amr.c revision 1.27 1 /* $NetBSD: amr.c,v 1.27 2005/06/28 00:28:41 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.27 2005/06/28 00:28:41 thorpej Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85
86 #include <uvm/uvm_extern.h>
87
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95
96 #include "locators.h"
97
98 static void amr_attach(struct device *, struct device *, void *);
99 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
100 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
101 void *);
102 static int amr_init(struct amr_softc *, const char *,
103 struct pci_attach_args *pa);
104 static int amr_intr(void *);
105 static int amr_match(struct device *, struct cfdata *, void *);
106 static int amr_print(void *, const char *);
107 static void amr_shutdown(void *);
108 static int amr_submatch(struct device *, struct cfdata *,
109 const locdesc_t *, void *);
110 static void amr_teardown(struct amr_softc *);
111 static void amr_thread(void *);
112 static void amr_thread_create(void *);
113
114 static int amr_quartz_get_work(struct amr_softc *,
115 struct amr_mailbox_resp *);
116 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
117 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
118 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
119
120 CFATTACH_DECL(amr, sizeof(struct amr_softc),
121 amr_match, amr_attach, NULL, NULL);
122
123 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
124 #define AT_SIG 0x02 /* Check for signature */
125
126 struct amr_pci_type {
127 u_short apt_vendor;
128 u_short apt_product;
129 u_short apt_flags;
130 } static const amr_pci_type[] = {
131 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
132 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
133 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
134 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
135 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
136 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
137 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
138 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
139 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
140 };
141
142 struct amr_typestr {
143 const char *at_str;
144 int at_sig;
145 } static const amr_typestr[] = {
146 { "Series 431", AMR_SIG_431 },
147 { "Series 438", AMR_SIG_438 },
148 { "Series 466", AMR_SIG_466 },
149 { "Series 467", AMR_SIG_467 },
150 { "Series 490", AMR_SIG_490 },
151 { "Series 762", AMR_SIG_762 },
152 { "HP NetRAID (T5)", AMR_SIG_T5 },
153 { "HP NetRAID (T7)", AMR_SIG_T7 },
154 };
155
156 struct {
157 const char *ds_descr;
158 int ds_happy;
159 } static const amr_dstate[] = {
160 { "offline", 0 },
161 { "degraded", 1 },
162 { "optimal", 1 },
163 { "online", 1 },
164 { "failed", 0 },
165 { "rebuilding", 1 },
166 { "hotspare", 0 },
167 };
168
169 static void *amr_sdh;
170
171 static int amr_max_segs;
172 int amr_max_xfer;
173
174 static inline u_int8_t
175 amr_inb(struct amr_softc *amr, int off)
176 {
177
178 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
179 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
180 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
181 }
182
183 static inline u_int32_t
184 amr_inl(struct amr_softc *amr, int off)
185 {
186
187 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
188 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
189 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
190 }
191
192 static inline void
193 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
194 {
195
196 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
197 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
198 BUS_SPACE_BARRIER_WRITE);
199 }
200
201 static inline void
202 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
203 {
204
205 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
206 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
207 BUS_SPACE_BARRIER_WRITE);
208 }
209
210 /*
211 * Match a supported device.
212 */
213 static int
214 amr_match(struct device *parent, struct cfdata *match, void *aux)
215 {
216 struct pci_attach_args *pa;
217 pcireg_t s;
218 int i;
219
220 pa = (struct pci_attach_args *)aux;
221
222 /*
223 * Don't match the device if it's operating in I2O mode. In this
224 * case it should be handled by the `iop' driver.
225 */
226 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
227 return (0);
228
229 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
230 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
231 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
232 break;
233
234 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
235 return (0);
236
237 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
238 return (1);
239
240 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
241 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
242 }
243
244 /*
245 * Attach a supported device.
246 */
247 static void
248 amr_attach(struct device *parent, struct device *self, void *aux)
249 {
250 struct pci_attach_args *pa;
251 struct amr_attach_args amra;
252 const struct amr_pci_type *apt;
253 struct amr_softc *amr;
254 pci_chipset_tag_t pc;
255 pci_intr_handle_t ih;
256 const char *intrstr;
257 pcireg_t reg;
258 int rseg, i, j, size, rv, memreg, ioreg;
259 struct amr_ccb *ac;
260 int help[2];
261 locdesc_t *ldesc = (void *)help; /* XXX */
262
263 aprint_naive(": RAID controller\n");
264
265 amr = (struct amr_softc *)self;
266 pa = (struct pci_attach_args *)aux;
267 pc = pa->pa_pc;
268
269 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
270 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
271 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
272 break;
273 apt = amr_pci_type + i;
274
275 memreg = ioreg = 0;
276 for (i = 0x10; i <= 0x14; i += 4) {
277 reg = pci_conf_read(pc, pa->pa_tag, i);
278 switch (PCI_MAPREG_TYPE(reg)) {
279 case PCI_MAPREG_TYPE_MEM:
280 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
281 memreg = i;
282 break;
283 case PCI_MAPREG_TYPE_IO:
284 if (PCI_MAPREG_IO_SIZE(reg) != 0)
285 ioreg = i;
286 break;
287
288 }
289 }
290
291 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
292 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
293 ;
294 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
295 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
296 ;
297 else {
298 aprint_error("can't map control registers\n");
299 amr_teardown(amr);
300 return;
301 }
302
303 amr->amr_flags |= AMRF_PCI_REGS;
304 amr->amr_dmat = pa->pa_dmat;
305 amr->amr_pc = pa->pa_pc;
306
307 /* Enable the device. */
308 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
309 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
310 reg | PCI_COMMAND_MASTER_ENABLE);
311
312 /* Map and establish the interrupt. */
313 if (pci_intr_map(pa, &ih)) {
314 aprint_error("can't map interrupt\n");
315 amr_teardown(amr);
316 return;
317 }
318 intrstr = pci_intr_string(pc, ih);
319 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
320 if (amr->amr_ih == NULL) {
321 aprint_error("can't establish interrupt");
322 if (intrstr != NULL)
323 aprint_normal(" at %s", intrstr);
324 aprint_normal("\n");
325 amr_teardown(amr);
326 return;
327 }
328 amr->amr_flags |= AMRF_PCI_INTR;
329
330 /*
331 * Allocate space for the mailbox and S/G lists. Some controllers
332 * don't like S/G lists to be located below 0x2000, so we allocate
333 * enough slop to enable us to compensate.
334 *
335 * The standard mailbox structure needs to be aligned on a 16-byte
336 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
337 * size, which preceeds the standard mailbox.
338 */
339 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
340 amr->amr_dmasize = size;
341
342 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
343 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
344 aprint_error("%s: unable to allocate buffer, rv = %d\n",
345 amr->amr_dv.dv_xname, rv);
346 amr_teardown(amr);
347 return;
348 }
349 amr->amr_flags |= AMRF_DMA_ALLOC;
350
351 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
352 (caddr_t *)&amr->amr_mbox,
353 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
354 aprint_error("%s: unable to map buffer, rv = %d\n",
355 amr->amr_dv.dv_xname, rv);
356 amr_teardown(amr);
357 return;
358 }
359 amr->amr_flags |= AMRF_DMA_MAP;
360
361 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
362 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
363 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
364 amr->amr_dv.dv_xname, rv);
365 amr_teardown(amr);
366 return;
367 }
368 amr->amr_flags |= AMRF_DMA_CREATE;
369
370 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
371 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
372 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
373 amr->amr_dv.dv_xname, rv);
374 amr_teardown(amr);
375 return;
376 }
377 amr->amr_flags |= AMRF_DMA_LOAD;
378
379 memset(amr->amr_mbox, 0, size);
380
381 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
382 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
383 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
384 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
385
386 /*
387 * Allocate and initalise the command control blocks.
388 */
389 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
390 amr->amr_ccbs = ac;
391 SLIST_INIT(&amr->amr_ccb_freelist);
392 TAILQ_INIT(&amr->amr_ccb_active);
393 amr->amr_flags |= AMRF_CCBS;
394
395 if (amr_max_xfer == 0) {
396 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
397 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
398 }
399
400 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
401 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
402 amr_max_segs, amr_max_xfer, 0,
403 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
404 if (rv != 0)
405 break;
406
407 ac->ac_ident = i;
408 amr_ccb_free(amr, ac);
409 }
410 if (i != AMR_MAX_CMDS) {
411 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
412 amr_teardown(amr);
413 return;
414 }
415
416 /*
417 * Take care of model-specific tasks.
418 */
419 if ((apt->apt_flags & AT_QUARTZ) != 0) {
420 amr->amr_submit = amr_quartz_submit;
421 amr->amr_get_work = amr_quartz_get_work;
422 } else {
423 amr->amr_submit = amr_std_submit;
424 amr->amr_get_work = amr_std_get_work;
425
426 /* Notify the controller of the mailbox location. */
427 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
428 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
429
430 /* Clear outstanding interrupts and enable interrupts. */
431 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
432 amr_outb(amr, AMR_SREG_TOGL,
433 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
434 }
435
436 /*
437 * Retrieve parameters, and tell the world about us.
438 */
439 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
440 amr->amr_flags |= AMRF_ENQBUF;
441 amr->amr_maxqueuecnt = i;
442 aprint_normal(": AMI RAID ");
443 if (amr_init(amr, intrstr, pa) != 0) {
444 amr_teardown(amr);
445 return;
446 }
447
448 /*
449 * Cap the maximum number of outstanding commands. AMI's Linux
450 * driver doesn't trust the controller's reported value, and lockups
451 * have been seen when we do.
452 */
453 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
454 if (amr->amr_maxqueuecnt > i)
455 amr->amr_maxqueuecnt = i;
456
457 /* Set our `shutdownhook' before we start any device activity. */
458 if (amr_sdh == NULL)
459 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
460
461 /* Attach sub-devices. */
462 for (j = 0; j < amr->amr_numdrives; j++) {
463 if (amr->amr_drive[j].al_size == 0)
464 continue;
465 amra.amra_unit = j;
466
467 ldesc->len = 1;
468 ldesc->locs[AMRCF_UNIT] = j;
469
470 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
471 "amr", ldesc, &amra, amr_print, amr_submatch);
472 }
473
474 SIMPLEQ_INIT(&amr->amr_ccb_queue);
475
476 /* XXX This doesn't work for newer boards yet. */
477 if ((apt->apt_flags & AT_QUARTZ) == 0)
478 kthread_create(amr_thread_create, amr);
479 }
480
481 /*
482 * Free up resources.
483 */
484 static void
485 amr_teardown(struct amr_softc *amr)
486 {
487 struct amr_ccb *ac;
488 int fl;
489
490 fl = amr->amr_flags;
491
492 if ((fl & AMRF_THREAD) != 0) {
493 amr->amr_flags |= AMRF_THREAD_EXIT;
494 wakeup(amr_thread);
495 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
496 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
497 }
498 if ((fl & AMRF_CCBS) != 0) {
499 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
500 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
501 }
502 free(amr->amr_ccbs, M_DEVBUF);
503 }
504 if ((fl & AMRF_ENQBUF) != 0)
505 free(amr->amr_enqbuf, M_DEVBUF);
506 if ((fl & AMRF_DMA_LOAD) != 0)
507 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
508 if ((fl & AMRF_DMA_MAP) != 0)
509 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
510 amr->amr_dmasize);
511 if ((fl & AMRF_DMA_ALLOC) != 0)
512 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
513 if ((fl & AMRF_DMA_CREATE) != 0)
514 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
515 if ((fl & AMRF_PCI_INTR) != 0)
516 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
517 if ((fl & AMRF_PCI_REGS) != 0)
518 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
519 }
520
521 /*
522 * Print autoconfiguration message for a sub-device.
523 */
524 static int
525 amr_print(void *aux, const char *pnp)
526 {
527 struct amr_attach_args *amra;
528
529 amra = (struct amr_attach_args *)aux;
530
531 if (pnp != NULL)
532 aprint_normal("block device at %s", pnp);
533 aprint_normal(" unit %d", amra->amra_unit);
534 return (UNCONF);
535 }
536
537 /*
538 * Match a sub-device.
539 */
540 static int
541 amr_submatch(struct device *parent, struct cfdata *cf,
542 const locdesc_t *ldesc, void *aux)
543 {
544 struct amr_attach_args *amra;
545
546 amra = (struct amr_attach_args *)aux;
547
548 if (cf->cf_loc[AMRCF_UNIT] != AMRCF_UNIT_DEFAULT &&
549 cf->cf_loc[AMRCF_UNIT] != ldesc->locs[AMRCF_UNIT])
550 return (0);
551
552 return (config_match(parent, cf, aux));
553 }
554
555 /*
556 * Retrieve operational parameters and describe the controller.
557 */
558 static int
559 amr_init(struct amr_softc *amr, const char *intrstr,
560 struct pci_attach_args *pa)
561 {
562 struct amr_adapter_info *aa;
563 struct amr_prodinfo *ap;
564 struct amr_enquiry *ae;
565 struct amr_enquiry3 *aex;
566 const char *prodstr;
567 u_int i, sig, ishp;
568 char sbuf[64];
569
570 /*
571 * Try to get 40LD product info, which tells us what the card is
572 * labelled as.
573 */
574 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
575 amr->amr_enqbuf);
576 if (ap != NULL) {
577 aprint_normal("<%.80s>\n", ap->ap_product);
578 if (intrstr != NULL)
579 aprint_normal("%s: interrupting at %s\n",
580 amr->amr_dv.dv_xname, intrstr);
581 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
582 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
583 le16toh(ap->ap_memsize));
584
585 amr->amr_maxqueuecnt = ap->ap_maxio;
586
587 /*
588 * Fetch and record state of logical drives.
589 */
590 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
591 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
592 if (aex == NULL) {
593 aprint_error("%s ENQUIRY3 failed\n",
594 amr->amr_dv.dv_xname);
595 return (-1);
596 }
597
598 if (aex->ae_numldrives > AMR_MAX_UNITS) {
599 aprint_error(
600 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
601 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
602 amr->amr_numdrives);
603 amr->amr_numdrives = AMR_MAX_UNITS;
604 } else
605 amr->amr_numdrives = aex->ae_numldrives;
606
607 for (i = 0; i < amr->amr_numdrives; i++) {
608 amr->amr_drive[i].al_size =
609 le32toh(aex->ae_drivesize[i]);
610 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
611 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
612 }
613
614 return (0);
615 }
616
617 /*
618 * Try 8LD extended ENQUIRY to get the controller signature. Once
619 * found, search for a product description.
620 */
621 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
622 if (ae != NULL) {
623 i = 0;
624 sig = le32toh(ae->ae_signature);
625
626 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
627 if (amr_typestr[i].at_sig == sig)
628 break;
629 i++;
630 }
631 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
632 snprintf(sbuf, sizeof(sbuf),
633 "unknown ENQUIRY2 sig (0x%08x)", sig);
634 prodstr = sbuf;
635 } else
636 prodstr = amr_typestr[i].at_str;
637 } else {
638 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
639 if (ae == NULL) {
640 aprint_error("%s: unsupported controller\n",
641 amr->amr_dv.dv_xname);
642 return (-1);
643 }
644
645 switch (PCI_PRODUCT(pa->pa_id)) {
646 case PCI_PRODUCT_AMI_MEGARAID:
647 prodstr = "Series 428";
648 break;
649 case PCI_PRODUCT_AMI_MEGARAID2:
650 prodstr = "Series 434";
651 break;
652 default:
653 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
654 PCI_PRODUCT(pa->pa_id));
655 prodstr = sbuf;
656 break;
657 }
658 }
659
660 /*
661 * HP NetRaid controllers have a special encoding of the firmware
662 * and BIOS versions. The AMI version seems to have it as strings
663 * whereas the HP version does it with a leading uppercase character
664 * and two binary numbers.
665 */
666 aa = &ae->ae_adapter;
667
668 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
669 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
670 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
671 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
672 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
673 /* The AMI 438 is a NetRaid 3si in HP-land. */
674 prodstr = "HP NetRaid 3si";
675 }
676 ishp = 1;
677 } else
678 ishp = 0;
679
680 aprint_normal("<%s>\n", prodstr);
681 if (intrstr != NULL)
682 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
683 intrstr);
684
685 if (ishp)
686 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
687 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
688 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
689 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
690 else
691 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
692 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
693 aa->aa_memorysize);
694
695 amr->amr_maxqueuecnt = aa->aa_maxio;
696
697 /*
698 * Record state of logical drives.
699 */
700 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
701 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
702 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
703 AMR_MAX_UNITS);
704 amr->amr_numdrives = AMR_MAX_UNITS;
705 } else
706 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
707
708 for (i = 0; i < AMR_MAX_UNITS; i++) {
709 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
710 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
711 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
712 }
713
714 return (0);
715 }
716
717 /*
718 * Flush the internal cache on each configured controller. Called at
719 * shutdown time.
720 */
721 static void
722 amr_shutdown(void *cookie)
723 {
724 extern struct cfdriver amr_cd;
725 struct amr_softc *amr;
726 struct amr_ccb *ac;
727 int i, rv, s;
728
729 for (i = 0; i < amr_cd.cd_ndevs; i++) {
730 if ((amr = device_lookup(&amr_cd, i)) == NULL)
731 continue;
732
733 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
734 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
735 s = splbio();
736 rv = amr_ccb_poll(amr, ac, 30000);
737 splx(s);
738 amr_ccb_free(amr, ac);
739 }
740 if (rv != 0)
741 printf("%s: unable to flush cache (%d)\n",
742 amr->amr_dv.dv_xname, rv);
743 }
744 }
745
746 /*
747 * Interrupt service routine.
748 */
749 static int
750 amr_intr(void *cookie)
751 {
752 struct amr_softc *amr;
753 struct amr_ccb *ac;
754 struct amr_mailbox_resp mbox;
755 u_int i, forus, idx;
756
757 amr = cookie;
758 forus = 0;
759
760 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
761 /* Iterate over completed commands in this result. */
762 for (i = 0; i < mbox.mb_nstatus; i++) {
763 idx = mbox.mb_completed[i] - 1;
764 ac = amr->amr_ccbs + idx;
765
766 if (idx >= amr->amr_maxqueuecnt) {
767 printf("%s: bad status (bogus ID: %u=%u)\n",
768 amr->amr_dv.dv_xname, i, idx);
769 continue;
770 }
771
772 if ((ac->ac_flags & AC_ACTIVE) == 0) {
773 printf("%s: bad status (not active; 0x04%x)\n",
774 amr->amr_dv.dv_xname, ac->ac_flags);
775 continue;
776 }
777
778 ac->ac_status = mbox.mb_status;
779 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
780 AC_COMPLETE;
781 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
782
783 if ((ac->ac_flags & AC_MOAN) != 0)
784 printf("%s: ccb %d completed\n",
785 amr->amr_dv.dv_xname, ac->ac_ident);
786
787 /* Pass notification to upper layers. */
788 if (ac->ac_handler != NULL)
789 (*ac->ac_handler)(ac);
790 else
791 wakeup(ac);
792 }
793 forus = 1;
794 }
795
796 if (forus)
797 amr_ccb_enqueue(amr, NULL);
798
799 return (forus);
800 }
801
802 /*
803 * Create the watchdog thread.
804 */
805 static void
806 amr_thread_create(void *cookie)
807 {
808 struct amr_softc *amr;
809 int rv;
810
811 amr = cookie;
812
813 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
814 amr->amr_flags ^= AMRF_THREAD_EXIT;
815 wakeup(&amr->amr_flags);
816 return;
817 }
818
819 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
820 amr->amr_dv.dv_xname);
821 if (rv != 0)
822 aprint_error("%s: unable to create thread (%d)",
823 amr->amr_dv.dv_xname, rv);
824 else
825 amr->amr_flags |= AMRF_THREAD;
826 }
827
828 /*
829 * Watchdog thread.
830 */
831 static void
832 amr_thread(void *cookie)
833 {
834 struct amr_softc *amr;
835 struct amr_ccb *ac;
836 struct amr_logdrive *al;
837 struct amr_enquiry *ae;
838 time_t curtime;
839 int rv, i, s;
840
841 amr = cookie;
842 ae = amr->amr_enqbuf;
843
844 for (;;) {
845 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
846
847 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
848 amr->amr_flags ^= AMRF_THREAD_EXIT;
849 wakeup(&amr->amr_flags);
850 kthread_exit(0);
851 }
852
853 s = splbio();
854 amr_intr(cookie);
855 curtime = (time_t)mono_time.tv_sec;
856 ac = TAILQ_FIRST(&amr->amr_ccb_active);
857 while (ac != NULL) {
858 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
859 break;
860 if ((ac->ac_flags & AC_MOAN) == 0) {
861 printf("%s: ccb %d timed out; mailbox:\n",
862 amr->amr_dv.dv_xname, ac->ac_ident);
863 amr_ccb_dump(amr, ac);
864 ac->ac_flags |= AC_MOAN;
865 }
866 ac = TAILQ_NEXT(ac, ac_chain.tailq);
867 }
868 splx(s);
869
870 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
871 printf("%s: ccb_alloc failed (%d)\n",
872 amr->amr_dv.dv_xname, rv);
873 continue;
874 }
875
876 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
877
878 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
879 AMR_ENQUIRY_BUFSIZE, 0);
880 if (rv != 0) {
881 printf("%s: ccb_map failed (%d)\n",
882 amr->amr_dv.dv_xname, rv);
883 amr_ccb_free(amr, ac);
884 continue;
885 }
886
887 rv = amr_ccb_wait(amr, ac);
888 amr_ccb_unmap(amr, ac);
889 if (rv != 0) {
890 printf("%s: enquiry failed (st=%d)\n",
891 amr->amr_dv.dv_xname, ac->ac_status);
892 continue;
893 }
894 amr_ccb_free(amr, ac);
895
896 al = amr->amr_drive;
897 for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
898 if (al->al_dv == NULL)
899 continue;
900 if (al->al_state == ae->ae_ldrv.al_state[i])
901 continue;
902
903 printf("%s: state changed: %s -> %s\n",
904 al->al_dv->dv_xname,
905 amr_drive_state(al->al_state, NULL),
906 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
907
908 al->al_state = ae->ae_ldrv.al_state[i];
909 }
910 }
911 }
912
913 /*
914 * Return a text description of a logical drive's current state.
915 */
916 const char *
917 amr_drive_state(int state, int *happy)
918 {
919 const char *str;
920
921 state = AMR_DRV_CURSTATE(state);
922 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
923 if (happy)
924 *happy = 1;
925 str = "status unknown";
926 } else {
927 if (happy)
928 *happy = amr_dstate[state].ds_happy;
929 str = amr_dstate[state].ds_descr;
930 }
931
932 return (str);
933 }
934
935 /*
936 * Run a generic enquiry-style command.
937 */
938 static void *
939 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
940 u_int8_t cmdqual, void *sbuf)
941 {
942 struct amr_ccb *ac;
943 u_int8_t *mb;
944 int rv;
945
946 if (amr_ccb_alloc(amr, &ac) != 0)
947 return (NULL);
948
949 /* Build the command proper. */
950 mb = (u_int8_t *)&ac->ac_cmd;
951 mb[0] = cmd;
952 mb[2] = cmdsub;
953 mb[3] = cmdqual;
954
955 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, 0);
956 if (rv == 0) {
957 rv = amr_ccb_poll(amr, ac, 2000);
958 amr_ccb_unmap(amr, ac);
959 }
960 amr_ccb_free(amr, ac);
961
962 return (rv ? NULL : sbuf);
963 }
964
965 /*
966 * Allocate and initialise a CCB.
967 */
968 int
969 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
970 {
971 int s;
972
973 s = splbio();
974 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
975 splx(s);
976 return (EAGAIN);
977 }
978 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
979 splx(s);
980
981 return (0);
982 }
983
984 /*
985 * Free a CCB.
986 */
987 void
988 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
989 {
990 int s;
991
992 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
993 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
994 ac->ac_cmd.mb_busy = 1;
995 ac->ac_handler = NULL;
996 ac->ac_flags = 0;
997
998 s = splbio();
999 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1000 splx(s);
1001 }
1002
1003 /*
1004 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1005 * the order that they were enqueued and try to submit their command blocks
1006 * to the controller for execution.
1007 */
1008 void
1009 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1010 {
1011 int s;
1012
1013 s = splbio();
1014
1015 if (ac != NULL)
1016 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1017
1018 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1019 if ((*amr->amr_submit)(amr, ac) != 0)
1020 break;
1021 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1022 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1023 }
1024
1025 splx(s);
1026 }
1027
1028 /*
1029 * Map the specified CCB's data buffer onto the bus, and fill the
1030 * scatter-gather list.
1031 */
1032 int
1033 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1034 int out)
1035 {
1036 struct amr_sgentry *sge;
1037 struct amr_mailbox_cmd *mb;
1038 int nsegs, i, rv, sgloff;
1039 bus_dmamap_t xfer;
1040
1041 xfer = ac->ac_xfer_map;
1042
1043 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1044 BUS_DMA_NOWAIT);
1045 if (rv != 0)
1046 return (rv);
1047
1048 mb = &ac->ac_cmd;
1049 ac->ac_xfer_size = size;
1050 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1051 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1052
1053 /* We don't need to use a scatter/gather list for just 1 segment. */
1054 nsegs = xfer->dm_nsegs;
1055 if (nsegs == 1) {
1056 mb->mb_nsgelem = 0;
1057 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1058 ac->ac_flags |= AC_NOSGL;
1059 } else {
1060 mb->mb_nsgelem = nsegs;
1061 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1062
1063 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1064 for (i = 0; i < nsegs; i++, sge++) {
1065 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1066 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1067 }
1068 }
1069
1070 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1071 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1072
1073 if ((ac->ac_flags & AC_NOSGL) == 0)
1074 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1075 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1076
1077 return (0);
1078 }
1079
1080 /*
1081 * Unmap the specified CCB's data buffer.
1082 */
1083 void
1084 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1085 {
1086
1087 if ((ac->ac_flags & AC_NOSGL) == 0)
1088 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1089 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1090 BUS_DMASYNC_POSTWRITE);
1091 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1092 (ac->ac_flags & AC_XFER_IN) != 0 ?
1093 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1094 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1095 }
1096
1097 /*
1098 * Submit a command to the controller and poll on completion. Return
1099 * non-zero on timeout or error. Must be called with interrupts blocked.
1100 */
1101 int
1102 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1103 {
1104 int rv;
1105
1106 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1107 return (rv);
1108 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1109
1110 for (timo *= 10; timo != 0; timo--) {
1111 amr_intr(amr);
1112 if ((ac->ac_flags & AC_COMPLETE) != 0)
1113 break;
1114 DELAY(100);
1115 }
1116
1117 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1118 }
1119
1120 /*
1121 * Submit a command to the controller and sleep on completion. Return
1122 * non-zero on error.
1123 */
1124 int
1125 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1126 {
1127 int s;
1128
1129 s = splbio();
1130 amr_ccb_enqueue(amr, ac);
1131 tsleep(ac, PRIBIO, "amrcmd", 0);
1132 splx(s);
1133
1134 return (ac->ac_status != 0 ? EIO : 0);
1135 }
1136
1137 #if 0
1138 /*
1139 * Wait for the mailbox to become available.
1140 */
1141 static int
1142 amr_mbox_wait(struct amr_softc *amr)
1143 {
1144 int timo;
1145
1146 for (timo = 10000; timo != 0; timo--) {
1147 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1148 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1149 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1150 break;
1151 DELAY(100);
1152 }
1153
1154 if (timo == 0)
1155 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1156
1157 return (timo != 0 ? 0 : EAGAIN);
1158 }
1159 #endif
1160
1161 /*
1162 * Tell the controller that the mailbox contains a valid command. Must be
1163 * called with interrupts blocked.
1164 */
1165 static int
1166 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1167 {
1168 u_int32_t v;
1169
1170 amr->amr_mbox->mb_poll = 0;
1171 amr->amr_mbox->mb_ack = 0;
1172 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1173 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1174 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1175 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1176 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1177 return (EAGAIN);
1178
1179 v = amr_inl(amr, AMR_QREG_IDB);
1180 if ((v & AMR_QIDB_SUBMIT) != 0) {
1181 amr->amr_mbox->mb_cmd.mb_busy = 0;
1182 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1183 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1184 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1185 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1186 return (EAGAIN);
1187 }
1188
1189 amr->amr_mbox->mb_segment = 0;
1190 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1191 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1192 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1193
1194 ac->ac_start_time = (time_t)mono_time.tv_sec;
1195 ac->ac_flags |= AC_ACTIVE;
1196 amr_outl(amr, AMR_QREG_IDB,
1197 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1198 return (0);
1199 }
1200
1201 static int
1202 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1203 {
1204
1205 amr->amr_mbox->mb_poll = 0;
1206 amr->amr_mbox->mb_ack = 0;
1207 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1208 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1209 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1210 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1211 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1212 return (EAGAIN);
1213
1214 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1215 amr->amr_mbox->mb_cmd.mb_busy = 0;
1216 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1217 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1218 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1219 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1220 return (EAGAIN);
1221 }
1222
1223 amr->amr_mbox->mb_segment = 0;
1224 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1225 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1226 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1227
1228 ac->ac_start_time = (time_t)mono_time.tv_sec;
1229 ac->ac_flags |= AC_ACTIVE;
1230 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1231 return (0);
1232 }
1233
1234 /*
1235 * Claim any work that the controller has completed; acknowledge completion,
1236 * save details of the completion in (mbsave). Must be called with
1237 * interrupts blocked.
1238 */
1239 static int
1240 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1241 {
1242
1243 /* Work waiting for us? */
1244 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1245 return (-1);
1246
1247 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1248 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1249
1250 /* Save the mailbox, which contains a list of completed commands. */
1251 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1252
1253 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1254 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1255
1256 /* Ack the interrupt and mailbox transfer. */
1257 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1258 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1259
1260 /*
1261 * This waits for the controller to notice that we've taken the
1262 * command from it. It's very inefficient, and we shouldn't do it,
1263 * but if we remove this code, we stop completing commands under
1264 * load.
1265 *
1266 * Peter J says we shouldn't do this. The documentation says we
1267 * should. Who is right?
1268 */
1269 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1270 DELAY(10);
1271
1272 return (0);
1273 }
1274
1275 static int
1276 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1277 {
1278 u_int8_t istat;
1279
1280 /* Check for valid interrupt status. */
1281 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1282 return (-1);
1283
1284 /* Ack the interrupt. */
1285 amr_outb(amr, AMR_SREG_INTR, istat);
1286
1287 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1288 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1289
1290 /* Save mailbox, which contains a list of completed commands. */
1291 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1292
1293 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1294 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1295
1296 /* Ack mailbox transfer. */
1297 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1298
1299 return (0);
1300 }
1301
1302 static void
1303 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1304 {
1305 int i;
1306
1307 printf("%s: ", amr->amr_dv.dv_xname);
1308 for (i = 0; i < 4; i++)
1309 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1310 printf("\n");
1311 }
1312