amr.c revision 1.25.2.2 1 /* $NetBSD: amr.c,v 1.25.2.2 2006/07/30 16:38:59 tron Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.25.2.2 2006/07/30 16:38:59 tron Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/kthread.h>
86
87 #include <uvm/uvm_extern.h>
88
89 #include <machine/endian.h>
90 #include <machine/bus.h>
91
92 #include <dev/pci/pcidevs.h>
93 #include <dev/pci/pcivar.h>
94 #include <dev/pci/amrreg.h>
95 #include <dev/pci/amrvar.h>
96 #include <dev/pci/amrio.h>
97
98 #include "locators.h"
99
100 void amr_attach(struct device *, struct device *, void *);
101 void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
102 void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
103 int amr_init(struct amr_softc *, const char *,
104 struct pci_attach_args *pa);
105 int amr_intr(void *);
106 int amr_match(struct device *, struct cfdata *, void *);
107 int amr_print(void *, const char *);
108 void amr_shutdown(void *);
109 int amr_submatch(struct device *, struct cfdata *,
110 const locdesc_t *, void *);
111 void amr_teardown(struct amr_softc *);
112 void amr_thread(void *);
113 void amr_thread_create(void *);
114
115 int amr_mbox_wait(struct amr_softc *);
116 int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
117 int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
118 int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
119 int amr_std_submit(struct amr_softc *, struct amr_ccb *);
120
121 static inline u_int8_t amr_inb(struct amr_softc *, int);
122 static inline u_int32_t amr_inl(struct amr_softc *, int);
123 static inline void amr_outb(struct amr_softc *, int, u_int8_t);
124 static inline void amr_outl(struct amr_softc *, int, u_int32_t);
125
126 static dev_type_open(amropen);
127 static dev_type_close(amrclose);
128 static dev_type_ioctl(amrioctl);
129
130 CFATTACH_DECL(amr, sizeof(struct amr_softc),
131 amr_match, amr_attach, NULL, NULL);
132
133 const struct cdevsw amr_cdevsw = {
134 amropen, amrclose, noread, nowrite, amrioctl,
135 nostop, notty, nopoll, nommap,
136 };
137
138 extern struct cfdriver amr_cd;
139
140 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
141 #define AT_SIG 0x02 /* Check for signature */
142
143 struct amr_pci_type {
144 u_short apt_vendor;
145 u_short apt_product;
146 u_short apt_flags;
147 } const amr_pci_type[] = {
148 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
149 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
150 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
151 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
152 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
153 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
154 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
155 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
156 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
157 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
158 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
159 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
160 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
161 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
162 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
163 };
164
165 struct amr_typestr {
166 const char *at_str;
167 int at_sig;
168 } const amr_typestr[] = {
169 { "Series 431", AMR_SIG_431 },
170 { "Series 438", AMR_SIG_438 },
171 { "Series 466", AMR_SIG_466 },
172 { "Series 467", AMR_SIG_467 },
173 { "Series 490", AMR_SIG_490 },
174 { "Series 762", AMR_SIG_762 },
175 { "HP NetRAID (T5)", AMR_SIG_T5 },
176 { "HP NetRAID (T7)", AMR_SIG_T7 },
177 };
178
179 struct {
180 const char *ds_descr;
181 int ds_happy;
182 } const amr_dstate[] = {
183 { "offline", 0 },
184 { "degraded", 1 },
185 { "optimal", 1 },
186 { "online", 1 },
187 { "failed", 0 },
188 { "rebuilding", 1 },
189 { "hotspare", 0 },
190 };
191
192 void *amr_sdh;
193 int amr_max_segs;
194 int amr_max_xfer;
195
196 static inline u_int8_t
197 amr_inb(struct amr_softc *amr, int off)
198 {
199
200 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
201 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
202 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
203 }
204
205 static inline u_int32_t
206 amr_inl(struct amr_softc *amr, int off)
207 {
208
209 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
210 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
211 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
212 }
213
214 static inline void
215 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
216 {
217
218 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
219 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
220 BUS_SPACE_BARRIER_WRITE);
221 }
222
223 static inline void
224 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
225 {
226
227 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
228 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
229 BUS_SPACE_BARRIER_WRITE);
230 }
231
232 /*
233 * Match a supported device.
234 */
235 int
236 amr_match(struct device *parent, struct cfdata *match, void *aux)
237 {
238 struct pci_attach_args *pa;
239 pcireg_t s;
240 int i;
241
242 pa = (struct pci_attach_args *)aux;
243
244 /*
245 * Don't match the device if it's operating in I2O mode. In this
246 * case it should be handled by the `iop' driver.
247 */
248 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
249 return (0);
250
251 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
252 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
253 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
254 break;
255
256 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
257 return (0);
258
259 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
260 return (1);
261
262 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
263 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
264 }
265
266 /*
267 * Attach a supported device.
268 */
269 void
270 amr_attach(struct device *parent, struct device *self, void *aux)
271 {
272 struct pci_attach_args *pa;
273 struct amr_attach_args amra;
274 const struct amr_pci_type *apt;
275 struct amr_softc *amr;
276 pci_chipset_tag_t pc;
277 pci_intr_handle_t ih;
278 const char *intrstr;
279 pcireg_t reg;
280 int rseg, i, j, size, rv, memreg, ioreg;
281 struct amr_ccb *ac;
282 int help[2];
283 locdesc_t *ldesc = (void *)help; /* XXX */
284
285 aprint_naive(": RAID controller\n");
286
287 amr = (struct amr_softc *)self;
288 pa = (struct pci_attach_args *)aux;
289 pc = pa->pa_pc;
290
291 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
292 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
293 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
294 break;
295 apt = amr_pci_type + i;
296
297 memreg = ioreg = 0;
298 for (i = 0x10; i <= 0x14; i += 4) {
299 reg = pci_conf_read(pc, pa->pa_tag, i);
300 switch (PCI_MAPREG_TYPE(reg)) {
301 case PCI_MAPREG_TYPE_MEM:
302 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
303 memreg = i;
304 break;
305 case PCI_MAPREG_TYPE_IO:
306 if (PCI_MAPREG_IO_SIZE(reg) != 0)
307 ioreg = i;
308 break;
309
310 }
311 }
312
313 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
314 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
315 ;
316 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
317 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
318 ;
319 else {
320 aprint_error("can't map control registers\n");
321 amr_teardown(amr);
322 return;
323 }
324
325 amr->amr_flags |= AMRF_PCI_REGS;
326 amr->amr_dmat = pa->pa_dmat;
327 amr->amr_pc = pa->pa_pc;
328
329 /* Enable the device. */
330 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
331 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
332 reg | PCI_COMMAND_MASTER_ENABLE);
333
334 /* Map and establish the interrupt. */
335 if (pci_intr_map(pa, &ih)) {
336 aprint_error("can't map interrupt\n");
337 amr_teardown(amr);
338 return;
339 }
340 intrstr = pci_intr_string(pc, ih);
341 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
342 if (amr->amr_ih == NULL) {
343 aprint_error("can't establish interrupt");
344 if (intrstr != NULL)
345 aprint_normal(" at %s", intrstr);
346 aprint_normal("\n");
347 amr_teardown(amr);
348 return;
349 }
350 amr->amr_flags |= AMRF_PCI_INTR;
351
352 /*
353 * Allocate space for the mailbox and S/G lists. Some controllers
354 * don't like S/G lists to be located below 0x2000, so we allocate
355 * enough slop to enable us to compensate.
356 *
357 * The standard mailbox structure needs to be aligned on a 16-byte
358 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
359 * size, which preceeds the standard mailbox.
360 */
361 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
362 amr->amr_dmasize = size;
363
364 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
365 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
366 aprint_error("%s: unable to allocate buffer, rv = %d\n",
367 amr->amr_dv.dv_xname, rv);
368 amr_teardown(amr);
369 return;
370 }
371 amr->amr_flags |= AMRF_DMA_ALLOC;
372
373 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
374 (caddr_t *)&amr->amr_mbox,
375 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
376 aprint_error("%s: unable to map buffer, rv = %d\n",
377 amr->amr_dv.dv_xname, rv);
378 amr_teardown(amr);
379 return;
380 }
381 amr->amr_flags |= AMRF_DMA_MAP;
382
383 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
384 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
385 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
386 amr->amr_dv.dv_xname, rv);
387 amr_teardown(amr);
388 return;
389 }
390 amr->amr_flags |= AMRF_DMA_CREATE;
391
392 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
393 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
394 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
395 amr->amr_dv.dv_xname, rv);
396 amr_teardown(amr);
397 return;
398 }
399 amr->amr_flags |= AMRF_DMA_LOAD;
400
401 memset(amr->amr_mbox, 0, size);
402
403 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
404 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
405 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
406 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
407
408 /*
409 * Allocate and initalise the command control blocks.
410 */
411 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
412 amr->amr_ccbs = ac;
413 SLIST_INIT(&amr->amr_ccb_freelist);
414 TAILQ_INIT(&amr->amr_ccb_active);
415 amr->amr_flags |= AMRF_CCBS;
416
417 if (amr_max_xfer == 0) {
418 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
419 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
420 }
421
422 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
423 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
424 amr_max_segs, amr_max_xfer, 0,
425 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
426 if (rv != 0)
427 break;
428
429 ac->ac_ident = i;
430 amr_ccb_free(amr, ac);
431 }
432 if (i != AMR_MAX_CMDS) {
433 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
434 amr_teardown(amr);
435 return;
436 }
437
438 /*
439 * Take care of model-specific tasks.
440 */
441 if ((apt->apt_flags & AT_QUARTZ) != 0) {
442 amr->amr_submit = amr_quartz_submit;
443 amr->amr_get_work = amr_quartz_get_work;
444 } else {
445 amr->amr_submit = amr_std_submit;
446 amr->amr_get_work = amr_std_get_work;
447
448 /* Notify the controller of the mailbox location. */
449 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
450 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
451
452 /* Clear outstanding interrupts and enable interrupts. */
453 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
454 amr_outb(amr, AMR_SREG_TOGL,
455 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
456 }
457
458 /*
459 * Retrieve parameters, and tell the world about us.
460 */
461 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
462 amr->amr_flags |= AMRF_ENQBUF;
463 amr->amr_maxqueuecnt = i;
464 aprint_normal(": AMI RAID ");
465 if (amr_init(amr, intrstr, pa) != 0) {
466 amr_teardown(amr);
467 return;
468 }
469
470 /*
471 * Cap the maximum number of outstanding commands. AMI's Linux
472 * driver doesn't trust the controller's reported value, and lockups
473 * have been seen when we do.
474 */
475 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
476 if (amr->amr_maxqueuecnt > i)
477 amr->amr_maxqueuecnt = i;
478
479 /* Set our `shutdownhook' before we start any device activity. */
480 if (amr_sdh == NULL)
481 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
482
483 /* Attach sub-devices. */
484 for (j = 0; j < amr->amr_numdrives; j++) {
485 if (amr->amr_drive[j].al_size == 0)
486 continue;
487 amra.amra_unit = j;
488
489 ldesc->len = 1;
490 ldesc->locs[AMRCF_UNIT] = j;
491
492 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
493 "amr", ldesc, &amra, amr_print, amr_submatch);
494 }
495
496 SIMPLEQ_INIT(&amr->amr_ccb_queue);
497
498 /* XXX This doesn't work for newer boards yet. */
499 if ((apt->apt_flags & AT_QUARTZ) == 0)
500 kthread_create(amr_thread_create, amr);
501 }
502
503 /*
504 * Free up resources.
505 */
506 void
507 amr_teardown(struct amr_softc *amr)
508 {
509 struct amr_ccb *ac;
510 int fl;
511
512 fl = amr->amr_flags;
513
514 if ((fl & AMRF_THREAD) != 0) {
515 amr->amr_flags |= AMRF_THREAD_EXIT;
516 wakeup(amr_thread);
517 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
518 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
519 }
520 if ((fl & AMRF_CCBS) != 0) {
521 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
522 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
523 }
524 free(amr->amr_ccbs, M_DEVBUF);
525 }
526 if ((fl & AMRF_ENQBUF) != 0)
527 free(amr->amr_enqbuf, M_DEVBUF);
528 if ((fl & AMRF_DMA_LOAD) != 0)
529 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
530 if ((fl & AMRF_DMA_MAP) != 0)
531 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
532 amr->amr_dmasize);
533 if ((fl & AMRF_DMA_ALLOC) != 0)
534 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
535 if ((fl & AMRF_DMA_CREATE) != 0)
536 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
537 if ((fl & AMRF_PCI_INTR) != 0)
538 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
539 if ((fl & AMRF_PCI_REGS) != 0)
540 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
541 }
542
543 /*
544 * Print autoconfiguration message for a sub-device.
545 */
546 int
547 amr_print(void *aux, const char *pnp)
548 {
549 struct amr_attach_args *amra;
550
551 amra = (struct amr_attach_args *)aux;
552
553 if (pnp != NULL)
554 aprint_normal("block device at %s", pnp);
555 aprint_normal(" unit %d", amra->amra_unit);
556 return (UNCONF);
557 }
558
559 /*
560 * Match a sub-device.
561 */
562 int
563 amr_submatch(struct device *parent, struct cfdata *cf,
564 const locdesc_t *ldesc, void *aux)
565 {
566 struct amr_attach_args *amra;
567
568 amra = (struct amr_attach_args *)aux;
569
570 if (cf->cf_loc[AMRCF_UNIT] != AMRCF_UNIT_DEFAULT &&
571 cf->cf_loc[AMRCF_UNIT] != ldesc->locs[AMRCF_UNIT])
572 return (0);
573
574 return (config_match(parent, cf, aux));
575 }
576
577 /*
578 * Retrieve operational parameters and describe the controller.
579 */
580 int
581 amr_init(struct amr_softc *amr, const char *intrstr,
582 struct pci_attach_args *pa)
583 {
584 struct amr_adapter_info *aa;
585 struct amr_prodinfo *ap;
586 struct amr_enquiry *ae;
587 struct amr_enquiry3 *aex;
588 const char *prodstr;
589 u_int i, sig, ishp;
590 char buf[64];
591
592 /*
593 * Try to get 40LD product info, which tells us what the card is
594 * labelled as.
595 */
596 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
597 amr->amr_enqbuf);
598 if (ap != NULL) {
599 aprint_normal("<%.80s>\n", ap->ap_product);
600 if (intrstr != NULL)
601 aprint_normal("%s: interrupting at %s\n",
602 amr->amr_dv.dv_xname, intrstr);
603 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
604 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
605 le16toh(ap->ap_memsize));
606
607 amr->amr_maxqueuecnt = ap->ap_maxio;
608
609 /*
610 * Fetch and record state of logical drives.
611 */
612 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
613 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
614 if (aex == NULL) {
615 aprint_error("%s ENQUIRY3 failed\n",
616 amr->amr_dv.dv_xname);
617 return (-1);
618 }
619
620 if (aex->ae_numldrives > AMR_MAX_UNITS) {
621 aprint_error(
622 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
623 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
624 amr->amr_numdrives);
625 amr->amr_numdrives = AMR_MAX_UNITS;
626 } else
627 amr->amr_numdrives = aex->ae_numldrives;
628
629 for (i = 0; i < amr->amr_numdrives; i++) {
630 amr->amr_drive[i].al_size =
631 le32toh(aex->ae_drivesize[i]);
632 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
633 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
634 }
635
636 return (0);
637 }
638
639 /*
640 * Try 8LD extended ENQUIRY to get the controller signature. Once
641 * found, search for a product description.
642 */
643 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
644 if (ae != NULL) {
645 i = 0;
646 sig = le32toh(ae->ae_signature);
647
648 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
649 if (amr_typestr[i].at_sig == sig)
650 break;
651 i++;
652 }
653 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
654 snprintf(buf, sizeof(buf),
655 "unknown ENQUIRY2 sig (0x%08x)", sig);
656 prodstr = buf;
657 } else
658 prodstr = amr_typestr[i].at_str;
659 } else {
660 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
661 if (ae == NULL) {
662 aprint_error("%s: unsupported controller\n",
663 amr->amr_dv.dv_xname);
664 return (-1);
665 }
666
667 switch (PCI_PRODUCT(pa->pa_id)) {
668 case PCI_PRODUCT_AMI_MEGARAID:
669 prodstr = "Series 428";
670 break;
671 case PCI_PRODUCT_AMI_MEGARAID2:
672 prodstr = "Series 434";
673 break;
674 default:
675 snprintf(buf, sizeof(buf), "unknown PCI dev (0x%04x)",
676 PCI_PRODUCT(pa->pa_id));
677 prodstr = buf;
678 break;
679 }
680 }
681
682 /*
683 * HP NetRaid controllers have a special encoding of the firmware
684 * and BIOS versions. The AMI version seems to have it as strings
685 * whereas the HP version does it with a leading uppercase character
686 * and two binary numbers.
687 */
688 aa = &ae->ae_adapter;
689
690 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
691 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
692 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
693 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
694 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
695 /* The AMI 438 is a NetRaid 3si in HP-land. */
696 prodstr = "HP NetRaid 3si";
697 }
698 ishp = 1;
699 } else
700 ishp = 0;
701
702 aprint_normal("<%s>\n", prodstr);
703 if (intrstr != NULL)
704 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
705 intrstr);
706
707 if (ishp)
708 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
709 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
710 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
711 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
712 else
713 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
714 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
715 aa->aa_memorysize);
716
717 amr->amr_maxqueuecnt = aa->aa_maxio;
718
719 /*
720 * Record state of logical drives.
721 */
722 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
723 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
724 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
725 AMR_MAX_UNITS);
726 amr->amr_numdrives = AMR_MAX_UNITS;
727 } else
728 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
729
730 for (i = 0; i < AMR_MAX_UNITS; i++) {
731 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
732 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
733 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
734 }
735
736 return (0);
737 }
738
739 /*
740 * Flush the internal cache on each configured controller. Called at
741 * shutdown time.
742 */
743 void
744 amr_shutdown(void *cookie)
745 {
746 extern struct cfdriver amr_cd;
747 struct amr_softc *amr;
748 struct amr_ccb *ac;
749 int i, rv, s;
750
751 for (i = 0; i < amr_cd.cd_ndevs; i++) {
752 if ((amr = device_lookup(&amr_cd, i)) == NULL)
753 continue;
754
755 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
756 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
757 s = splbio();
758 rv = amr_ccb_poll(amr, ac, 30000);
759 splx(s);
760 amr_ccb_free(amr, ac);
761 }
762 if (rv != 0)
763 printf("%s: unable to flush cache (%d)\n",
764 amr->amr_dv.dv_xname, rv);
765 }
766 }
767
768 /*
769 * Interrupt service routine.
770 */
771 int
772 amr_intr(void *cookie)
773 {
774 struct amr_softc *amr;
775 struct amr_ccb *ac;
776 struct amr_mailbox_resp mbox;
777 u_int i, forus, idx;
778
779 amr = cookie;
780 forus = 0;
781
782 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
783 /* Iterate over completed commands in this result. */
784 for (i = 0; i < mbox.mb_nstatus; i++) {
785 idx = mbox.mb_completed[i] - 1;
786 ac = amr->amr_ccbs + idx;
787
788 if (idx >= amr->amr_maxqueuecnt) {
789 printf("%s: bad status (bogus ID: %u=%u)\n",
790 amr->amr_dv.dv_xname, i, idx);
791 continue;
792 }
793
794 if ((ac->ac_flags & AC_ACTIVE) == 0) {
795 printf("%s: bad status (not active; 0x04%x)\n",
796 amr->amr_dv.dv_xname, ac->ac_flags);
797 continue;
798 }
799
800 ac->ac_status = mbox.mb_status;
801 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
802 AC_COMPLETE;
803 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
804
805 if ((ac->ac_flags & AC_MOAN) != 0)
806 printf("%s: ccb %d completed\n",
807 amr->amr_dv.dv_xname, ac->ac_ident);
808
809 /* Pass notification to upper layers. */
810 if (ac->ac_handler != NULL)
811 (*ac->ac_handler)(ac);
812 else
813 wakeup(ac);
814 }
815 forus = 1;
816 }
817
818 if (forus)
819 amr_ccb_enqueue(amr, NULL);
820
821 return (forus);
822 }
823
824 /*
825 * Create the watchdog thread.
826 */
827 void
828 amr_thread_create(void *cookie)
829 {
830 struct amr_softc *amr;
831 int rv;
832
833 amr = cookie;
834
835 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
836 amr->amr_flags ^= AMRF_THREAD_EXIT;
837 wakeup(&amr->amr_flags);
838 return;
839 }
840
841 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
842 amr->amr_dv.dv_xname);
843 if (rv != 0)
844 aprint_error("%s: unable to create thread (%d)",
845 amr->amr_dv.dv_xname, rv);
846 else
847 amr->amr_flags |= AMRF_THREAD;
848 }
849
850 /*
851 * Watchdog thread.
852 */
853 void
854 amr_thread(void *cookie)
855 {
856 struct amr_softc *amr;
857 struct amr_ccb *ac;
858 struct amr_logdrive *al;
859 struct amr_enquiry *ae;
860 time_t curtime;
861 int rv, i, s;
862
863 amr = cookie;
864 ae = amr->amr_enqbuf;
865
866 for (;;) {
867 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
868
869 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
870 amr->amr_flags ^= AMRF_THREAD_EXIT;
871 wakeup(&amr->amr_flags);
872 kthread_exit(0);
873 }
874
875 s = splbio();
876 amr_intr(cookie);
877 curtime = (time_t)mono_time.tv_sec;
878 ac = TAILQ_FIRST(&amr->amr_ccb_active);
879 while (ac != NULL) {
880 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
881 break;
882 if ((ac->ac_flags & AC_MOAN) == 0) {
883 printf("%s: ccb %d timed out; mailbox:\n",
884 amr->amr_dv.dv_xname, ac->ac_ident);
885 amr_ccb_dump(amr, ac);
886 ac->ac_flags |= AC_MOAN;
887 }
888 ac = TAILQ_NEXT(ac, ac_chain.tailq);
889 }
890 splx(s);
891
892 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
893 printf("%s: ccb_alloc failed (%d)\n",
894 amr->amr_dv.dv_xname, rv);
895 continue;
896 }
897
898 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
899
900 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
901 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
902 if (rv != 0) {
903 printf("%s: ccb_map failed (%d)\n",
904 amr->amr_dv.dv_xname, rv);
905 amr_ccb_free(amr, ac);
906 continue;
907 }
908
909 rv = amr_ccb_wait(amr, ac);
910 amr_ccb_unmap(amr, ac);
911 if (rv != 0) {
912 printf("%s: enquiry failed (st=%d)\n",
913 amr->amr_dv.dv_xname, ac->ac_status);
914 continue;
915 }
916 amr_ccb_free(amr, ac);
917
918 al = amr->amr_drive;
919 for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
920 if (al->al_dv == NULL)
921 continue;
922 if (al->al_state == ae->ae_ldrv.al_state[i])
923 continue;
924
925 printf("%s: state changed: %s -> %s\n",
926 al->al_dv->dv_xname,
927 amr_drive_state(al->al_state, NULL),
928 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
929
930 al->al_state = ae->ae_ldrv.al_state[i];
931 }
932 }
933 }
934
935 /*
936 * Return a text description of a logical drive's current state.
937 */
938 const char *
939 amr_drive_state(int state, int *happy)
940 {
941 const char *str;
942
943 state = AMR_DRV_CURSTATE(state);
944 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
945 if (happy)
946 *happy = 1;
947 str = "status unknown";
948 } else {
949 if (happy)
950 *happy = amr_dstate[state].ds_happy;
951 str = amr_dstate[state].ds_descr;
952 }
953
954 return (str);
955 }
956
957 /*
958 * Run a generic enquiry-style command.
959 */
960 void *
961 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
962 u_int8_t cmdqual, void *buf)
963 {
964 struct amr_ccb *ac;
965 u_int8_t *mb;
966 int rv;
967
968 if (amr_ccb_alloc(amr, &ac) != 0)
969 return (NULL);
970
971 /* Build the command proper. */
972 mb = (u_int8_t *)&ac->ac_cmd;
973 mb[0] = cmd;
974 mb[2] = cmdsub;
975 mb[3] = cmdqual;
976
977 rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
978 if (rv == 0) {
979 rv = amr_ccb_poll(amr, ac, 2000);
980 amr_ccb_unmap(amr, ac);
981 }
982 amr_ccb_free(amr, ac);
983
984 return (rv ? NULL : buf);
985 }
986
987 /*
988 * Allocate and initialise a CCB.
989 */
990 int
991 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
992 {
993 int s;
994
995 s = splbio();
996 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
997 splx(s);
998 return (EAGAIN);
999 }
1000 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
1001 splx(s);
1002
1003 return (0);
1004 }
1005
1006 /*
1007 * Free a CCB.
1008 */
1009 void
1010 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
1011 {
1012 int s;
1013
1014 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1015 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1016 ac->ac_cmd.mb_busy = 1;
1017 ac->ac_handler = NULL;
1018 ac->ac_flags = 0;
1019
1020 s = splbio();
1021 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1022 splx(s);
1023 }
1024
1025 /*
1026 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1027 * the order that they were enqueued and try to submit their command blocks
1028 * to the controller for execution.
1029 */
1030 void
1031 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1032 {
1033 int s;
1034
1035 s = splbio();
1036
1037 if (ac != NULL)
1038 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1039
1040 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1041 if ((*amr->amr_submit)(amr, ac) != 0)
1042 break;
1043 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1044 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1045 }
1046
1047 splx(s);
1048 }
1049
1050 /*
1051 * Map the specified CCB's data buffer onto the bus, and fill the
1052 * scatter-gather list.
1053 */
1054 int
1055 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1056 int tflag)
1057 {
1058 struct amr_sgentry *sge;
1059 struct amr_mailbox_cmd *mb;
1060 int nsegs, i, rv, sgloff;
1061 bus_dmamap_t xfer;
1062 int dmaflag = 0;
1063
1064 xfer = ac->ac_xfer_map;
1065
1066 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1067 BUS_DMA_NOWAIT);
1068 if (rv != 0)
1069 return (rv);
1070
1071 mb = &ac->ac_cmd;
1072 ac->ac_xfer_size = size;
1073 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1074 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1075
1076 if (tflag & AC_XFER_OUT)
1077 dmaflag |= BUS_DMASYNC_PREWRITE;
1078 if (tflag & AC_XFER_IN)
1079 dmaflag |= BUS_DMASYNC_PREREAD;
1080
1081 /* We don't need to use a scatter/gather list for just 1 segment. */
1082 nsegs = xfer->dm_nsegs;
1083 if (nsegs == 1) {
1084 mb->mb_nsgelem = 0;
1085 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1086 ac->ac_flags |= AC_NOSGL;
1087 } else {
1088 mb->mb_nsgelem = nsegs;
1089 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1090
1091 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1092 for (i = 0; i < nsegs; i++, sge++) {
1093 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1094 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1095 }
1096 }
1097
1098 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1099
1100 if ((ac->ac_flags & AC_NOSGL) == 0)
1101 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1102 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1103
1104 return (0);
1105 }
1106
1107 /*
1108 * Unmap the specified CCB's data buffer.
1109 */
1110 void
1111 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1112 {
1113 int dmaflag = 0;
1114
1115 if (ac->ac_flags & AC_XFER_IN)
1116 dmaflag |= BUS_DMASYNC_POSTREAD;
1117 if (ac->ac_flags & AC_XFER_OUT)
1118 dmaflag |= BUS_DMASYNC_POSTWRITE;
1119
1120 if ((ac->ac_flags & AC_NOSGL) == 0)
1121 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1122 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1123 BUS_DMASYNC_POSTWRITE);
1124 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1125 dmaflag);
1126 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1127 }
1128
1129 /*
1130 * Submit a command to the controller and poll on completion. Return
1131 * non-zero on timeout or error. Must be called with interrupts blocked.
1132 */
1133 int
1134 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1135 {
1136 int rv;
1137
1138 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1139 return (rv);
1140 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1141
1142 for (timo *= 10; timo != 0; timo--) {
1143 amr_intr(amr);
1144 if ((ac->ac_flags & AC_COMPLETE) != 0)
1145 break;
1146 DELAY(100);
1147 }
1148
1149 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1150 }
1151
1152 /*
1153 * Submit a command to the controller and sleep on completion. Return
1154 * non-zero on error.
1155 */
1156 int
1157 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1158 {
1159 int s;
1160
1161 s = splbio();
1162 amr_ccb_enqueue(amr, ac);
1163 tsleep(ac, PRIBIO, "amrcmd", 0);
1164 splx(s);
1165
1166 return (ac->ac_status != 0 ? EIO : 0);
1167 }
1168
1169 /*
1170 * Wait for the mailbox to become available.
1171 */
1172 int
1173 amr_mbox_wait(struct amr_softc *amr)
1174 {
1175 int timo;
1176
1177 for (timo = 10000; timo != 0; timo--) {
1178 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1179 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1180 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1181 break;
1182 DELAY(100);
1183 }
1184
1185 if (timo == 0)
1186 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1187
1188 return (timo != 0 ? 0 : EAGAIN);
1189 }
1190
1191 /*
1192 * Tell the controller that the mailbox contains a valid command. Must be
1193 * called with interrupts blocked.
1194 */
1195 int
1196 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1197 {
1198 u_int32_t v;
1199
1200 amr->amr_mbox->mb_poll = 0;
1201 amr->amr_mbox->mb_ack = 0;
1202 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1203 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1204 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1205 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1206 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1207 return (EAGAIN);
1208
1209 v = amr_inl(amr, AMR_QREG_IDB);
1210 if ((v & AMR_QIDB_SUBMIT) != 0) {
1211 amr->amr_mbox->mb_cmd.mb_busy = 0;
1212 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1213 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1214 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1215 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1216 return (EAGAIN);
1217 }
1218
1219 amr->amr_mbox->mb_segment = 0;
1220 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1221 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1222 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1223
1224 ac->ac_start_time = (time_t)mono_time.tv_sec;
1225 ac->ac_flags |= AC_ACTIVE;
1226 amr_outl(amr, AMR_QREG_IDB,
1227 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1228 return (0);
1229 }
1230
1231 int
1232 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1233 {
1234
1235 amr->amr_mbox->mb_poll = 0;
1236 amr->amr_mbox->mb_ack = 0;
1237 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1238 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1239 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1240 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1241 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1242 return (EAGAIN);
1243
1244 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1245 amr->amr_mbox->mb_cmd.mb_busy = 0;
1246 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1247 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1248 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1249 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1250 return (EAGAIN);
1251 }
1252
1253 amr->amr_mbox->mb_segment = 0;
1254 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1255 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1256 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1257
1258 ac->ac_start_time = (time_t)mono_time.tv_sec;
1259 ac->ac_flags |= AC_ACTIVE;
1260 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1261 return (0);
1262 }
1263
1264 /*
1265 * Claim any work that the controller has completed; acknowledge completion,
1266 * save details of the completion in (mbsave). Must be called with
1267 * interrupts blocked.
1268 */
1269 int
1270 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1271 {
1272
1273 /* Work waiting for us? */
1274 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1275 return (-1);
1276
1277 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1278 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1279
1280 /* Save the mailbox, which contains a list of completed commands. */
1281 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1282
1283 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1284 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1285
1286 /* Ack the interrupt and mailbox transfer. */
1287 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1288 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1289
1290 /*
1291 * This waits for the controller to notice that we've taken the
1292 * command from it. It's very inefficient, and we shouldn't do it,
1293 * but if we remove this code, we stop completing commands under
1294 * load.
1295 *
1296 * Peter J says we shouldn't do this. The documentation says we
1297 * should. Who is right?
1298 */
1299 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1300 DELAY(10);
1301
1302 return (0);
1303 }
1304
1305 int
1306 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1307 {
1308 u_int8_t istat;
1309
1310 /* Check for valid interrupt status. */
1311 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1312 return (-1);
1313
1314 /* Ack the interrupt. */
1315 amr_outb(amr, AMR_SREG_INTR, istat);
1316
1317 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1318 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1319
1320 /* Save mailbox, which contains a list of completed commands. */
1321 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1322
1323 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1324 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1325
1326 /* Ack mailbox transfer. */
1327 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1328
1329 return (0);
1330 }
1331
1332 void
1333 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1334 {
1335 int i;
1336
1337 printf("%s: ", amr->amr_dv.dv_xname);
1338 for (i = 0; i < 4; i++)
1339 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1340 printf("\n");
1341 }
1342
1343 static int
1344 amropen(dev_t dev, int flag, int mode, struct proc *p)
1345 {
1346 struct amr_softc *amr;
1347
1348 if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL)
1349 return (ENXIO);
1350 if ((amr->amr_flags & AMRF_OPEN) != 0)
1351 return (EBUSY);
1352
1353 amr->amr_flags |= AMRF_OPEN;
1354 return (0);
1355 }
1356
1357 static int
1358 amrclose(dev_t dev, int flag, int mode, struct proc *p)
1359 {
1360 struct amr_softc *amr;
1361
1362 amr = device_lookup(&amr_cd, minor(dev));
1363 amr->amr_flags &= ~AMRF_OPEN;
1364 return (0);
1365 }
1366
1367 static int
1368 amrioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1369 {
1370 struct amr_softc *amr;
1371 struct amr_user_ioctl *au;
1372 struct amr_ccb *ac;
1373 struct amr_mailbox_ioctl *mbi;
1374 unsigned long au_length;
1375 uint8_t *au_cmd;
1376 int error;
1377 void *dp = NULL, *au_buffer;
1378
1379 if (securelevel >= 2)
1380 return (EPERM);
1381
1382 amr = device_lookup(&amr_cd, minor(dev));
1383
1384 /* This should be compatible with the FreeBSD interface */
1385
1386 switch (cmd) {
1387 case AMR_IO_VERSION:
1388 *(int *)data = AMR_IO_VERSION_NUMBER;
1389 return 0;
1390 case AMR_IO_COMMAND:
1391 au = (struct amr_user_ioctl *)data;
1392 au_cmd = au->au_cmd;
1393 au_buffer = au->au_buffer;
1394 au_length = au->au_length;
1395 break;
1396 default:
1397 return ENOTTY;
1398 }
1399
1400 if (au_cmd[0] == AMR_CMD_PASS) {
1401 /* not yet */
1402 return EOPNOTSUPP;
1403 }
1404
1405 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1406 return (EINVAL);
1407
1408 /*
1409 * allocate kernel memory for data, doing I/O directly to user
1410 * buffer isn't that easy.
1411 */
1412 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1413 if (dp == NULL)
1414 return ENOMEM;
1415 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1416 goto out;
1417
1418 /* direct command to controller */
1419 while (amr_ccb_alloc(amr, &ac) != 0) {
1420 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1421 if (error == EINTR)
1422 goto out;
1423 }
1424
1425 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1426 mbi->mb_command = au_cmd[0];
1427 mbi->mb_channel = au_cmd[1];
1428 mbi->mb_param = au_cmd[2];
1429 mbi->mb_pad[0] = au_cmd[3];
1430 mbi->mb_drive = au_cmd[4];
1431 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1432 AC_XFER_IN | AC_XFER_OUT);
1433 if (error == 0) {
1434 error = amr_ccb_wait(amr, ac);
1435 amr_ccb_unmap(amr, ac);
1436 if (error == 0)
1437 error = copyout(dp, au_buffer, au_length);
1438
1439 }
1440 amr_ccb_free(amr, ac);
1441 out:
1442 free(dp, M_DEVBUF);
1443 return (error);
1444 }
1445