amr.c revision 1.25.2.1 1 /* $NetBSD: amr.c,v 1.25.2.1 2005/12/15 20:08:01 tron Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.25.2.1 2005/12/15 20:08:01 tron Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85
86 #include <uvm/uvm_extern.h>
87
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95
96 #include "locators.h"
97
98 void amr_attach(struct device *, struct device *, void *);
99 void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
100 void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
101 int amr_init(struct amr_softc *, const char *,
102 struct pci_attach_args *pa);
103 int amr_intr(void *);
104 int amr_match(struct device *, struct cfdata *, void *);
105 int amr_print(void *, const char *);
106 void amr_shutdown(void *);
107 int amr_submatch(struct device *, struct cfdata *,
108 const locdesc_t *, void *);
109 void amr_teardown(struct amr_softc *);
110 void amr_thread(void *);
111 void amr_thread_create(void *);
112
113 int amr_mbox_wait(struct amr_softc *);
114 int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
115 int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
116 int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
117 int amr_std_submit(struct amr_softc *, struct amr_ccb *);
118
119 static inline u_int8_t amr_inb(struct amr_softc *, int);
120 static inline u_int32_t amr_inl(struct amr_softc *, int);
121 static inline void amr_outb(struct amr_softc *, int, u_int8_t);
122 static inline void amr_outl(struct amr_softc *, int, u_int32_t);
123
124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
125 amr_match, amr_attach, NULL, NULL);
126
127 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
128 #define AT_SIG 0x02 /* Check for signature */
129
130 struct amr_pci_type {
131 u_short apt_vendor;
132 u_short apt_product;
133 u_short apt_flags;
134 } const amr_pci_type[] = {
135 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
136 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
137 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
138 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
139 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
140 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
141 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
142 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
143 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
144 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
145 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
146 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
147 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
148 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
149 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
150 };
151
152 struct amr_typestr {
153 const char *at_str;
154 int at_sig;
155 } const amr_typestr[] = {
156 { "Series 431", AMR_SIG_431 },
157 { "Series 438", AMR_SIG_438 },
158 { "Series 466", AMR_SIG_466 },
159 { "Series 467", AMR_SIG_467 },
160 { "Series 490", AMR_SIG_490 },
161 { "Series 762", AMR_SIG_762 },
162 { "HP NetRAID (T5)", AMR_SIG_T5 },
163 { "HP NetRAID (T7)", AMR_SIG_T7 },
164 };
165
166 struct {
167 const char *ds_descr;
168 int ds_happy;
169 } const amr_dstate[] = {
170 { "offline", 0 },
171 { "degraded", 1 },
172 { "optimal", 1 },
173 { "online", 1 },
174 { "failed", 0 },
175 { "rebuilding", 1 },
176 { "hotspare", 0 },
177 };
178
179 void *amr_sdh;
180 int amr_max_segs;
181 int amr_max_xfer;
182
183 static inline u_int8_t
184 amr_inb(struct amr_softc *amr, int off)
185 {
186
187 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
188 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
189 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
190 }
191
192 static inline u_int32_t
193 amr_inl(struct amr_softc *amr, int off)
194 {
195
196 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
197 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
198 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
199 }
200
201 static inline void
202 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
203 {
204
205 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
206 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
207 BUS_SPACE_BARRIER_WRITE);
208 }
209
210 static inline void
211 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
212 {
213
214 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
215 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
216 BUS_SPACE_BARRIER_WRITE);
217 }
218
219 /*
220 * Match a supported device.
221 */
222 int
223 amr_match(struct device *parent, struct cfdata *match, void *aux)
224 {
225 struct pci_attach_args *pa;
226 pcireg_t s;
227 int i;
228
229 pa = (struct pci_attach_args *)aux;
230
231 /*
232 * Don't match the device if it's operating in I2O mode. In this
233 * case it should be handled by the `iop' driver.
234 */
235 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
236 return (0);
237
238 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
239 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
240 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
241 break;
242
243 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
244 return (0);
245
246 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
247 return (1);
248
249 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
250 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
251 }
252
253 /*
254 * Attach a supported device.
255 */
256 void
257 amr_attach(struct device *parent, struct device *self, void *aux)
258 {
259 struct pci_attach_args *pa;
260 struct amr_attach_args amra;
261 const struct amr_pci_type *apt;
262 struct amr_softc *amr;
263 pci_chipset_tag_t pc;
264 pci_intr_handle_t ih;
265 const char *intrstr;
266 pcireg_t reg;
267 int rseg, i, j, size, rv, memreg, ioreg;
268 struct amr_ccb *ac;
269 int help[2];
270 locdesc_t *ldesc = (void *)help; /* XXX */
271
272 aprint_naive(": RAID controller\n");
273
274 amr = (struct amr_softc *)self;
275 pa = (struct pci_attach_args *)aux;
276 pc = pa->pa_pc;
277
278 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
279 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
280 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
281 break;
282 apt = amr_pci_type + i;
283
284 memreg = ioreg = 0;
285 for (i = 0x10; i <= 0x14; i += 4) {
286 reg = pci_conf_read(pc, pa->pa_tag, i);
287 switch (PCI_MAPREG_TYPE(reg)) {
288 case PCI_MAPREG_TYPE_MEM:
289 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
290 memreg = i;
291 break;
292 case PCI_MAPREG_TYPE_IO:
293 if (PCI_MAPREG_IO_SIZE(reg) != 0)
294 ioreg = i;
295 break;
296
297 }
298 }
299
300 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
301 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
302 ;
303 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
304 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
305 ;
306 else {
307 aprint_error("can't map control registers\n");
308 amr_teardown(amr);
309 return;
310 }
311
312 amr->amr_flags |= AMRF_PCI_REGS;
313 amr->amr_dmat = pa->pa_dmat;
314 amr->amr_pc = pa->pa_pc;
315
316 /* Enable the device. */
317 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
318 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
319 reg | PCI_COMMAND_MASTER_ENABLE);
320
321 /* Map and establish the interrupt. */
322 if (pci_intr_map(pa, &ih)) {
323 aprint_error("can't map interrupt\n");
324 amr_teardown(amr);
325 return;
326 }
327 intrstr = pci_intr_string(pc, ih);
328 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
329 if (amr->amr_ih == NULL) {
330 aprint_error("can't establish interrupt");
331 if (intrstr != NULL)
332 aprint_normal(" at %s", intrstr);
333 aprint_normal("\n");
334 amr_teardown(amr);
335 return;
336 }
337 amr->amr_flags |= AMRF_PCI_INTR;
338
339 /*
340 * Allocate space for the mailbox and S/G lists. Some controllers
341 * don't like S/G lists to be located below 0x2000, so we allocate
342 * enough slop to enable us to compensate.
343 *
344 * The standard mailbox structure needs to be aligned on a 16-byte
345 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
346 * size, which preceeds the standard mailbox.
347 */
348 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
349 amr->amr_dmasize = size;
350
351 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
352 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
353 aprint_error("%s: unable to allocate buffer, rv = %d\n",
354 amr->amr_dv.dv_xname, rv);
355 amr_teardown(amr);
356 return;
357 }
358 amr->amr_flags |= AMRF_DMA_ALLOC;
359
360 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
361 (caddr_t *)&amr->amr_mbox,
362 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
363 aprint_error("%s: unable to map buffer, rv = %d\n",
364 amr->amr_dv.dv_xname, rv);
365 amr_teardown(amr);
366 return;
367 }
368 amr->amr_flags |= AMRF_DMA_MAP;
369
370 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
371 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
372 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
373 amr->amr_dv.dv_xname, rv);
374 amr_teardown(amr);
375 return;
376 }
377 amr->amr_flags |= AMRF_DMA_CREATE;
378
379 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
380 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
381 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
382 amr->amr_dv.dv_xname, rv);
383 amr_teardown(amr);
384 return;
385 }
386 amr->amr_flags |= AMRF_DMA_LOAD;
387
388 memset(amr->amr_mbox, 0, size);
389
390 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
391 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
392 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
393 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
394
395 /*
396 * Allocate and initalise the command control blocks.
397 */
398 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
399 amr->amr_ccbs = ac;
400 SLIST_INIT(&amr->amr_ccb_freelist);
401 TAILQ_INIT(&amr->amr_ccb_active);
402 amr->amr_flags |= AMRF_CCBS;
403
404 if (amr_max_xfer == 0) {
405 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
406 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
407 }
408
409 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
410 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
411 amr_max_segs, amr_max_xfer, 0,
412 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
413 if (rv != 0)
414 break;
415
416 ac->ac_ident = i;
417 amr_ccb_free(amr, ac);
418 }
419 if (i != AMR_MAX_CMDS) {
420 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
421 amr_teardown(amr);
422 return;
423 }
424
425 /*
426 * Take care of model-specific tasks.
427 */
428 if ((apt->apt_flags & AT_QUARTZ) != 0) {
429 amr->amr_submit = amr_quartz_submit;
430 amr->amr_get_work = amr_quartz_get_work;
431 } else {
432 amr->amr_submit = amr_std_submit;
433 amr->amr_get_work = amr_std_get_work;
434
435 /* Notify the controller of the mailbox location. */
436 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
437 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
438
439 /* Clear outstanding interrupts and enable interrupts. */
440 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
441 amr_outb(amr, AMR_SREG_TOGL,
442 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
443 }
444
445 /*
446 * Retrieve parameters, and tell the world about us.
447 */
448 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
449 amr->amr_flags |= AMRF_ENQBUF;
450 amr->amr_maxqueuecnt = i;
451 aprint_normal(": AMI RAID ");
452 if (amr_init(amr, intrstr, pa) != 0) {
453 amr_teardown(amr);
454 return;
455 }
456
457 /*
458 * Cap the maximum number of outstanding commands. AMI's Linux
459 * driver doesn't trust the controller's reported value, and lockups
460 * have been seen when we do.
461 */
462 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
463 if (amr->amr_maxqueuecnt > i)
464 amr->amr_maxqueuecnt = i;
465
466 /* Set our `shutdownhook' before we start any device activity. */
467 if (amr_sdh == NULL)
468 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
469
470 /* Attach sub-devices. */
471 for (j = 0; j < amr->amr_numdrives; j++) {
472 if (amr->amr_drive[j].al_size == 0)
473 continue;
474 amra.amra_unit = j;
475
476 ldesc->len = 1;
477 ldesc->locs[AMRCF_UNIT] = j;
478
479 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
480 "amr", ldesc, &amra, amr_print, amr_submatch);
481 }
482
483 SIMPLEQ_INIT(&amr->amr_ccb_queue);
484
485 /* XXX This doesn't work for newer boards yet. */
486 if ((apt->apt_flags & AT_QUARTZ) == 0)
487 kthread_create(amr_thread_create, amr);
488 }
489
490 /*
491 * Free up resources.
492 */
493 void
494 amr_teardown(struct amr_softc *amr)
495 {
496 struct amr_ccb *ac;
497 int fl;
498
499 fl = amr->amr_flags;
500
501 if ((fl & AMRF_THREAD) != 0) {
502 amr->amr_flags |= AMRF_THREAD_EXIT;
503 wakeup(amr_thread);
504 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
505 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
506 }
507 if ((fl & AMRF_CCBS) != 0) {
508 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
509 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
510 }
511 free(amr->amr_ccbs, M_DEVBUF);
512 }
513 if ((fl & AMRF_ENQBUF) != 0)
514 free(amr->amr_enqbuf, M_DEVBUF);
515 if ((fl & AMRF_DMA_LOAD) != 0)
516 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
517 if ((fl & AMRF_DMA_MAP) != 0)
518 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
519 amr->amr_dmasize);
520 if ((fl & AMRF_DMA_ALLOC) != 0)
521 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
522 if ((fl & AMRF_DMA_CREATE) != 0)
523 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
524 if ((fl & AMRF_PCI_INTR) != 0)
525 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
526 if ((fl & AMRF_PCI_REGS) != 0)
527 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
528 }
529
530 /*
531 * Print autoconfiguration message for a sub-device.
532 */
533 int
534 amr_print(void *aux, const char *pnp)
535 {
536 struct amr_attach_args *amra;
537
538 amra = (struct amr_attach_args *)aux;
539
540 if (pnp != NULL)
541 aprint_normal("block device at %s", pnp);
542 aprint_normal(" unit %d", amra->amra_unit);
543 return (UNCONF);
544 }
545
546 /*
547 * Match a sub-device.
548 */
549 int
550 amr_submatch(struct device *parent, struct cfdata *cf,
551 const locdesc_t *ldesc, void *aux)
552 {
553 struct amr_attach_args *amra;
554
555 amra = (struct amr_attach_args *)aux;
556
557 if (cf->cf_loc[AMRCF_UNIT] != AMRCF_UNIT_DEFAULT &&
558 cf->cf_loc[AMRCF_UNIT] != ldesc->locs[AMRCF_UNIT])
559 return (0);
560
561 return (config_match(parent, cf, aux));
562 }
563
564 /*
565 * Retrieve operational parameters and describe the controller.
566 */
567 int
568 amr_init(struct amr_softc *amr, const char *intrstr,
569 struct pci_attach_args *pa)
570 {
571 struct amr_adapter_info *aa;
572 struct amr_prodinfo *ap;
573 struct amr_enquiry *ae;
574 struct amr_enquiry3 *aex;
575 const char *prodstr;
576 u_int i, sig, ishp;
577 char buf[64];
578
579 /*
580 * Try to get 40LD product info, which tells us what the card is
581 * labelled as.
582 */
583 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
584 amr->amr_enqbuf);
585 if (ap != NULL) {
586 aprint_normal("<%.80s>\n", ap->ap_product);
587 if (intrstr != NULL)
588 aprint_normal("%s: interrupting at %s\n",
589 amr->amr_dv.dv_xname, intrstr);
590 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
591 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
592 le16toh(ap->ap_memsize));
593
594 amr->amr_maxqueuecnt = ap->ap_maxio;
595
596 /*
597 * Fetch and record state of logical drives.
598 */
599 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
600 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
601 if (aex == NULL) {
602 aprint_error("%s ENQUIRY3 failed\n",
603 amr->amr_dv.dv_xname);
604 return (-1);
605 }
606
607 if (aex->ae_numldrives > AMR_MAX_UNITS) {
608 aprint_error(
609 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
610 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
611 amr->amr_numdrives);
612 amr->amr_numdrives = AMR_MAX_UNITS;
613 } else
614 amr->amr_numdrives = aex->ae_numldrives;
615
616 for (i = 0; i < amr->amr_numdrives; i++) {
617 amr->amr_drive[i].al_size =
618 le32toh(aex->ae_drivesize[i]);
619 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
620 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
621 }
622
623 return (0);
624 }
625
626 /*
627 * Try 8LD extended ENQUIRY to get the controller signature. Once
628 * found, search for a product description.
629 */
630 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
631 if (ae != NULL) {
632 i = 0;
633 sig = le32toh(ae->ae_signature);
634
635 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
636 if (amr_typestr[i].at_sig == sig)
637 break;
638 i++;
639 }
640 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
641 snprintf(buf, sizeof(buf),
642 "unknown ENQUIRY2 sig (0x%08x)", sig);
643 prodstr = buf;
644 } else
645 prodstr = amr_typestr[i].at_str;
646 } else {
647 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
648 if (ae == NULL) {
649 aprint_error("%s: unsupported controller\n",
650 amr->amr_dv.dv_xname);
651 return (-1);
652 }
653
654 switch (PCI_PRODUCT(pa->pa_id)) {
655 case PCI_PRODUCT_AMI_MEGARAID:
656 prodstr = "Series 428";
657 break;
658 case PCI_PRODUCT_AMI_MEGARAID2:
659 prodstr = "Series 434";
660 break;
661 default:
662 snprintf(buf, sizeof(buf), "unknown PCI dev (0x%04x)",
663 PCI_PRODUCT(pa->pa_id));
664 prodstr = buf;
665 break;
666 }
667 }
668
669 /*
670 * HP NetRaid controllers have a special encoding of the firmware
671 * and BIOS versions. The AMI version seems to have it as strings
672 * whereas the HP version does it with a leading uppercase character
673 * and two binary numbers.
674 */
675 aa = &ae->ae_adapter;
676
677 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
678 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
679 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
680 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
681 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
682 /* The AMI 438 is a NetRaid 3si in HP-land. */
683 prodstr = "HP NetRaid 3si";
684 }
685 ishp = 1;
686 } else
687 ishp = 0;
688
689 aprint_normal("<%s>\n", prodstr);
690 if (intrstr != NULL)
691 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
692 intrstr);
693
694 if (ishp)
695 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
696 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
697 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
698 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
699 else
700 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
701 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
702 aa->aa_memorysize);
703
704 amr->amr_maxqueuecnt = aa->aa_maxio;
705
706 /*
707 * Record state of logical drives.
708 */
709 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
710 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
711 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
712 AMR_MAX_UNITS);
713 amr->amr_numdrives = AMR_MAX_UNITS;
714 } else
715 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
716
717 for (i = 0; i < AMR_MAX_UNITS; i++) {
718 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
719 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
720 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
721 }
722
723 return (0);
724 }
725
726 /*
727 * Flush the internal cache on each configured controller. Called at
728 * shutdown time.
729 */
730 void
731 amr_shutdown(void *cookie)
732 {
733 extern struct cfdriver amr_cd;
734 struct amr_softc *amr;
735 struct amr_ccb *ac;
736 int i, rv, s;
737
738 for (i = 0; i < amr_cd.cd_ndevs; i++) {
739 if ((amr = device_lookup(&amr_cd, i)) == NULL)
740 continue;
741
742 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
743 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
744 s = splbio();
745 rv = amr_ccb_poll(amr, ac, 30000);
746 splx(s);
747 amr_ccb_free(amr, ac);
748 }
749 if (rv != 0)
750 printf("%s: unable to flush cache (%d)\n",
751 amr->amr_dv.dv_xname, rv);
752 }
753 }
754
755 /*
756 * Interrupt service routine.
757 */
758 int
759 amr_intr(void *cookie)
760 {
761 struct amr_softc *amr;
762 struct amr_ccb *ac;
763 struct amr_mailbox_resp mbox;
764 u_int i, forus, idx;
765
766 amr = cookie;
767 forus = 0;
768
769 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
770 /* Iterate over completed commands in this result. */
771 for (i = 0; i < mbox.mb_nstatus; i++) {
772 idx = mbox.mb_completed[i] - 1;
773 ac = amr->amr_ccbs + idx;
774
775 if (idx >= amr->amr_maxqueuecnt) {
776 printf("%s: bad status (bogus ID: %u=%u)\n",
777 amr->amr_dv.dv_xname, i, idx);
778 continue;
779 }
780
781 if ((ac->ac_flags & AC_ACTIVE) == 0) {
782 printf("%s: bad status (not active; 0x04%x)\n",
783 amr->amr_dv.dv_xname, ac->ac_flags);
784 continue;
785 }
786
787 ac->ac_status = mbox.mb_status;
788 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
789 AC_COMPLETE;
790 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
791
792 if ((ac->ac_flags & AC_MOAN) != 0)
793 printf("%s: ccb %d completed\n",
794 amr->amr_dv.dv_xname, ac->ac_ident);
795
796 /* Pass notification to upper layers. */
797 if (ac->ac_handler != NULL)
798 (*ac->ac_handler)(ac);
799 else
800 wakeup(ac);
801 }
802 forus = 1;
803 }
804
805 if (forus)
806 amr_ccb_enqueue(amr, NULL);
807
808 return (forus);
809 }
810
811 /*
812 * Create the watchdog thread.
813 */
814 void
815 amr_thread_create(void *cookie)
816 {
817 struct amr_softc *amr;
818 int rv;
819
820 amr = cookie;
821
822 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
823 amr->amr_flags ^= AMRF_THREAD_EXIT;
824 wakeup(&amr->amr_flags);
825 return;
826 }
827
828 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
829 amr->amr_dv.dv_xname);
830 if (rv != 0)
831 aprint_error("%s: unable to create thread (%d)",
832 amr->amr_dv.dv_xname, rv);
833 else
834 amr->amr_flags |= AMRF_THREAD;
835 }
836
837 /*
838 * Watchdog thread.
839 */
840 void
841 amr_thread(void *cookie)
842 {
843 struct amr_softc *amr;
844 struct amr_ccb *ac;
845 struct amr_logdrive *al;
846 struct amr_enquiry *ae;
847 time_t curtime;
848 int rv, i, s;
849
850 amr = cookie;
851 ae = amr->amr_enqbuf;
852
853 for (;;) {
854 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
855
856 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
857 amr->amr_flags ^= AMRF_THREAD_EXIT;
858 wakeup(&amr->amr_flags);
859 kthread_exit(0);
860 }
861
862 s = splbio();
863 amr_intr(cookie);
864 curtime = (time_t)mono_time.tv_sec;
865 ac = TAILQ_FIRST(&amr->amr_ccb_active);
866 while (ac != NULL) {
867 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
868 break;
869 if ((ac->ac_flags & AC_MOAN) == 0) {
870 printf("%s: ccb %d timed out; mailbox:\n",
871 amr->amr_dv.dv_xname, ac->ac_ident);
872 amr_ccb_dump(amr, ac);
873 ac->ac_flags |= AC_MOAN;
874 }
875 ac = TAILQ_NEXT(ac, ac_chain.tailq);
876 }
877 splx(s);
878
879 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
880 printf("%s: ccb_alloc failed (%d)\n",
881 amr->amr_dv.dv_xname, rv);
882 continue;
883 }
884
885 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
886
887 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
888 AMR_ENQUIRY_BUFSIZE, 0);
889 if (rv != 0) {
890 printf("%s: ccb_map failed (%d)\n",
891 amr->amr_dv.dv_xname, rv);
892 amr_ccb_free(amr, ac);
893 continue;
894 }
895
896 rv = amr_ccb_wait(amr, ac);
897 amr_ccb_unmap(amr, ac);
898 if (rv != 0) {
899 printf("%s: enquiry failed (st=%d)\n",
900 amr->amr_dv.dv_xname, ac->ac_status);
901 continue;
902 }
903 amr_ccb_free(amr, ac);
904
905 al = amr->amr_drive;
906 for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
907 if (al->al_dv == NULL)
908 continue;
909 if (al->al_state == ae->ae_ldrv.al_state[i])
910 continue;
911
912 printf("%s: state changed: %s -> %s\n",
913 al->al_dv->dv_xname,
914 amr_drive_state(al->al_state, NULL),
915 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
916
917 al->al_state = ae->ae_ldrv.al_state[i];
918 }
919 }
920 }
921
922 /*
923 * Return a text description of a logical drive's current state.
924 */
925 const char *
926 amr_drive_state(int state, int *happy)
927 {
928 const char *str;
929
930 state = AMR_DRV_CURSTATE(state);
931 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
932 if (happy)
933 *happy = 1;
934 str = "status unknown";
935 } else {
936 if (happy)
937 *happy = amr_dstate[state].ds_happy;
938 str = amr_dstate[state].ds_descr;
939 }
940
941 return (str);
942 }
943
944 /*
945 * Run a generic enquiry-style command.
946 */
947 void *
948 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
949 u_int8_t cmdqual, void *buf)
950 {
951 struct amr_ccb *ac;
952 u_int8_t *mb;
953 int rv;
954
955 if (amr_ccb_alloc(amr, &ac) != 0)
956 return (NULL);
957
958 /* Build the command proper. */
959 mb = (u_int8_t *)&ac->ac_cmd;
960 mb[0] = cmd;
961 mb[2] = cmdsub;
962 mb[3] = cmdqual;
963
964 rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
965 if (rv == 0) {
966 rv = amr_ccb_poll(amr, ac, 2000);
967 amr_ccb_unmap(amr, ac);
968 }
969 amr_ccb_free(amr, ac);
970
971 return (rv ? NULL : buf);
972 }
973
974 /*
975 * Allocate and initialise a CCB.
976 */
977 int
978 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
979 {
980 int s;
981
982 s = splbio();
983 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
984 splx(s);
985 return (EAGAIN);
986 }
987 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
988 splx(s);
989
990 return (0);
991 }
992
993 /*
994 * Free a CCB.
995 */
996 void
997 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
998 {
999 int s;
1000
1001 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1002 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1003 ac->ac_cmd.mb_busy = 1;
1004 ac->ac_handler = NULL;
1005 ac->ac_flags = 0;
1006
1007 s = splbio();
1008 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1009 splx(s);
1010 }
1011
1012 /*
1013 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1014 * the order that they were enqueued and try to submit their command blocks
1015 * to the controller for execution.
1016 */
1017 void
1018 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1019 {
1020 int s;
1021
1022 s = splbio();
1023
1024 if (ac != NULL)
1025 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1026
1027 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1028 if ((*amr->amr_submit)(amr, ac) != 0)
1029 break;
1030 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1031 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1032 }
1033
1034 splx(s);
1035 }
1036
1037 /*
1038 * Map the specified CCB's data buffer onto the bus, and fill the
1039 * scatter-gather list.
1040 */
1041 int
1042 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1043 int out)
1044 {
1045 struct amr_sgentry *sge;
1046 struct amr_mailbox_cmd *mb;
1047 int nsegs, i, rv, sgloff;
1048 bus_dmamap_t xfer;
1049
1050 xfer = ac->ac_xfer_map;
1051
1052 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1053 BUS_DMA_NOWAIT);
1054 if (rv != 0)
1055 return (rv);
1056
1057 mb = &ac->ac_cmd;
1058 ac->ac_xfer_size = size;
1059 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1060 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1061
1062 /* We don't need to use a scatter/gather list for just 1 segment. */
1063 nsegs = xfer->dm_nsegs;
1064 if (nsegs == 1) {
1065 mb->mb_nsgelem = 0;
1066 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1067 ac->ac_flags |= AC_NOSGL;
1068 } else {
1069 mb->mb_nsgelem = nsegs;
1070 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1071
1072 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1073 for (i = 0; i < nsegs; i++, sge++) {
1074 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1075 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1076 }
1077 }
1078
1079 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1080 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1081
1082 if ((ac->ac_flags & AC_NOSGL) == 0)
1083 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1084 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1085
1086 return (0);
1087 }
1088
1089 /*
1090 * Unmap the specified CCB's data buffer.
1091 */
1092 void
1093 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1094 {
1095
1096 if ((ac->ac_flags & AC_NOSGL) == 0)
1097 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1098 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1099 BUS_DMASYNC_POSTWRITE);
1100 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1101 (ac->ac_flags & AC_XFER_IN) != 0 ?
1102 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1103 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1104 }
1105
1106 /*
1107 * Submit a command to the controller and poll on completion. Return
1108 * non-zero on timeout or error. Must be called with interrupts blocked.
1109 */
1110 int
1111 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1112 {
1113 int rv;
1114
1115 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1116 return (rv);
1117 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1118
1119 for (timo *= 10; timo != 0; timo--) {
1120 amr_intr(amr);
1121 if ((ac->ac_flags & AC_COMPLETE) != 0)
1122 break;
1123 DELAY(100);
1124 }
1125
1126 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1127 }
1128
1129 /*
1130 * Submit a command to the controller and sleep on completion. Return
1131 * non-zero on error.
1132 */
1133 int
1134 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1135 {
1136 int s;
1137
1138 s = splbio();
1139 amr_ccb_enqueue(amr, ac);
1140 tsleep(ac, PRIBIO, "amrcmd", 0);
1141 splx(s);
1142
1143 return (ac->ac_status != 0 ? EIO : 0);
1144 }
1145
1146 /*
1147 * Wait for the mailbox to become available.
1148 */
1149 int
1150 amr_mbox_wait(struct amr_softc *amr)
1151 {
1152 int timo;
1153
1154 for (timo = 10000; timo != 0; timo--) {
1155 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1156 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1157 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1158 break;
1159 DELAY(100);
1160 }
1161
1162 if (timo == 0)
1163 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1164
1165 return (timo != 0 ? 0 : EAGAIN);
1166 }
1167
1168 /*
1169 * Tell the controller that the mailbox contains a valid command. Must be
1170 * called with interrupts blocked.
1171 */
1172 int
1173 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1174 {
1175 u_int32_t v;
1176
1177 amr->amr_mbox->mb_poll = 0;
1178 amr->amr_mbox->mb_ack = 0;
1179 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1180 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1181 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1182 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1183 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1184 return (EAGAIN);
1185
1186 v = amr_inl(amr, AMR_QREG_IDB);
1187 if ((v & AMR_QIDB_SUBMIT) != 0) {
1188 amr->amr_mbox->mb_cmd.mb_busy = 0;
1189 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1190 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1191 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1192 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1193 return (EAGAIN);
1194 }
1195
1196 amr->amr_mbox->mb_segment = 0;
1197 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1198 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1199 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1200
1201 ac->ac_start_time = (time_t)mono_time.tv_sec;
1202 ac->ac_flags |= AC_ACTIVE;
1203 amr_outl(amr, AMR_QREG_IDB,
1204 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1205 return (0);
1206 }
1207
1208 int
1209 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1210 {
1211
1212 amr->amr_mbox->mb_poll = 0;
1213 amr->amr_mbox->mb_ack = 0;
1214 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1215 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1216 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1217 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1218 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1219 return (EAGAIN);
1220
1221 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1222 amr->amr_mbox->mb_cmd.mb_busy = 0;
1223 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1224 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1225 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1226 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1227 return (EAGAIN);
1228 }
1229
1230 amr->amr_mbox->mb_segment = 0;
1231 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1232 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1233 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1234
1235 ac->ac_start_time = (time_t)mono_time.tv_sec;
1236 ac->ac_flags |= AC_ACTIVE;
1237 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1238 return (0);
1239 }
1240
1241 /*
1242 * Claim any work that the controller has completed; acknowledge completion,
1243 * save details of the completion in (mbsave). Must be called with
1244 * interrupts blocked.
1245 */
1246 int
1247 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1248 {
1249
1250 /* Work waiting for us? */
1251 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1252 return (-1);
1253
1254 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1255 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1256
1257 /* Save the mailbox, which contains a list of completed commands. */
1258 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1259
1260 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1261 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1262
1263 /* Ack the interrupt and mailbox transfer. */
1264 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1265 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1266
1267 /*
1268 * This waits for the controller to notice that we've taken the
1269 * command from it. It's very inefficient, and we shouldn't do it,
1270 * but if we remove this code, we stop completing commands under
1271 * load.
1272 *
1273 * Peter J says we shouldn't do this. The documentation says we
1274 * should. Who is right?
1275 */
1276 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1277 DELAY(10);
1278
1279 return (0);
1280 }
1281
1282 int
1283 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1284 {
1285 u_int8_t istat;
1286
1287 /* Check for valid interrupt status. */
1288 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1289 return (-1);
1290
1291 /* Ack the interrupt. */
1292 amr_outb(amr, AMR_SREG_INTR, istat);
1293
1294 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1295 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1296
1297 /* Save mailbox, which contains a list of completed commands. */
1298 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1299
1300 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1301 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1302
1303 /* Ack mailbox transfer. */
1304 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1305
1306 return (0);
1307 }
1308
1309 void
1310 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1311 {
1312 int i;
1313
1314 printf("%s: ", amr->amr_dv.dv_xname);
1315 for (i = 0; i < 4; i++)
1316 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1317 printf("\n");
1318 }
1319