amr.c revision 1.31 1 /* $NetBSD: amr.c,v 1.31 2005/12/11 19:34:47 jonathan Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.31 2005/12/11 19:34:47 jonathan Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85
86 #include <uvm/uvm_extern.h>
87
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95
96 #include "locators.h"
97
98 static void amr_attach(struct device *, struct device *, void *);
99 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
100 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
101 void *);
102 static int amr_init(struct amr_softc *, const char *,
103 struct pci_attach_args *pa);
104 static int amr_intr(void *);
105 static int amr_match(struct device *, struct cfdata *, void *);
106 static int amr_print(void *, const char *);
107 static void amr_shutdown(void *);
108 static void amr_teardown(struct amr_softc *);
109 static void amr_thread(void *);
110 static void amr_thread_create(void *);
111
112 static int amr_quartz_get_work(struct amr_softc *,
113 struct amr_mailbox_resp *);
114 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
115 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
116 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
117
118 CFATTACH_DECL(amr, sizeof(struct amr_softc),
119 amr_match, amr_attach, NULL, NULL);
120
121 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
122 #define AT_SIG 0x02 /* Check for signature */
123
124 struct amr_pci_type {
125 u_short apt_vendor;
126 u_short apt_product;
127 u_short apt_flags;
128 } static const amr_pci_type[] = {
129 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
130 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
131 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
132 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
133 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
134 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
135 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
136 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
137 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
138 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
139 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
140 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
141 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
142 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
143 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
144 };
145
146 struct amr_typestr {
147 const char *at_str;
148 int at_sig;
149 } static const amr_typestr[] = {
150 { "Series 431", AMR_SIG_431 },
151 { "Series 438", AMR_SIG_438 },
152 { "Series 466", AMR_SIG_466 },
153 { "Series 467", AMR_SIG_467 },
154 { "Series 490", AMR_SIG_490 },
155 { "Series 762", AMR_SIG_762 },
156 { "HP NetRAID (T5)", AMR_SIG_T5 },
157 { "HP NetRAID (T7)", AMR_SIG_T7 },
158 };
159
160 struct {
161 const char *ds_descr;
162 int ds_happy;
163 } static const amr_dstate[] = {
164 { "offline", 0 },
165 { "degraded", 1 },
166 { "optimal", 1 },
167 { "online", 1 },
168 { "failed", 0 },
169 { "rebuilding", 1 },
170 { "hotspare", 0 },
171 };
172
173 static void *amr_sdh;
174
175 static int amr_max_segs;
176 int amr_max_xfer;
177
178 static inline u_int8_t
179 amr_inb(struct amr_softc *amr, int off)
180 {
181
182 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
183 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
184 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
185 }
186
187 static inline u_int32_t
188 amr_inl(struct amr_softc *amr, int off)
189 {
190
191 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
192 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
193 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
194 }
195
196 static inline void
197 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
198 {
199
200 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
201 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
202 BUS_SPACE_BARRIER_WRITE);
203 }
204
205 static inline void
206 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
207 {
208
209 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
210 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
211 BUS_SPACE_BARRIER_WRITE);
212 }
213
214 /*
215 * Match a supported device.
216 */
217 static int
218 amr_match(struct device *parent, struct cfdata *match, void *aux)
219 {
220 struct pci_attach_args *pa;
221 pcireg_t s;
222 int i;
223
224 pa = (struct pci_attach_args *)aux;
225
226 /*
227 * Don't match the device if it's operating in I2O mode. In this
228 * case it should be handled by the `iop' driver.
229 */
230 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
231 return (0);
232
233 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
234 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
235 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
236 break;
237
238 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
239 return (0);
240
241 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
242 return (1);
243
244 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
245 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
246 }
247
248 /*
249 * Attach a supported device.
250 */
251 static void
252 amr_attach(struct device *parent, struct device *self, void *aux)
253 {
254 struct pci_attach_args *pa;
255 struct amr_attach_args amra;
256 const struct amr_pci_type *apt;
257 struct amr_softc *amr;
258 pci_chipset_tag_t pc;
259 pci_intr_handle_t ih;
260 const char *intrstr;
261 pcireg_t reg;
262 int rseg, i, j, size, rv, memreg, ioreg;
263 struct amr_ccb *ac;
264 int locs[AMRCF_NLOCS];
265
266 aprint_naive(": RAID controller\n");
267
268 amr = (struct amr_softc *)self;
269 pa = (struct pci_attach_args *)aux;
270 pc = pa->pa_pc;
271
272 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
273 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
274 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
275 break;
276 apt = amr_pci_type + i;
277
278 memreg = ioreg = 0;
279 for (i = 0x10; i <= 0x14; i += 4) {
280 reg = pci_conf_read(pc, pa->pa_tag, i);
281 switch (PCI_MAPREG_TYPE(reg)) {
282 case PCI_MAPREG_TYPE_MEM:
283 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
284 memreg = i;
285 break;
286 case PCI_MAPREG_TYPE_IO:
287 if (PCI_MAPREG_IO_SIZE(reg) != 0)
288 ioreg = i;
289 break;
290
291 }
292 }
293
294 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
295 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
296 ;
297 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
298 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
299 ;
300 else {
301 aprint_error("can't map control registers\n");
302 amr_teardown(amr);
303 return;
304 }
305
306 amr->amr_flags |= AMRF_PCI_REGS;
307 amr->amr_dmat = pa->pa_dmat;
308 amr->amr_pc = pa->pa_pc;
309
310 /* Enable the device. */
311 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
312 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
313 reg | PCI_COMMAND_MASTER_ENABLE);
314
315 /* Map and establish the interrupt. */
316 if (pci_intr_map(pa, &ih)) {
317 aprint_error("can't map interrupt\n");
318 amr_teardown(amr);
319 return;
320 }
321 intrstr = pci_intr_string(pc, ih);
322 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
323 if (amr->amr_ih == NULL) {
324 aprint_error("can't establish interrupt");
325 if (intrstr != NULL)
326 aprint_normal(" at %s", intrstr);
327 aprint_normal("\n");
328 amr_teardown(amr);
329 return;
330 }
331 amr->amr_flags |= AMRF_PCI_INTR;
332
333 /*
334 * Allocate space for the mailbox and S/G lists. Some controllers
335 * don't like S/G lists to be located below 0x2000, so we allocate
336 * enough slop to enable us to compensate.
337 *
338 * The standard mailbox structure needs to be aligned on a 16-byte
339 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
340 * size, which preceeds the standard mailbox.
341 */
342 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
343 amr->amr_dmasize = size;
344
345 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
346 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
347 aprint_error("%s: unable to allocate buffer, rv = %d\n",
348 amr->amr_dv.dv_xname, rv);
349 amr_teardown(amr);
350 return;
351 }
352 amr->amr_flags |= AMRF_DMA_ALLOC;
353
354 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
355 (caddr_t *)&amr->amr_mbox,
356 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
357 aprint_error("%s: unable to map buffer, rv = %d\n",
358 amr->amr_dv.dv_xname, rv);
359 amr_teardown(amr);
360 return;
361 }
362 amr->amr_flags |= AMRF_DMA_MAP;
363
364 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
365 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
366 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
367 amr->amr_dv.dv_xname, rv);
368 amr_teardown(amr);
369 return;
370 }
371 amr->amr_flags |= AMRF_DMA_CREATE;
372
373 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
374 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
375 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
376 amr->amr_dv.dv_xname, rv);
377 amr_teardown(amr);
378 return;
379 }
380 amr->amr_flags |= AMRF_DMA_LOAD;
381
382 memset(amr->amr_mbox, 0, size);
383
384 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
385 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
386 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
387 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
388
389 /*
390 * Allocate and initalise the command control blocks.
391 */
392 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
393 amr->amr_ccbs = ac;
394 SLIST_INIT(&amr->amr_ccb_freelist);
395 TAILQ_INIT(&amr->amr_ccb_active);
396 amr->amr_flags |= AMRF_CCBS;
397
398 if (amr_max_xfer == 0) {
399 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
400 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
401 }
402
403 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
404 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
405 amr_max_segs, amr_max_xfer, 0,
406 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
407 if (rv != 0)
408 break;
409
410 ac->ac_ident = i;
411 amr_ccb_free(amr, ac);
412 }
413 if (i != AMR_MAX_CMDS) {
414 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
415 amr_teardown(amr);
416 return;
417 }
418
419 /*
420 * Take care of model-specific tasks.
421 */
422 if ((apt->apt_flags & AT_QUARTZ) != 0) {
423 amr->amr_submit = amr_quartz_submit;
424 amr->amr_get_work = amr_quartz_get_work;
425 } else {
426 amr->amr_submit = amr_std_submit;
427 amr->amr_get_work = amr_std_get_work;
428
429 /* Notify the controller of the mailbox location. */
430 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
431 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
432
433 /* Clear outstanding interrupts and enable interrupts. */
434 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
435 amr_outb(amr, AMR_SREG_TOGL,
436 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
437 }
438
439 /*
440 * Retrieve parameters, and tell the world about us.
441 */
442 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
443 amr->amr_flags |= AMRF_ENQBUF;
444 amr->amr_maxqueuecnt = i;
445 aprint_normal(": AMI RAID ");
446 if (amr_init(amr, intrstr, pa) != 0) {
447 amr_teardown(amr);
448 return;
449 }
450
451 /*
452 * Cap the maximum number of outstanding commands. AMI's Linux
453 * driver doesn't trust the controller's reported value, and lockups
454 * have been seen when we do.
455 */
456 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
457 if (amr->amr_maxqueuecnt > i)
458 amr->amr_maxqueuecnt = i;
459
460 /* Set our `shutdownhook' before we start any device activity. */
461 if (amr_sdh == NULL)
462 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
463
464 /* Attach sub-devices. */
465 for (j = 0; j < amr->amr_numdrives; j++) {
466 if (amr->amr_drive[j].al_size == 0)
467 continue;
468 amra.amra_unit = j;
469
470 locs[AMRCF_UNIT] = j;
471
472 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
473 "amr", locs, &amra, amr_print, config_stdsubmatch);
474 }
475
476 SIMPLEQ_INIT(&amr->amr_ccb_queue);
477
478 /* XXX This doesn't work for newer boards yet. */
479 if ((apt->apt_flags & AT_QUARTZ) == 0)
480 kthread_create(amr_thread_create, amr);
481 }
482
483 /*
484 * Free up resources.
485 */
486 static void
487 amr_teardown(struct amr_softc *amr)
488 {
489 struct amr_ccb *ac;
490 int fl;
491
492 fl = amr->amr_flags;
493
494 if ((fl & AMRF_THREAD) != 0) {
495 amr->amr_flags |= AMRF_THREAD_EXIT;
496 wakeup(amr_thread);
497 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
498 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
499 }
500 if ((fl & AMRF_CCBS) != 0) {
501 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
502 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
503 }
504 free(amr->amr_ccbs, M_DEVBUF);
505 }
506 if ((fl & AMRF_ENQBUF) != 0)
507 free(amr->amr_enqbuf, M_DEVBUF);
508 if ((fl & AMRF_DMA_LOAD) != 0)
509 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
510 if ((fl & AMRF_DMA_MAP) != 0)
511 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
512 amr->amr_dmasize);
513 if ((fl & AMRF_DMA_ALLOC) != 0)
514 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
515 if ((fl & AMRF_DMA_CREATE) != 0)
516 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
517 if ((fl & AMRF_PCI_INTR) != 0)
518 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
519 if ((fl & AMRF_PCI_REGS) != 0)
520 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
521 }
522
523 /*
524 * Print autoconfiguration message for a sub-device.
525 */
526 static int
527 amr_print(void *aux, const char *pnp)
528 {
529 struct amr_attach_args *amra;
530
531 amra = (struct amr_attach_args *)aux;
532
533 if (pnp != NULL)
534 aprint_normal("block device at %s", pnp);
535 aprint_normal(" unit %d", amra->amra_unit);
536 return (UNCONF);
537 }
538
539 /*
540 * Retrieve operational parameters and describe the controller.
541 */
542 static int
543 amr_init(struct amr_softc *amr, const char *intrstr,
544 struct pci_attach_args *pa)
545 {
546 struct amr_adapter_info *aa;
547 struct amr_prodinfo *ap;
548 struct amr_enquiry *ae;
549 struct amr_enquiry3 *aex;
550 const char *prodstr;
551 u_int i, sig, ishp;
552 char sbuf[64];
553
554 /*
555 * Try to get 40LD product info, which tells us what the card is
556 * labelled as.
557 */
558 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
559 amr->amr_enqbuf);
560 if (ap != NULL) {
561 aprint_normal("<%.80s>\n", ap->ap_product);
562 if (intrstr != NULL)
563 aprint_normal("%s: interrupting at %s\n",
564 amr->amr_dv.dv_xname, intrstr);
565 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
566 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
567 le16toh(ap->ap_memsize));
568
569 amr->amr_maxqueuecnt = ap->ap_maxio;
570
571 /*
572 * Fetch and record state of logical drives.
573 */
574 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
575 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
576 if (aex == NULL) {
577 aprint_error("%s ENQUIRY3 failed\n",
578 amr->amr_dv.dv_xname);
579 return (-1);
580 }
581
582 if (aex->ae_numldrives > AMR_MAX_UNITS) {
583 aprint_error(
584 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
585 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
586 amr->amr_numdrives);
587 amr->amr_numdrives = AMR_MAX_UNITS;
588 } else
589 amr->amr_numdrives = aex->ae_numldrives;
590
591 for (i = 0; i < amr->amr_numdrives; i++) {
592 amr->amr_drive[i].al_size =
593 le32toh(aex->ae_drivesize[i]);
594 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
595 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
596 }
597
598 return (0);
599 }
600
601 /*
602 * Try 8LD extended ENQUIRY to get the controller signature. Once
603 * found, search for a product description.
604 */
605 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
606 if (ae != NULL) {
607 i = 0;
608 sig = le32toh(ae->ae_signature);
609
610 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
611 if (amr_typestr[i].at_sig == sig)
612 break;
613 i++;
614 }
615 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
616 snprintf(sbuf, sizeof(sbuf),
617 "unknown ENQUIRY2 sig (0x%08x)", sig);
618 prodstr = sbuf;
619 } else
620 prodstr = amr_typestr[i].at_str;
621 } else {
622 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
623 if (ae == NULL) {
624 aprint_error("%s: unsupported controller\n",
625 amr->amr_dv.dv_xname);
626 return (-1);
627 }
628
629 switch (PCI_PRODUCT(pa->pa_id)) {
630 case PCI_PRODUCT_AMI_MEGARAID:
631 prodstr = "Series 428";
632 break;
633 case PCI_PRODUCT_AMI_MEGARAID2:
634 prodstr = "Series 434";
635 break;
636 default:
637 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
638 PCI_PRODUCT(pa->pa_id));
639 prodstr = sbuf;
640 break;
641 }
642 }
643
644 /*
645 * HP NetRaid controllers have a special encoding of the firmware
646 * and BIOS versions. The AMI version seems to have it as strings
647 * whereas the HP version does it with a leading uppercase character
648 * and two binary numbers.
649 */
650 aa = &ae->ae_adapter;
651
652 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
653 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
654 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
655 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
656 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
657 /* The AMI 438 is a NetRaid 3si in HP-land. */
658 prodstr = "HP NetRaid 3si";
659 }
660 ishp = 1;
661 } else
662 ishp = 0;
663
664 aprint_normal("<%s>\n", prodstr);
665 if (intrstr != NULL)
666 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
667 intrstr);
668
669 if (ishp)
670 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
671 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
672 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
673 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
674 else
675 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
676 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
677 aa->aa_memorysize);
678
679 amr->amr_maxqueuecnt = aa->aa_maxio;
680
681 /*
682 * Record state of logical drives.
683 */
684 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
685 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
686 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
687 AMR_MAX_UNITS);
688 amr->amr_numdrives = AMR_MAX_UNITS;
689 } else
690 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
691
692 for (i = 0; i < AMR_MAX_UNITS; i++) {
693 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
694 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
695 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
696 }
697
698 return (0);
699 }
700
701 /*
702 * Flush the internal cache on each configured controller. Called at
703 * shutdown time.
704 */
705 static void
706 amr_shutdown(void *cookie)
707 {
708 extern struct cfdriver amr_cd;
709 struct amr_softc *amr;
710 struct amr_ccb *ac;
711 int i, rv, s;
712
713 for (i = 0; i < amr_cd.cd_ndevs; i++) {
714 if ((amr = device_lookup(&amr_cd, i)) == NULL)
715 continue;
716
717 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
718 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
719 s = splbio();
720 rv = amr_ccb_poll(amr, ac, 30000);
721 splx(s);
722 amr_ccb_free(amr, ac);
723 }
724 if (rv != 0)
725 printf("%s: unable to flush cache (%d)\n",
726 amr->amr_dv.dv_xname, rv);
727 }
728 }
729
730 /*
731 * Interrupt service routine.
732 */
733 static int
734 amr_intr(void *cookie)
735 {
736 struct amr_softc *amr;
737 struct amr_ccb *ac;
738 struct amr_mailbox_resp mbox;
739 u_int i, forus, idx;
740
741 amr = cookie;
742 forus = 0;
743
744 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
745 /* Iterate over completed commands in this result. */
746 for (i = 0; i < mbox.mb_nstatus; i++) {
747 idx = mbox.mb_completed[i] - 1;
748 ac = amr->amr_ccbs + idx;
749
750 if (idx >= amr->amr_maxqueuecnt) {
751 printf("%s: bad status (bogus ID: %u=%u)\n",
752 amr->amr_dv.dv_xname, i, idx);
753 continue;
754 }
755
756 if ((ac->ac_flags & AC_ACTIVE) == 0) {
757 printf("%s: bad status (not active; 0x04%x)\n",
758 amr->amr_dv.dv_xname, ac->ac_flags);
759 continue;
760 }
761
762 ac->ac_status = mbox.mb_status;
763 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
764 AC_COMPLETE;
765 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
766
767 if ((ac->ac_flags & AC_MOAN) != 0)
768 printf("%s: ccb %d completed\n",
769 amr->amr_dv.dv_xname, ac->ac_ident);
770
771 /* Pass notification to upper layers. */
772 if (ac->ac_handler != NULL)
773 (*ac->ac_handler)(ac);
774 else
775 wakeup(ac);
776 }
777 forus = 1;
778 }
779
780 if (forus)
781 amr_ccb_enqueue(amr, NULL);
782
783 return (forus);
784 }
785
786 /*
787 * Create the watchdog thread.
788 */
789 static void
790 amr_thread_create(void *cookie)
791 {
792 struct amr_softc *amr;
793 int rv;
794
795 amr = cookie;
796
797 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
798 amr->amr_flags ^= AMRF_THREAD_EXIT;
799 wakeup(&amr->amr_flags);
800 return;
801 }
802
803 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
804 amr->amr_dv.dv_xname);
805 if (rv != 0)
806 aprint_error("%s: unable to create thread (%d)",
807 amr->amr_dv.dv_xname, rv);
808 else
809 amr->amr_flags |= AMRF_THREAD;
810 }
811
812 /*
813 * Watchdog thread.
814 */
815 static void
816 amr_thread(void *cookie)
817 {
818 struct amr_softc *amr;
819 struct amr_ccb *ac;
820 struct amr_logdrive *al;
821 struct amr_enquiry *ae;
822 time_t curtime;
823 int rv, i, s;
824
825 amr = cookie;
826 ae = amr->amr_enqbuf;
827
828 for (;;) {
829 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
830
831 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
832 amr->amr_flags ^= AMRF_THREAD_EXIT;
833 wakeup(&amr->amr_flags);
834 kthread_exit(0);
835 }
836
837 s = splbio();
838 amr_intr(cookie);
839 curtime = (time_t)mono_time.tv_sec;
840 ac = TAILQ_FIRST(&amr->amr_ccb_active);
841 while (ac != NULL) {
842 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
843 break;
844 if ((ac->ac_flags & AC_MOAN) == 0) {
845 printf("%s: ccb %d timed out; mailbox:\n",
846 amr->amr_dv.dv_xname, ac->ac_ident);
847 amr_ccb_dump(amr, ac);
848 ac->ac_flags |= AC_MOAN;
849 }
850 ac = TAILQ_NEXT(ac, ac_chain.tailq);
851 }
852 splx(s);
853
854 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
855 printf("%s: ccb_alloc failed (%d)\n",
856 amr->amr_dv.dv_xname, rv);
857 continue;
858 }
859
860 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
861
862 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
863 AMR_ENQUIRY_BUFSIZE, 0);
864 if (rv != 0) {
865 printf("%s: ccb_map failed (%d)\n",
866 amr->amr_dv.dv_xname, rv);
867 amr_ccb_free(amr, ac);
868 continue;
869 }
870
871 rv = amr_ccb_wait(amr, ac);
872 amr_ccb_unmap(amr, ac);
873 if (rv != 0) {
874 printf("%s: enquiry failed (st=%d)\n",
875 amr->amr_dv.dv_xname, ac->ac_status);
876 continue;
877 }
878 amr_ccb_free(amr, ac);
879
880 al = amr->amr_drive;
881 for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
882 if (al->al_dv == NULL)
883 continue;
884 if (al->al_state == ae->ae_ldrv.al_state[i])
885 continue;
886
887 printf("%s: state changed: %s -> %s\n",
888 al->al_dv->dv_xname,
889 amr_drive_state(al->al_state, NULL),
890 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
891
892 al->al_state = ae->ae_ldrv.al_state[i];
893 }
894 }
895 }
896
897 /*
898 * Return a text description of a logical drive's current state.
899 */
900 const char *
901 amr_drive_state(int state, int *happy)
902 {
903 const char *str;
904
905 state = AMR_DRV_CURSTATE(state);
906 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
907 if (happy)
908 *happy = 1;
909 str = "status unknown";
910 } else {
911 if (happy)
912 *happy = amr_dstate[state].ds_happy;
913 str = amr_dstate[state].ds_descr;
914 }
915
916 return (str);
917 }
918
919 /*
920 * Run a generic enquiry-style command.
921 */
922 static void *
923 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
924 u_int8_t cmdqual, void *sbuf)
925 {
926 struct amr_ccb *ac;
927 u_int8_t *mb;
928 int rv;
929
930 if (amr_ccb_alloc(amr, &ac) != 0)
931 return (NULL);
932
933 /* Build the command proper. */
934 mb = (u_int8_t *)&ac->ac_cmd;
935 mb[0] = cmd;
936 mb[2] = cmdsub;
937 mb[3] = cmdqual;
938
939 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, 0);
940 if (rv == 0) {
941 rv = amr_ccb_poll(amr, ac, 2000);
942 amr_ccb_unmap(amr, ac);
943 }
944 amr_ccb_free(amr, ac);
945
946 return (rv ? NULL : sbuf);
947 }
948
949 /*
950 * Allocate and initialise a CCB.
951 */
952 int
953 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
954 {
955 int s;
956
957 s = splbio();
958 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
959 splx(s);
960 return (EAGAIN);
961 }
962 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
963 splx(s);
964
965 return (0);
966 }
967
968 /*
969 * Free a CCB.
970 */
971 void
972 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
973 {
974 int s;
975
976 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
977 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
978 ac->ac_cmd.mb_busy = 1;
979 ac->ac_handler = NULL;
980 ac->ac_flags = 0;
981
982 s = splbio();
983 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
984 splx(s);
985 }
986
987 /*
988 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
989 * the order that they were enqueued and try to submit their command blocks
990 * to the controller for execution.
991 */
992 void
993 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
994 {
995 int s;
996
997 s = splbio();
998
999 if (ac != NULL)
1000 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1001
1002 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1003 if ((*amr->amr_submit)(amr, ac) != 0)
1004 break;
1005 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1006 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1007 }
1008
1009 splx(s);
1010 }
1011
1012 /*
1013 * Map the specified CCB's data buffer onto the bus, and fill the
1014 * scatter-gather list.
1015 */
1016 int
1017 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1018 int out)
1019 {
1020 struct amr_sgentry *sge;
1021 struct amr_mailbox_cmd *mb;
1022 int nsegs, i, rv, sgloff;
1023 bus_dmamap_t xfer;
1024
1025 xfer = ac->ac_xfer_map;
1026
1027 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1028 BUS_DMA_NOWAIT);
1029 if (rv != 0)
1030 return (rv);
1031
1032 mb = &ac->ac_cmd;
1033 ac->ac_xfer_size = size;
1034 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1035 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1036
1037 /* We don't need to use a scatter/gather list for just 1 segment. */
1038 nsegs = xfer->dm_nsegs;
1039 if (nsegs == 1) {
1040 mb->mb_nsgelem = 0;
1041 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1042 ac->ac_flags |= AC_NOSGL;
1043 } else {
1044 mb->mb_nsgelem = nsegs;
1045 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1046
1047 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1048 for (i = 0; i < nsegs; i++, sge++) {
1049 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1050 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1051 }
1052 }
1053
1054 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1055 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1056
1057 if ((ac->ac_flags & AC_NOSGL) == 0)
1058 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1059 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1060
1061 return (0);
1062 }
1063
1064 /*
1065 * Unmap the specified CCB's data buffer.
1066 */
1067 void
1068 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1069 {
1070
1071 if ((ac->ac_flags & AC_NOSGL) == 0)
1072 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1073 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1074 BUS_DMASYNC_POSTWRITE);
1075 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1076 (ac->ac_flags & AC_XFER_IN) != 0 ?
1077 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1078 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1079 }
1080
1081 /*
1082 * Submit a command to the controller and poll on completion. Return
1083 * non-zero on timeout or error. Must be called with interrupts blocked.
1084 */
1085 int
1086 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1087 {
1088 int rv;
1089
1090 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1091 return (rv);
1092 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1093
1094 for (timo *= 10; timo != 0; timo--) {
1095 amr_intr(amr);
1096 if ((ac->ac_flags & AC_COMPLETE) != 0)
1097 break;
1098 DELAY(100);
1099 }
1100
1101 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1102 }
1103
1104 /*
1105 * Submit a command to the controller and sleep on completion. Return
1106 * non-zero on error.
1107 */
1108 int
1109 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1110 {
1111 int s;
1112
1113 s = splbio();
1114 amr_ccb_enqueue(amr, ac);
1115 tsleep(ac, PRIBIO, "amrcmd", 0);
1116 splx(s);
1117
1118 return (ac->ac_status != 0 ? EIO : 0);
1119 }
1120
1121 #if 0
1122 /*
1123 * Wait for the mailbox to become available.
1124 */
1125 static int
1126 amr_mbox_wait(struct amr_softc *amr)
1127 {
1128 int timo;
1129
1130 for (timo = 10000; timo != 0; timo--) {
1131 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1132 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1133 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1134 break;
1135 DELAY(100);
1136 }
1137
1138 if (timo == 0)
1139 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1140
1141 return (timo != 0 ? 0 : EAGAIN);
1142 }
1143 #endif
1144
1145 /*
1146 * Tell the controller that the mailbox contains a valid command. Must be
1147 * called with interrupts blocked.
1148 */
1149 static int
1150 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1151 {
1152 u_int32_t v;
1153
1154 amr->amr_mbox->mb_poll = 0;
1155 amr->amr_mbox->mb_ack = 0;
1156 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1157 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1158 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1159 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1160 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1161 return (EAGAIN);
1162
1163 v = amr_inl(amr, AMR_QREG_IDB);
1164 if ((v & AMR_QIDB_SUBMIT) != 0) {
1165 amr->amr_mbox->mb_cmd.mb_busy = 0;
1166 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1167 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1168 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1169 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1170 return (EAGAIN);
1171 }
1172
1173 amr->amr_mbox->mb_segment = 0;
1174 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1175 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1176 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1177
1178 ac->ac_start_time = (time_t)mono_time.tv_sec;
1179 ac->ac_flags |= AC_ACTIVE;
1180 amr_outl(amr, AMR_QREG_IDB,
1181 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1182 return (0);
1183 }
1184
1185 static int
1186 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1187 {
1188
1189 amr->amr_mbox->mb_poll = 0;
1190 amr->amr_mbox->mb_ack = 0;
1191 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1192 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1193 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1194 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1195 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1196 return (EAGAIN);
1197
1198 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1199 amr->amr_mbox->mb_cmd.mb_busy = 0;
1200 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1201 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1202 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1203 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1204 return (EAGAIN);
1205 }
1206
1207 amr->amr_mbox->mb_segment = 0;
1208 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1209 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1210 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1211
1212 ac->ac_start_time = (time_t)mono_time.tv_sec;
1213 ac->ac_flags |= AC_ACTIVE;
1214 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1215 return (0);
1216 }
1217
1218 /*
1219 * Claim any work that the controller has completed; acknowledge completion,
1220 * save details of the completion in (mbsave). Must be called with
1221 * interrupts blocked.
1222 */
1223 static int
1224 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1225 {
1226
1227 /* Work waiting for us? */
1228 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1229 return (-1);
1230
1231 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1232 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1233
1234 /* Save the mailbox, which contains a list of completed commands. */
1235 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1236
1237 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1238 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1239
1240 /* Ack the interrupt and mailbox transfer. */
1241 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1242 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1243
1244 /*
1245 * This waits for the controller to notice that we've taken the
1246 * command from it. It's very inefficient, and we shouldn't do it,
1247 * but if we remove this code, we stop completing commands under
1248 * load.
1249 *
1250 * Peter J says we shouldn't do this. The documentation says we
1251 * should. Who is right?
1252 */
1253 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1254 DELAY(10);
1255
1256 return (0);
1257 }
1258
1259 static int
1260 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1261 {
1262 u_int8_t istat;
1263
1264 /* Check for valid interrupt status. */
1265 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1266 return (-1);
1267
1268 /* Ack the interrupt. */
1269 amr_outb(amr, AMR_SREG_INTR, istat);
1270
1271 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1272 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1273
1274 /* Save mailbox, which contains a list of completed commands. */
1275 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1276
1277 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1278 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1279
1280 /* Ack mailbox transfer. */
1281 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1282
1283 return (0);
1284 }
1285
1286 static void
1287 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1288 {
1289 int i;
1290
1291 printf("%s: ", amr->amr_dv.dv_xname);
1292 for (i = 0; i < 4; i++)
1293 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1294 printf("\n");
1295 }
1296