amr.c revision 1.34 1 /* $NetBSD: amr.c,v 1.34 2006/04/17 13:31:02 elad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.34 2006/04/17 13:31:02 elad Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85
86 #include <uvm/uvm_extern.h>
87
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95
96 #include "locators.h"
97
98 static void amr_attach(struct device *, struct device *, void *);
99 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
100 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
101 void *);
102 static int amr_init(struct amr_softc *, const char *,
103 struct pci_attach_args *pa);
104 static int amr_intr(void *);
105 static int amr_match(struct device *, struct cfdata *, void *);
106 static int amr_print(void *, const char *);
107 static void amr_shutdown(void *);
108 static void amr_teardown(struct amr_softc *);
109 static void amr_thread(void *);
110 static void amr_thread_create(void *);
111
112 static int amr_quartz_get_work(struct amr_softc *,
113 struct amr_mailbox_resp *);
114 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
115 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
116 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
117
118 CFATTACH_DECL(amr, sizeof(struct amr_softc),
119 amr_match, amr_attach, NULL, NULL);
120
121 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
122 #define AT_SIG 0x02 /* Check for signature */
123
124 struct amr_pci_type {
125 u_short apt_vendor;
126 u_short apt_product;
127 u_short apt_flags;
128 } static const amr_pci_type[] = {
129 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
130 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
131 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
132 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
133 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
134 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
135 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
136 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
137 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
138 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
139 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
140 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
141 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
142 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
143 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
144 };
145
146 struct amr_typestr {
147 const char *at_str;
148 int at_sig;
149 } static const amr_typestr[] = {
150 { "Series 431", AMR_SIG_431 },
151 { "Series 438", AMR_SIG_438 },
152 { "Series 466", AMR_SIG_466 },
153 { "Series 467", AMR_SIG_467 },
154 { "Series 490", AMR_SIG_490 },
155 { "Series 762", AMR_SIG_762 },
156 { "HP NetRAID (T5)", AMR_SIG_T5 },
157 { "HP NetRAID (T7)", AMR_SIG_T7 },
158 };
159
160 struct {
161 const char *ds_descr;
162 int ds_happy;
163 } static const amr_dstate[] = {
164 { "offline", 0 },
165 { "degraded", 1 },
166 { "optimal", 1 },
167 { "online", 1 },
168 { "failed", 0 },
169 { "rebuilding", 1 },
170 { "hotspare", 0 },
171 };
172
173 static void *amr_sdh;
174
175 static int amr_max_segs;
176 int amr_max_xfer;
177
178 static inline u_int8_t
179 amr_inb(struct amr_softc *amr, int off)
180 {
181
182 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
183 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
184 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
185 }
186
187 static inline u_int32_t
188 amr_inl(struct amr_softc *amr, int off)
189 {
190
191 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
192 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
193 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
194 }
195
196 static inline void
197 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
198 {
199
200 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
201 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
202 BUS_SPACE_BARRIER_WRITE);
203 }
204
205 static inline void
206 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
207 {
208
209 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
210 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
211 BUS_SPACE_BARRIER_WRITE);
212 }
213
214 /*
215 * Match a supported device.
216 */
217 static int
218 amr_match(struct device *parent, struct cfdata *match, void *aux)
219 {
220 struct pci_attach_args *pa;
221 pcireg_t s;
222 int i;
223
224 pa = (struct pci_attach_args *)aux;
225
226 /*
227 * Don't match the device if it's operating in I2O mode. In this
228 * case it should be handled by the `iop' driver.
229 */
230 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
231 return (0);
232
233 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
234 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
235 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
236 break;
237
238 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
239 return (0);
240
241 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
242 return (1);
243
244 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
245 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
246 }
247
248 /*
249 * Attach a supported device.
250 */
251 static void
252 amr_attach(struct device *parent, struct device *self, void *aux)
253 {
254 struct pci_attach_args *pa;
255 struct amr_attach_args amra;
256 const struct amr_pci_type *apt;
257 struct amr_softc *amr;
258 pci_chipset_tag_t pc;
259 pci_intr_handle_t ih;
260 const char *intrstr;
261 pcireg_t reg;
262 int rseg, i, j, size, rv, memreg, ioreg;
263 struct amr_ccb *ac;
264 int locs[AMRCF_NLOCS];
265
266 aprint_naive(": RAID controller\n");
267
268 amr = (struct amr_softc *)self;
269 pa = (struct pci_attach_args *)aux;
270 pc = pa->pa_pc;
271
272 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
273 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
274 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
275 break;
276 apt = amr_pci_type + i;
277
278 memreg = ioreg = 0;
279 for (i = 0x10; i <= 0x14; i += 4) {
280 reg = pci_conf_read(pc, pa->pa_tag, i);
281 switch (PCI_MAPREG_TYPE(reg)) {
282 case PCI_MAPREG_TYPE_MEM:
283 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
284 memreg = i;
285 break;
286 case PCI_MAPREG_TYPE_IO:
287 if (PCI_MAPREG_IO_SIZE(reg) != 0)
288 ioreg = i;
289 break;
290
291 }
292 }
293
294 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
295 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
296 ;
297 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
298 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
299 ;
300 else {
301 aprint_error("can't map control registers\n");
302 amr_teardown(amr);
303 return;
304 }
305
306 amr->amr_flags |= AMRF_PCI_REGS;
307 amr->amr_dmat = pa->pa_dmat;
308 amr->amr_pc = pa->pa_pc;
309
310 /* Enable the device. */
311 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
312 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
313 reg | PCI_COMMAND_MASTER_ENABLE);
314
315 /* Map and establish the interrupt. */
316 if (pci_intr_map(pa, &ih)) {
317 aprint_error("can't map interrupt\n");
318 amr_teardown(amr);
319 return;
320 }
321 intrstr = pci_intr_string(pc, ih);
322 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
323 if (amr->amr_ih == NULL) {
324 aprint_error("can't establish interrupt");
325 if (intrstr != NULL)
326 aprint_normal(" at %s", intrstr);
327 aprint_normal("\n");
328 amr_teardown(amr);
329 return;
330 }
331 amr->amr_flags |= AMRF_PCI_INTR;
332
333 /*
334 * Allocate space for the mailbox and S/G lists. Some controllers
335 * don't like S/G lists to be located below 0x2000, so we allocate
336 * enough slop to enable us to compensate.
337 *
338 * The standard mailbox structure needs to be aligned on a 16-byte
339 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
340 * size, which preceeds the standard mailbox.
341 */
342 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
343 amr->amr_dmasize = size;
344
345 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
346 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
347 aprint_error("%s: unable to allocate buffer, rv = %d\n",
348 amr->amr_dv.dv_xname, rv);
349 amr_teardown(amr);
350 return;
351 }
352 amr->amr_flags |= AMRF_DMA_ALLOC;
353
354 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
355 (caddr_t *)&amr->amr_mbox,
356 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
357 aprint_error("%s: unable to map buffer, rv = %d\n",
358 amr->amr_dv.dv_xname, rv);
359 amr_teardown(amr);
360 return;
361 }
362 amr->amr_flags |= AMRF_DMA_MAP;
363
364 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
365 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
366 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
367 amr->amr_dv.dv_xname, rv);
368 amr_teardown(amr);
369 return;
370 }
371 amr->amr_flags |= AMRF_DMA_CREATE;
372
373 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
374 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
375 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
376 amr->amr_dv.dv_xname, rv);
377 amr_teardown(amr);
378 return;
379 }
380 amr->amr_flags |= AMRF_DMA_LOAD;
381
382 memset(amr->amr_mbox, 0, size);
383
384 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
385 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
386 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
387 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
388
389 /*
390 * Allocate and initalise the command control blocks.
391 */
392 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
393 amr->amr_ccbs = ac;
394 SLIST_INIT(&amr->amr_ccb_freelist);
395 TAILQ_INIT(&amr->amr_ccb_active);
396 amr->amr_flags |= AMRF_CCBS;
397
398 if (amr_max_xfer == 0) {
399 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
400 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
401 }
402
403 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
404 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
405 amr_max_segs, amr_max_xfer, 0,
406 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
407 if (rv != 0)
408 break;
409
410 ac->ac_ident = i;
411 amr_ccb_free(amr, ac);
412 }
413 if (i != AMR_MAX_CMDS) {
414 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
415 amr_teardown(amr);
416 return;
417 }
418
419 /*
420 * Take care of model-specific tasks.
421 */
422 if ((apt->apt_flags & AT_QUARTZ) != 0) {
423 amr->amr_submit = amr_quartz_submit;
424 amr->amr_get_work = amr_quartz_get_work;
425 } else {
426 amr->amr_submit = amr_std_submit;
427 amr->amr_get_work = amr_std_get_work;
428
429 /* Notify the controller of the mailbox location. */
430 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
431 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
432
433 /* Clear outstanding interrupts and enable interrupts. */
434 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
435 amr_outb(amr, AMR_SREG_TOGL,
436 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
437 }
438
439 /*
440 * Retrieve parameters, and tell the world about us.
441 */
442 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
443 amr->amr_flags |= AMRF_ENQBUF;
444 amr->amr_maxqueuecnt = i;
445 aprint_normal(": AMI RAID ");
446 if (amr_init(amr, intrstr, pa) != 0) {
447 amr_teardown(amr);
448 return;
449 }
450
451 /*
452 * Cap the maximum number of outstanding commands. AMI's Linux
453 * driver doesn't trust the controller's reported value, and lockups
454 * have been seen when we do.
455 */
456 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
457 if (amr->amr_maxqueuecnt > i)
458 amr->amr_maxqueuecnt = i;
459
460 /* Set our `shutdownhook' before we start any device activity. */
461 if (amr_sdh == NULL)
462 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
463
464 /* Attach sub-devices. */
465 for (j = 0; j < amr->amr_numdrives; j++) {
466 if (amr->amr_drive[j].al_size == 0)
467 continue;
468 amra.amra_unit = j;
469
470 locs[AMRCF_UNIT] = j;
471
472 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
473 "amr", locs, &amra, amr_print, config_stdsubmatch);
474 }
475
476 SIMPLEQ_INIT(&amr->amr_ccb_queue);
477
478 /* XXX This doesn't work for newer boards yet. */
479 if ((apt->apt_flags & AT_QUARTZ) == 0)
480 kthread_create(amr_thread_create, amr);
481 }
482
483 /*
484 * Free up resources.
485 */
486 static void
487 amr_teardown(struct amr_softc *amr)
488 {
489 struct amr_ccb *ac;
490 int fl;
491
492 fl = amr->amr_flags;
493
494 if ((fl & AMRF_THREAD) != 0) {
495 amr->amr_flags |= AMRF_THREAD_EXIT;
496 wakeup(amr_thread);
497 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
498 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
499 }
500 if ((fl & AMRF_CCBS) != 0) {
501 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
502 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
503 }
504 free(amr->amr_ccbs, M_DEVBUF);
505 }
506 if ((fl & AMRF_ENQBUF) != 0)
507 free(amr->amr_enqbuf, M_DEVBUF);
508 if ((fl & AMRF_DMA_LOAD) != 0)
509 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
510 if ((fl & AMRF_DMA_MAP) != 0)
511 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
512 amr->amr_dmasize);
513 if ((fl & AMRF_DMA_ALLOC) != 0)
514 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
515 if ((fl & AMRF_DMA_CREATE) != 0)
516 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
517 if ((fl & AMRF_PCI_INTR) != 0)
518 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
519 if ((fl & AMRF_PCI_REGS) != 0)
520 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
521 }
522
523 /*
524 * Print autoconfiguration message for a sub-device.
525 */
526 static int
527 amr_print(void *aux, const char *pnp)
528 {
529 struct amr_attach_args *amra;
530
531 amra = (struct amr_attach_args *)aux;
532
533 if (pnp != NULL)
534 aprint_normal("block device at %s", pnp);
535 aprint_normal(" unit %d", amra->amra_unit);
536 return (UNCONF);
537 }
538
539 /*
540 * Retrieve operational parameters and describe the controller.
541 */
542 static int
543 amr_init(struct amr_softc *amr, const char *intrstr,
544 struct pci_attach_args *pa)
545 {
546 struct amr_adapter_info *aa;
547 struct amr_prodinfo *ap;
548 struct amr_enquiry *ae;
549 struct amr_enquiry3 *aex;
550 const char *prodstr;
551 u_int i, sig, ishp;
552 char sbuf[64];
553
554 /*
555 * Try to get 40LD product info, which tells us what the card is
556 * labelled as.
557 */
558 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
559 amr->amr_enqbuf);
560 if (ap != NULL) {
561 aprint_normal("<%.80s>\n", ap->ap_product);
562 if (intrstr != NULL)
563 aprint_normal("%s: interrupting at %s\n",
564 amr->amr_dv.dv_xname, intrstr);
565 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
566 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
567 le16toh(ap->ap_memsize));
568
569 amr->amr_maxqueuecnt = ap->ap_maxio;
570
571 /*
572 * Fetch and record state of logical drives.
573 */
574 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
575 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
576 if (aex == NULL) {
577 aprint_error("%s ENQUIRY3 failed\n",
578 amr->amr_dv.dv_xname);
579 return (-1);
580 }
581
582 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
583 aprint_error("%s: Inquiry returned more drives (%d)"
584 " than the array can handle (%zu)\n",
585 amr->amr_dv.dv_xname, aex->ae_numldrives,
586 __arraycount(aex->ae_drivestate));
587 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
588 }
589 if (aex->ae_numldrives > AMR_MAX_UNITS) {
590 aprint_error(
591 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
592 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
593 amr->amr_numdrives);
594 amr->amr_numdrives = AMR_MAX_UNITS;
595 } else
596 amr->amr_numdrives = aex->ae_numldrives;
597
598 for (i = 0; i < amr->amr_numdrives; i++) {
599 amr->amr_drive[i].al_size =
600 le32toh(aex->ae_drivesize[i]);
601 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
602 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
603 }
604
605 return (0);
606 }
607
608 /*
609 * Try 8LD extended ENQUIRY to get the controller signature. Once
610 * found, search for a product description.
611 */
612 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
613 if (ae != NULL) {
614 i = 0;
615 sig = le32toh(ae->ae_signature);
616
617 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
618 if (amr_typestr[i].at_sig == sig)
619 break;
620 i++;
621 }
622 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
623 snprintf(sbuf, sizeof(sbuf),
624 "unknown ENQUIRY2 sig (0x%08x)", sig);
625 prodstr = sbuf;
626 } else
627 prodstr = amr_typestr[i].at_str;
628 } else {
629 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
630 if (ae == NULL) {
631 aprint_error("%s: unsupported controller\n",
632 amr->amr_dv.dv_xname);
633 return (-1);
634 }
635
636 switch (PCI_PRODUCT(pa->pa_id)) {
637 case PCI_PRODUCT_AMI_MEGARAID:
638 prodstr = "Series 428";
639 break;
640 case PCI_PRODUCT_AMI_MEGARAID2:
641 prodstr = "Series 434";
642 break;
643 default:
644 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
645 PCI_PRODUCT(pa->pa_id));
646 prodstr = sbuf;
647 break;
648 }
649 }
650
651 /*
652 * HP NetRaid controllers have a special encoding of the firmware
653 * and BIOS versions. The AMI version seems to have it as strings
654 * whereas the HP version does it with a leading uppercase character
655 * and two binary numbers.
656 */
657 aa = &ae->ae_adapter;
658
659 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
660 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
661 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
662 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
663 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
664 /* The AMI 438 is a NetRaid 3si in HP-land. */
665 prodstr = "HP NetRaid 3si";
666 }
667 ishp = 1;
668 } else
669 ishp = 0;
670
671 aprint_normal("<%s>\n", prodstr);
672 if (intrstr != NULL)
673 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
674 intrstr);
675
676 if (ishp)
677 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
678 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
679 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
680 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
681 else
682 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
683 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
684 aa->aa_memorysize);
685
686 amr->amr_maxqueuecnt = aa->aa_maxio;
687
688 /*
689 * Record state of logical drives.
690 */
691 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
692 aprint_error("%s: Inquiry returned more drives (%d)"
693 " than the array can handle (%zu)\n",
694 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
695 __arraycount(ae->ae_ldrv.al_size));
696 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
697 }
698 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
699 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
700 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
701 AMR_MAX_UNITS);
702 amr->amr_numdrives = AMR_MAX_UNITS;
703 } else
704 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
705
706 for (i = 0; i < amr->amr_numdrives; i++) {
707 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
708 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
709 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
710 }
711
712 return (0);
713 }
714
715 /*
716 * Flush the internal cache on each configured controller. Called at
717 * shutdown time.
718 */
719 static void
720 amr_shutdown(void *cookie)
721 {
722 extern struct cfdriver amr_cd;
723 struct amr_softc *amr;
724 struct amr_ccb *ac;
725 int i, rv, s;
726
727 for (i = 0; i < amr_cd.cd_ndevs; i++) {
728 if ((amr = device_lookup(&amr_cd, i)) == NULL)
729 continue;
730
731 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
732 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
733 s = splbio();
734 rv = amr_ccb_poll(amr, ac, 30000);
735 splx(s);
736 amr_ccb_free(amr, ac);
737 }
738 if (rv != 0)
739 printf("%s: unable to flush cache (%d)\n",
740 amr->amr_dv.dv_xname, rv);
741 }
742 }
743
744 /*
745 * Interrupt service routine.
746 */
747 static int
748 amr_intr(void *cookie)
749 {
750 struct amr_softc *amr;
751 struct amr_ccb *ac;
752 struct amr_mailbox_resp mbox;
753 u_int i, forus, idx;
754
755 amr = cookie;
756 forus = 0;
757
758 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
759 /* Iterate over completed commands in this result. */
760 for (i = 0; i < mbox.mb_nstatus; i++) {
761 idx = mbox.mb_completed[i] - 1;
762 ac = amr->amr_ccbs + idx;
763
764 if (idx >= amr->amr_maxqueuecnt) {
765 printf("%s: bad status (bogus ID: %u=%u)\n",
766 amr->amr_dv.dv_xname, i, idx);
767 continue;
768 }
769
770 if ((ac->ac_flags & AC_ACTIVE) == 0) {
771 printf("%s: bad status (not active; 0x04%x)\n",
772 amr->amr_dv.dv_xname, ac->ac_flags);
773 continue;
774 }
775
776 ac->ac_status = mbox.mb_status;
777 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
778 AC_COMPLETE;
779 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
780
781 if ((ac->ac_flags & AC_MOAN) != 0)
782 printf("%s: ccb %d completed\n",
783 amr->amr_dv.dv_xname, ac->ac_ident);
784
785 /* Pass notification to upper layers. */
786 if (ac->ac_handler != NULL)
787 (*ac->ac_handler)(ac);
788 else
789 wakeup(ac);
790 }
791 forus = 1;
792 }
793
794 if (forus)
795 amr_ccb_enqueue(amr, NULL);
796
797 return (forus);
798 }
799
800 /*
801 * Create the watchdog thread.
802 */
803 static void
804 amr_thread_create(void *cookie)
805 {
806 struct amr_softc *amr;
807 int rv;
808
809 amr = cookie;
810
811 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
812 amr->amr_flags ^= AMRF_THREAD_EXIT;
813 wakeup(&amr->amr_flags);
814 return;
815 }
816
817 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
818 amr->amr_dv.dv_xname);
819 if (rv != 0)
820 aprint_error("%s: unable to create thread (%d)",
821 amr->amr_dv.dv_xname, rv);
822 else
823 amr->amr_flags |= AMRF_THREAD;
824 }
825
826 /*
827 * Watchdog thread.
828 */
829 static void
830 amr_thread(void *cookie)
831 {
832 struct amr_softc *amr;
833 struct amr_ccb *ac;
834 struct amr_logdrive *al;
835 struct amr_enquiry *ae;
836 time_t curtime;
837 int rv, i, s;
838
839 amr = cookie;
840 ae = amr->amr_enqbuf;
841
842 for (;;) {
843 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
844
845 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
846 amr->amr_flags ^= AMRF_THREAD_EXIT;
847 wakeup(&amr->amr_flags);
848 kthread_exit(0);
849 }
850
851 s = splbio();
852 amr_intr(cookie);
853 curtime = (time_t)mono_time.tv_sec;
854 ac = TAILQ_FIRST(&amr->amr_ccb_active);
855 while (ac != NULL) {
856 if (ac->ac_start_time + AMR_TIMEOUT > curtime)
857 break;
858 if ((ac->ac_flags & AC_MOAN) == 0) {
859 printf("%s: ccb %d timed out; mailbox:\n",
860 amr->amr_dv.dv_xname, ac->ac_ident);
861 amr_ccb_dump(amr, ac);
862 ac->ac_flags |= AC_MOAN;
863 }
864 ac = TAILQ_NEXT(ac, ac_chain.tailq);
865 }
866 splx(s);
867
868 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
869 printf("%s: ccb_alloc failed (%d)\n",
870 amr->amr_dv.dv_xname, rv);
871 continue;
872 }
873
874 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
875
876 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
877 AMR_ENQUIRY_BUFSIZE, 0);
878 if (rv != 0) {
879 printf("%s: ccb_map failed (%d)\n",
880 amr->amr_dv.dv_xname, rv);
881 amr_ccb_free(amr, ac);
882 continue;
883 }
884
885 rv = amr_ccb_wait(amr, ac);
886 amr_ccb_unmap(amr, ac);
887 if (rv != 0) {
888 printf("%s: enquiry failed (st=%d)\n",
889 amr->amr_dv.dv_xname, ac->ac_status);
890 continue;
891 }
892 amr_ccb_free(amr, ac);
893
894 al = amr->amr_drive;
895 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
896 if (al->al_dv == NULL)
897 continue;
898 if (al->al_state == ae->ae_ldrv.al_state[i])
899 continue;
900
901 printf("%s: state changed: %s -> %s\n",
902 al->al_dv->dv_xname,
903 amr_drive_state(al->al_state, NULL),
904 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
905
906 al->al_state = ae->ae_ldrv.al_state[i];
907 }
908 }
909 }
910
911 /*
912 * Return a text description of a logical drive's current state.
913 */
914 const char *
915 amr_drive_state(int state, int *happy)
916 {
917 const char *str;
918
919 state = AMR_DRV_CURSTATE(state);
920 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
921 if (happy)
922 *happy = 1;
923 str = "status unknown";
924 } else {
925 if (happy)
926 *happy = amr_dstate[state].ds_happy;
927 str = amr_dstate[state].ds_descr;
928 }
929
930 return (str);
931 }
932
933 /*
934 * Run a generic enquiry-style command.
935 */
936 static void *
937 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
938 u_int8_t cmdqual, void *sbuf)
939 {
940 struct amr_ccb *ac;
941 u_int8_t *mb;
942 int rv;
943
944 if (amr_ccb_alloc(amr, &ac) != 0)
945 return (NULL);
946
947 /* Build the command proper. */
948 mb = (u_int8_t *)&ac->ac_cmd;
949 mb[0] = cmd;
950 mb[2] = cmdsub;
951 mb[3] = cmdqual;
952
953 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, 0);
954 if (rv == 0) {
955 rv = amr_ccb_poll(amr, ac, 2000);
956 amr_ccb_unmap(amr, ac);
957 }
958 amr_ccb_free(amr, ac);
959
960 return (rv ? NULL : sbuf);
961 }
962
963 /*
964 * Allocate and initialise a CCB.
965 */
966 int
967 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
968 {
969 int s;
970
971 s = splbio();
972 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
973 splx(s);
974 return (EAGAIN);
975 }
976 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
977 splx(s);
978
979 return (0);
980 }
981
982 /*
983 * Free a CCB.
984 */
985 void
986 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
987 {
988 int s;
989
990 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
991 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
992 ac->ac_cmd.mb_busy = 1;
993 ac->ac_handler = NULL;
994 ac->ac_flags = 0;
995
996 s = splbio();
997 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
998 splx(s);
999 }
1000
1001 /*
1002 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1003 * the order that they were enqueued and try to submit their command blocks
1004 * to the controller for execution.
1005 */
1006 void
1007 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1008 {
1009 int s;
1010
1011 s = splbio();
1012
1013 if (ac != NULL)
1014 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1015
1016 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1017 if ((*amr->amr_submit)(amr, ac) != 0)
1018 break;
1019 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1020 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1021 }
1022
1023 splx(s);
1024 }
1025
1026 /*
1027 * Map the specified CCB's data buffer onto the bus, and fill the
1028 * scatter-gather list.
1029 */
1030 int
1031 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1032 int out)
1033 {
1034 struct amr_sgentry *sge;
1035 struct amr_mailbox_cmd *mb;
1036 int nsegs, i, rv, sgloff;
1037 bus_dmamap_t xfer;
1038
1039 xfer = ac->ac_xfer_map;
1040
1041 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1042 BUS_DMA_NOWAIT);
1043 if (rv != 0)
1044 return (rv);
1045
1046 mb = &ac->ac_cmd;
1047 ac->ac_xfer_size = size;
1048 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1049 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1050
1051 /* We don't need to use a scatter/gather list for just 1 segment. */
1052 nsegs = xfer->dm_nsegs;
1053 if (nsegs == 1) {
1054 mb->mb_nsgelem = 0;
1055 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1056 ac->ac_flags |= AC_NOSGL;
1057 } else {
1058 mb->mb_nsgelem = nsegs;
1059 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1060
1061 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1062 for (i = 0; i < nsegs; i++, sge++) {
1063 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1064 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1065 }
1066 }
1067
1068 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1069 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1070
1071 if ((ac->ac_flags & AC_NOSGL) == 0)
1072 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1073 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1074
1075 return (0);
1076 }
1077
1078 /*
1079 * Unmap the specified CCB's data buffer.
1080 */
1081 void
1082 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1083 {
1084
1085 if ((ac->ac_flags & AC_NOSGL) == 0)
1086 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1087 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1088 BUS_DMASYNC_POSTWRITE);
1089 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1090 (ac->ac_flags & AC_XFER_IN) != 0 ?
1091 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1092 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1093 }
1094
1095 /*
1096 * Submit a command to the controller and poll on completion. Return
1097 * non-zero on timeout or error. Must be called with interrupts blocked.
1098 */
1099 int
1100 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1101 {
1102 int rv;
1103
1104 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1105 return (rv);
1106 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1107
1108 for (timo *= 10; timo != 0; timo--) {
1109 amr_intr(amr);
1110 if ((ac->ac_flags & AC_COMPLETE) != 0)
1111 break;
1112 DELAY(100);
1113 }
1114
1115 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1116 }
1117
1118 /*
1119 * Submit a command to the controller and sleep on completion. Return
1120 * non-zero on error.
1121 */
1122 int
1123 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1124 {
1125 int s;
1126
1127 s = splbio();
1128 amr_ccb_enqueue(amr, ac);
1129 tsleep(ac, PRIBIO, "amrcmd", 0);
1130 splx(s);
1131
1132 return (ac->ac_status != 0 ? EIO : 0);
1133 }
1134
1135 #if 0
1136 /*
1137 * Wait for the mailbox to become available.
1138 */
1139 static int
1140 amr_mbox_wait(struct amr_softc *amr)
1141 {
1142 int timo;
1143
1144 for (timo = 10000; timo != 0; timo--) {
1145 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1146 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1147 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1148 break;
1149 DELAY(100);
1150 }
1151
1152 if (timo == 0)
1153 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1154
1155 return (timo != 0 ? 0 : EAGAIN);
1156 }
1157 #endif
1158
1159 /*
1160 * Tell the controller that the mailbox contains a valid command. Must be
1161 * called with interrupts blocked.
1162 */
1163 static int
1164 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1165 {
1166 u_int32_t v;
1167
1168 amr->amr_mbox->mb_poll = 0;
1169 amr->amr_mbox->mb_ack = 0;
1170 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1171 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1172 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1173 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1174 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1175 return (EAGAIN);
1176
1177 v = amr_inl(amr, AMR_QREG_IDB);
1178 if ((v & AMR_QIDB_SUBMIT) != 0) {
1179 amr->amr_mbox->mb_cmd.mb_busy = 0;
1180 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1181 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1182 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1183 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1184 return (EAGAIN);
1185 }
1186
1187 amr->amr_mbox->mb_segment = 0;
1188 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1189 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1190 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1191
1192 ac->ac_start_time = (time_t)mono_time.tv_sec;
1193 ac->ac_flags |= AC_ACTIVE;
1194 amr_outl(amr, AMR_QREG_IDB,
1195 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1196 return (0);
1197 }
1198
1199 static int
1200 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1201 {
1202
1203 amr->amr_mbox->mb_poll = 0;
1204 amr->amr_mbox->mb_ack = 0;
1205 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1206 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1207 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1208 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1209 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1210 return (EAGAIN);
1211
1212 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1213 amr->amr_mbox->mb_cmd.mb_busy = 0;
1214 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1215 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1216 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1217 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1218 return (EAGAIN);
1219 }
1220
1221 amr->amr_mbox->mb_segment = 0;
1222 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1223 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1224 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1225
1226 ac->ac_start_time = (time_t)mono_time.tv_sec;
1227 ac->ac_flags |= AC_ACTIVE;
1228 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1229 return (0);
1230 }
1231
1232 /*
1233 * Claim any work that the controller has completed; acknowledge completion,
1234 * save details of the completion in (mbsave). Must be called with
1235 * interrupts blocked.
1236 */
1237 static int
1238 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1239 {
1240
1241 /* Work waiting for us? */
1242 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1243 return (-1);
1244
1245 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1246 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1247
1248 /* Save the mailbox, which contains a list of completed commands. */
1249 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1250
1251 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1252 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1253
1254 /* Ack the interrupt and mailbox transfer. */
1255 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1256 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1257
1258 /*
1259 * This waits for the controller to notice that we've taken the
1260 * command from it. It's very inefficient, and we shouldn't do it,
1261 * but if we remove this code, we stop completing commands under
1262 * load.
1263 *
1264 * Peter J says we shouldn't do this. The documentation says we
1265 * should. Who is right?
1266 */
1267 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1268 DELAY(10);
1269
1270 return (0);
1271 }
1272
1273 static int
1274 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1275 {
1276 u_int8_t istat;
1277
1278 /* Check for valid interrupt status. */
1279 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1280 return (-1);
1281
1282 /* Ack the interrupt. */
1283 amr_outb(amr, AMR_SREG_INTR, istat);
1284
1285 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1286 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1287
1288 /* Save mailbox, which contains a list of completed commands. */
1289 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1290
1291 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1292 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1293
1294 /* Ack mailbox transfer. */
1295 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1296
1297 return (0);
1298 }
1299
1300 static void
1301 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1302 {
1303 int i;
1304
1305 printf("%s: ", amr->amr_dv.dv_xname);
1306 for (i = 0; i < 4; i++)
1307 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1308 printf("\n");
1309 }
1310