s);
    983 
    984 	return (0);
    985 }
    986 
    987 /*
    988  * Free a CCB.
    989  */
    990 void
    991 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    992 {
    993 	int s;
    994 
    995 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    996 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    997 	ac->ac_cmd.mb_busy = 1;
    998 	ac->ac_handler = NULL;
    999 	ac->ac_flags = 0;
   1000 
   1001 	s = splbio();
   1002 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
   1003 	splx(s);
   1004 }
   1005 
   1006 /*
   1007  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1008  * the order that they were enqueued and try to submit their command blocks
   1009  * to the controller for execution.
   1010  */
   1011 void
   1012 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1013 {
   1014 	int s;
   1015 
   1016 	s = splbio();
   1017 
   1018 	if (ac != NULL)
   1019 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1020 
   1021 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1022 		if ((*amr->amr_submit)(amr, ac) != 0)
   1023 			break;
   1024 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1025 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1026 	}
   1027 
   1028 	splx(s);
   1029 }
   1030 
   1031 /*
   1032  * Map the specified CCB's data buffer onto the bus, and fill the
   1033  * scatter-gather list.
   1034  */
   1035 int
   1036 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1037 	    int out)
   1038 {
   1039 	struct amr_sgentry *sge;
   1040 	struct amr_mailbox_cmd *mb;
   1041 	int nsegs, i, rv, sgloff;
   1042 	bus_dmamap_t xfer;
   1043 
   1044 	xfer = ac->ac_xfer_map;
   1045 
   1046 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1047 	    BUS_DMA_NOWAIT);
   1048 	if (rv != 0)
   1049 		return (rv);
   1050 
   1051 	mb = &ac->ac_cmd;
   1052 	ac->ac_xfer_size = size;
   1053 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
   1054 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1055 
   1056 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1057 	nsegs = xfer->dm_nsegs;
   1058 	if (nsegs == 1) {
   1059 		mb->mb_nsgelem = 0;
   1060 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1061 		ac->ac_flags |= AC_NOSGL;
   1062 	} else {
   1063 		mb->mb_nsgelem = nsegs;
   1064 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1065 
   1066 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
   1067 		for (i = 0; i < nsegs; i++, sge++) {
   1068 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1069 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1070 		}
   1071 	}
   1072 
   1073 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
   1074 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
   1075 
   1076 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1077 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1078 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1079 
   1080 	return (0);
   1081 }
   1082 
   1083 /*
   1084  * Unmap the specified CCB's data buffer.
   1085  */
   1086 void
   1087 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1088 {
   1089 
   1090 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1091 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1092 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1093 		    BUS_DMASYNC_POSTWRITE);
   1094 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1095 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
   1096 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1097 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1098 }
   1099 
   1100 /*
   1101  * Submit a command to the controller and poll on completion.  Return
   1102  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1103  */
   1104 int
   1105 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1106 {
   1107 	int rv;
   1108 
   1109 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1110 		return (rv);
   1111 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1112 
   1113 	for (timo *= 10; timo != 0; timo--) {
   1114 		amr_intr(amr);
   1115 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1116 			break;
   1117 		DELAY(100);
   1118 	}
   1119 
   1120 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1121 }
   1122 
   1123 /*
   1124  * Submit a command to the controller and sleep on completion.  Return
   1125  * non-zero on error.
   1126  */
   1127 int
   1128 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1129 {
   1130 	int s;
   1131 
   1132 	s = splbio();
   1133 	amr_ccb_enqueue(amr, ac);
   1134 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1135 	splx(s);
   1136 
   1137 	return (ac->ac_status != 0 ? EIO : 0);
   1138 }
   1139 
   1140 /*
   1141  * Wait for the mailbox to become available.
   1142  */
   1143 int
   1144 amr_mbox_wait(struct amr_softc *amr)
   1145 {
   1146 	int timo;
   1147 
   1148 	for (timo = 10000; timo != 0; timo--) {
   1149 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1150 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1151 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1152 			break;
   1153 		DELAY(100);
   1154 	}
   1155 
   1156 	if (timo == 0)
   1157 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1158 
   1159 	return (timo != 0 ? 0 : EAGAIN);
   1160 }
   1161 
   1162 /*
   1163  * Tell the controller that the mailbox contains a valid command.  Must be
   1164  * called with interrupts blocked.
   1165  */
   1166 int
   1167 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1168 {
   1169 	u_int32_t v;
   1170 
   1171 	amr->amr_mbox->mb_poll = 0;
   1172 	amr->amr_mbox->mb_ack = 0;
   1173 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1174 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1175 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1176 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1177 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1178 		return (EAGAIN);
   1179 
   1180 	v = amr_inl(amr, AMR_QREG_IDB);
   1181 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1182 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1183 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1184 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1185 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1186 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1187 		return (EAGAIN);
   1188 	}
   1189 
   1190 	amr->amr_mbox->mb_segment = 0;
   1191 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1192 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1193 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1194 
   1195 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1196 	ac->ac_flags |= AC_ACTIVE;
   1197 	amr_outl(amr, AMR_QREG_IDB,
   1198 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1199 	return (0);
   1200 }
   1201 
   1202 int
   1203 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1204 {
   1205 
   1206 	amr->amr_mbox->mb_poll = 0;
   1207 	amr->amr_mbox->mb_ack = 0;
   1208 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1209 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1210 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1211 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1212 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1213 		return (EAGAIN);
   1214 
   1215 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1216 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1217 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1218 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1219 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1220 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1221 		return (EAGAIN);
   1222 	}
   1223 
   1224 	amr->amr_mbox->mb_segment = 0;
   1225 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1226 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1227 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1228 
   1229 	ac->ac_start_time = (time_t)mono_time.tv_sec;
   1230 	ac->ac_flags |= AC_ACTIVE;
   1231 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1232 	return (0);
   1233 }
   1234 
   1235 /*
   1236  * Claim any work that the controller has completed; acknowledge completion,
   1237  * save details of the completion in (mbsave).  Must be called with
   1238  * interrupts blocked.
   1239  */
   1240 int
   1241 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1242 {
   1243 
   1244 	/* Work waiting for us? */
   1245 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1246 		return (-1);
   1247 
   1248 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1249 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1250 
   1251 	/* Save the mailbox, which contains a list of completed commands. */
   1252 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1253 
   1254 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1255 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1256 
   1257 	/* Ack the interrupt and mailbox transfer. */
   1258 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1259 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1260 
   1261 	/*
   1262 	 * This waits for the controller to notice that we've taken the
   1263 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1264 	 * but if we remove this code, we stop completing commands under
   1265 	 * load.
   1266 	 *
   1267 	 * Peter J says we shouldn't do this.  The documentation says we
   1268 	 * should.  Who is right?
   1269 	 */
   1270 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1271 		DELAY(10);
   1272 
   1273 	return (0);
   1274 }
   1275 
   1276 int
   1277 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1278 {
   1279 	u_int8_t istat;
   1280 
   1281 	/* Check for valid interrupt status. */
   1282 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1283 		return (-1);
   1284 
   1285 	/* Ack the interrupt. */
   1286 	amr_outb(amr, AMR_SREG_INTR, istat);
   1287 
   1288 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1289 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1290 
   1291 	/* Save mailbox, which contains a list of completed commands. */
   1292 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1293 
   1294 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1295 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1296 
   1297 	/* Ack mailbox transfer. */
   1298 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1299 
   1300 	return (0);
   1301 }
   1302 
   1303 void
   1304 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1305 {
   1306 	int i;
   1307 
   1308 	printf("%s: ", amr->amr_dv.dv_xname);
   1309 	for (i = 0; i < 4; i++)
   1310 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1311 	printf("\n");
   1312 }
   1313