Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.38
      1 /*	$NetBSD: amr.c,v 1.38 2006/08/27 23:31:15 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999,2000 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67  */
     68 
     69 /*
     70  * Driver for AMI RAID controllers.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.38 2006/08/27 23:31:15 christos Exp $");
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/device.h>
     80 #include <sys/queue.h>
     81 #include <sys/proc.h>
     82 #include <sys/buf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/conf.h>
     85 #include <sys/kthread.h>
     86 
     87 #include <uvm/uvm_extern.h>
     88 
     89 #include <machine/endian.h>
     90 #include <machine/bus.h>
     91 
     92 #include <dev/pci/pcidevs.h>
     93 #include <dev/pci/pcivar.h>
     94 #include <dev/pci/amrreg.h>
     95 #include <dev/pci/amrvar.h>
     96 #include <dev/pci/amrio.h>
     97 
     98 #include "locators.h"
     99 
    100 static void	amr_attach(struct device *, struct device *, void *);
    101 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
    102 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
    103 			     void *);
    104 static int	amr_init(struct amr_softc *, const char *,
    105 			 struct pci_attach_args *pa);
    106 static int	amr_intr(void *);
    107 static int	amr_match(struct device *, struct cfdata *, void *);
    108 static int	amr_print(void *, const char *);
    109 static void	amr_shutdown(void *);
    110 static void	amr_teardown(struct amr_softc *);
    111 static void	amr_thread(void *);
    112 static void	amr_thread_create(void *);
    113 
    114 static int	amr_quartz_get_work(struct amr_softc *,
    115 				    struct amr_mailbox_resp *);
    116 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    117 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    118 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    119 
    120 static dev_type_open(amropen);
    121 static dev_type_close(amrclose);
    122 static dev_type_ioctl(amrioctl);
    123 
    124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
    125     amr_match, amr_attach, NULL, NULL);
    126 
    127 const struct cdevsw amr_cdevsw = {
    128 	amropen, amrclose, noread, nowrite, amrioctl,
    129 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
    130 };
    131 
    132 extern struct   cfdriver amr_cd;
    133 
    134 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    135 #define	AT_SIG		0x02	/* Check for signature */
    136 
    137 static struct amr_pci_type {
    138 	u_short	apt_vendor;
    139 	u_short	apt_product;
    140 	u_short	apt_flags;
    141 } const amr_pci_type[] = {
    142 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    143 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    144 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    145 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    146 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    147 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    148 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    149 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    150 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    151 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    152 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
    153 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
    154 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    155 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    156 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    157 };
    158 
    159 static struct amr_typestr {
    160 	const char	*at_str;
    161 	int		at_sig;
    162 } const amr_typestr[] = {
    163 	{ "Series 431",			AMR_SIG_431 },
    164 	{ "Series 438",			AMR_SIG_438 },
    165 	{ "Series 466",			AMR_SIG_466 },
    166 	{ "Series 467",			AMR_SIG_467 },
    167 	{ "Series 490",			AMR_SIG_490 },
    168 	{ "Series 762",			AMR_SIG_762 },
    169 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    170 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    171 };
    172 
    173 static struct {
    174 	const char	*ds_descr;
    175 	int	ds_happy;
    176 } const amr_dstate[] = {
    177 	{ "offline",	0 },
    178 	{ "degraded",	1 },
    179 	{ "optimal",	1 },
    180 	{ "online",	1 },
    181 	{ "failed",	0 },
    182 	{ "rebuilding",	1 },
    183 	{ "hotspare",	0 },
    184 };
    185 
    186 static void	*amr_sdh;
    187 
    188 static int	amr_max_segs;
    189 int		amr_max_xfer;
    190 
    191 static inline u_int8_t
    192 amr_inb(struct amr_softc *amr, int off)
    193 {
    194 
    195 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    196 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    197 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    198 }
    199 
    200 static inline u_int32_t
    201 amr_inl(struct amr_softc *amr, int off)
    202 {
    203 
    204 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    205 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    206 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    207 }
    208 
    209 static inline void
    210 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    211 {
    212 
    213 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    214 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    215 	    BUS_SPACE_BARRIER_WRITE);
    216 }
    217 
    218 static inline void
    219 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    220 {
    221 
    222 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    223 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    224 	    BUS_SPACE_BARRIER_WRITE);
    225 }
    226 
    227 /*
    228  * Match a supported device.
    229  */
    230 static int
    231 amr_match(struct device *parent, struct cfdata *match, void *aux)
    232 {
    233 	struct pci_attach_args *pa;
    234 	pcireg_t s;
    235 	int i;
    236 
    237 	pa = (struct pci_attach_args *)aux;
    238 
    239 	/*
    240 	 * Don't match the device if it's operating in I2O mode.  In this
    241 	 * case it should be handled by the `iop' driver.
    242 	 */
    243 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    244 		return (0);
    245 
    246 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    247 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    248 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    249 		    	break;
    250 
    251 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    252 		return (0);
    253 
    254 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    255 		return (1);
    256 
    257 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    258 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    259 }
    260 
    261 /*
    262  * Attach a supported device.
    263  */
    264 static void
    265 amr_attach(struct device *parent, struct device *self, void *aux)
    266 {
    267 	struct pci_attach_args *pa;
    268 	struct amr_attach_args amra;
    269 	const struct amr_pci_type *apt;
    270 	struct amr_softc *amr;
    271 	pci_chipset_tag_t pc;
    272 	pci_intr_handle_t ih;
    273 	const char *intrstr;
    274 	pcireg_t reg;
    275 	int rseg, i, j, size, rv, memreg, ioreg;
    276 	struct amr_ccb *ac;
    277 	int locs[AMRCF_NLOCS];
    278 
    279 	aprint_naive(": RAID controller\n");
    280 
    281 	amr = (struct amr_softc *)self;
    282 	pa = (struct pci_attach_args *)aux;
    283 	pc = pa->pa_pc;
    284 
    285 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    286 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    287 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    288 			break;
    289 	apt = amr_pci_type + i;
    290 
    291 	memreg = ioreg = 0;
    292 	for (i = 0x10; i <= 0x14; i += 4) {
    293 		reg = pci_conf_read(pc, pa->pa_tag, i);
    294 		switch (PCI_MAPREG_TYPE(reg)) {
    295 		case PCI_MAPREG_TYPE_MEM:
    296 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
    297 				memreg = i;
    298 			break;
    299 		case PCI_MAPREG_TYPE_IO:
    300 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
    301 				ioreg = i;
    302 			break;
    303 
    304 		}
    305 	}
    306 
    307 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    308 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    309 		;
    310 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    311 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    312 		;
    313 	else {
    314 		aprint_error("can't map control registers\n");
    315 		amr_teardown(amr);
    316 		return;
    317 	}
    318 
    319 	amr->amr_flags |= AMRF_PCI_REGS;
    320 	amr->amr_dmat = pa->pa_dmat;
    321 	amr->amr_pc = pa->pa_pc;
    322 
    323 	/* Enable the device. */
    324 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    325 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    326 	    reg | PCI_COMMAND_MASTER_ENABLE);
    327 
    328 	/* Map and establish the interrupt. */
    329 	if (pci_intr_map(pa, &ih)) {
    330 		aprint_error("can't map interrupt\n");
    331 		amr_teardown(amr);
    332 		return;
    333 	}
    334 	intrstr = pci_intr_string(pc, ih);
    335 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    336 	if (amr->amr_ih == NULL) {
    337 		aprint_error("can't establish interrupt");
    338 		if (intrstr != NULL)
    339 			aprint_normal(" at %s", intrstr);
    340 		aprint_normal("\n");
    341 		amr_teardown(amr);
    342 		return;
    343 	}
    344 	amr->amr_flags |= AMRF_PCI_INTR;
    345 
    346 	/*
    347 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    348 	 * don't like S/G lists to be located below 0x2000, so we allocate
    349 	 * enough slop to enable us to compensate.
    350 	 *
    351 	 * The standard mailbox structure needs to be aligned on a 16-byte
    352 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    353 	 * size, which preceeds the standard mailbox.
    354 	 */
    355 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    356 	amr->amr_dmasize = size;
    357 
    358 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
    359 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    360 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    361 		    amr->amr_dv.dv_xname, rv);
    362 		amr_teardown(amr);
    363 		return;
    364 	}
    365 	amr->amr_flags |= AMRF_DMA_ALLOC;
    366 
    367 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    368 	    (caddr_t *)&amr->amr_mbox,
    369 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    370 		aprint_error("%s: unable to map buffer, rv = %d\n",
    371 		    amr->amr_dv.dv_xname, rv);
    372 		amr_teardown(amr);
    373 		return;
    374 	}
    375 	amr->amr_flags |= AMRF_DMA_MAP;
    376 
    377 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    378 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    379 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    380 		    amr->amr_dv.dv_xname, rv);
    381 		amr_teardown(amr);
    382 		return;
    383 	}
    384 	amr->amr_flags |= AMRF_DMA_CREATE;
    385 
    386 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    387 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    388 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    389 		    amr->amr_dv.dv_xname, rv);
    390 		amr_teardown(amr);
    391 		return;
    392 	}
    393 	amr->amr_flags |= AMRF_DMA_LOAD;
    394 
    395 	memset(amr->amr_mbox, 0, size);
    396 
    397 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    398 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    399 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
    400 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    401 
    402 	/*
    403 	 * Allocate and initalise the command control blocks.
    404 	 */
    405 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    406 	amr->amr_ccbs = ac;
    407 	SLIST_INIT(&amr->amr_ccb_freelist);
    408 	TAILQ_INIT(&amr->amr_ccb_active);
    409 	amr->amr_flags |= AMRF_CCBS;
    410 
    411 	if (amr_max_xfer == 0) {
    412 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    413 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    414 	}
    415 
    416 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    417 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    418 		    amr_max_segs, amr_max_xfer, 0,
    419 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    420 		if (rv != 0)
    421 			break;
    422 
    423 		ac->ac_ident = i;
    424 		amr_ccb_free(amr, ac);
    425 	}
    426 	if (i != AMR_MAX_CMDS) {
    427 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    428 		amr_teardown(amr);
    429 		return;
    430 	}
    431 
    432 	/*
    433 	 * Take care of model-specific tasks.
    434 	 */
    435 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    436 		amr->amr_submit = amr_quartz_submit;
    437 		amr->amr_get_work = amr_quartz_get_work;
    438 	} else {
    439 		amr->amr_submit = amr_std_submit;
    440 		amr->amr_get_work = amr_std_get_work;
    441 
    442 		/* Notify the controller of the mailbox location. */
    443 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    444 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    445 
    446 		/* Clear outstanding interrupts and enable interrupts. */
    447 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    448 		amr_outb(amr, AMR_SREG_TOGL,
    449 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    450 	}
    451 
    452 	/*
    453 	 * Retrieve parameters, and tell the world about us.
    454 	 */
    455 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    456 	amr->amr_flags |= AMRF_ENQBUF;
    457 	amr->amr_maxqueuecnt = i;
    458 	aprint_normal(": AMI RAID ");
    459 	if (amr_init(amr, intrstr, pa) != 0) {
    460 		amr_teardown(amr);
    461 		return;
    462 	}
    463 
    464 	/*
    465 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    466 	 * driver doesn't trust the controller's reported value, and lockups
    467 	 * have been seen when we do.
    468 	 */
    469 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    470 	if (amr->amr_maxqueuecnt > i)
    471 		amr->amr_maxqueuecnt = i;
    472 
    473 	/* Set our `shutdownhook' before we start any device activity. */
    474 	if (amr_sdh == NULL)
    475 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    476 
    477 	/* Attach sub-devices. */
    478 	for (j = 0; j < amr->amr_numdrives; j++) {
    479 		if (amr->amr_drive[j].al_size == 0)
    480 			continue;
    481 		amra.amra_unit = j;
    482 
    483 		locs[AMRCF_UNIT] = j;
    484 
    485 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
    486 			"amr", locs, &amra, amr_print, config_stdsubmatch);
    487 	}
    488 
    489 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    490 
    491 	/* XXX This doesn't work for newer boards yet. */
    492 	if ((apt->apt_flags & AT_QUARTZ) == 0)
    493 		kthread_create(amr_thread_create, amr);
    494 }
    495 
    496 /*
    497  * Free up resources.
    498  */
    499 static void
    500 amr_teardown(struct amr_softc *amr)
    501 {
    502 	struct amr_ccb *ac;
    503 	int fl;
    504 
    505 	fl = amr->amr_flags;
    506 
    507 	if ((fl & AMRF_THREAD) != 0) {
    508 		amr->amr_flags |= AMRF_THREAD_EXIT;
    509 		wakeup(amr_thread);
    510 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    511 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    512 	}
    513 	if ((fl & AMRF_CCBS) != 0) {
    514 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    515 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    516 		}
    517 		free(amr->amr_ccbs, M_DEVBUF);
    518 	}
    519 	if ((fl & AMRF_ENQBUF) != 0)
    520 		free(amr->amr_enqbuf, M_DEVBUF);
    521 	if ((fl & AMRF_DMA_LOAD) != 0)
    522 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    523 	if ((fl & AMRF_DMA_MAP) != 0)
    524 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
    525 		    amr->amr_dmasize);
    526 	if ((fl & AMRF_DMA_ALLOC) != 0)
    527 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    528 	if ((fl & AMRF_DMA_CREATE) != 0)
    529 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    530 	if ((fl & AMRF_PCI_INTR) != 0)
    531 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    532 	if ((fl & AMRF_PCI_REGS) != 0)
    533 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    534 }
    535 
    536 /*
    537  * Print autoconfiguration message for a sub-device.
    538  */
    539 static int
    540 amr_print(void *aux, const char *pnp)
    541 {
    542 	struct amr_attach_args *amra;
    543 
    544 	amra = (struct amr_attach_args *)aux;
    545 
    546 	if (pnp != NULL)
    547 		aprint_normal("block device at %s", pnp);
    548 	aprint_normal(" unit %d", amra->amra_unit);
    549 	return (UNCONF);
    550 }
    551 
    552 /*
    553  * Retrieve operational parameters and describe the controller.
    554  */
    555 static int
    556 amr_init(struct amr_softc *amr, const char *intrstr,
    557 	 struct pci_attach_args *pa)
    558 {
    559 	struct amr_adapter_info *aa;
    560 	struct amr_prodinfo *ap;
    561 	struct amr_enquiry *ae;
    562 	struct amr_enquiry3 *aex;
    563 	const char *prodstr;
    564 	u_int i, sig, ishp;
    565 	char sbuf[64];
    566 
    567 	/*
    568 	 * Try to get 40LD product info, which tells us what the card is
    569 	 * labelled as.
    570 	 */
    571 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    572 	    amr->amr_enqbuf);
    573 	if (ap != NULL) {
    574 		aprint_normal("<%.80s>\n", ap->ap_product);
    575 		if (intrstr != NULL)
    576 			aprint_normal("%s: interrupting at %s\n",
    577 			    amr->amr_dv.dv_xname, intrstr);
    578 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    579 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    580 		    le16toh(ap->ap_memsize));
    581 
    582 		amr->amr_maxqueuecnt = ap->ap_maxio;
    583 
    584 		/*
    585 		 * Fetch and record state of logical drives.
    586 		 */
    587 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    588 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    589 		if (aex == NULL) {
    590 			aprint_error("%s ENQUIRY3 failed\n",
    591 			    amr->amr_dv.dv_xname);
    592 			return (-1);
    593 		}
    594 
    595 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
    596 			aprint_error("%s: Inquiry returned more drives (%d)"
    597 			   " than the array can handle (%zu)\n",
    598 			   amr->amr_dv.dv_xname, aex->ae_numldrives,
    599 			   __arraycount(aex->ae_drivestate));
    600 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
    601 		}
    602 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    603 			aprint_error(
    604 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    605 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
    606 			    amr->amr_numdrives);
    607 			amr->amr_numdrives = AMR_MAX_UNITS;
    608 		} else
    609 			amr->amr_numdrives = aex->ae_numldrives;
    610 
    611 		for (i = 0; i < amr->amr_numdrives; i++) {
    612 			amr->amr_drive[i].al_size =
    613 			    le32toh(aex->ae_drivesize[i]);
    614 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    615 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    616 		}
    617 
    618 		return (0);
    619 	}
    620 
    621 	/*
    622 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    623 	 * found, search for a product description.
    624 	 */
    625 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    626 	if (ae != NULL) {
    627 		i = 0;
    628 		sig = le32toh(ae->ae_signature);
    629 
    630 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    631 			if (amr_typestr[i].at_sig == sig)
    632 				break;
    633 			i++;
    634 		}
    635 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    636 			snprintf(sbuf, sizeof(sbuf),
    637 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
    638 			prodstr = sbuf;
    639 		} else
    640 			prodstr = amr_typestr[i].at_str;
    641 	} else {
    642 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    643 		if (ae == NULL) {
    644 			aprint_error("%s: unsupported controller\n",
    645 			    amr->amr_dv.dv_xname);
    646 			return (-1);
    647 		}
    648 
    649 		switch (PCI_PRODUCT(pa->pa_id)) {
    650 		case PCI_PRODUCT_AMI_MEGARAID:
    651 			prodstr = "Series 428";
    652 			break;
    653 		case PCI_PRODUCT_AMI_MEGARAID2:
    654 			prodstr = "Series 434";
    655 			break;
    656 		default:
    657 			snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
    658 			    PCI_PRODUCT(pa->pa_id));
    659 			prodstr = sbuf;
    660 			break;
    661 		}
    662 	}
    663 
    664 	/*
    665 	 * HP NetRaid controllers have a special encoding of the firmware
    666 	 * and BIOS versions.  The AMI version seems to have it as strings
    667 	 * whereas the HP version does it with a leading uppercase character
    668 	 * and two binary numbers.
    669 	*/
    670 	aa = &ae->ae_adapter;
    671 
    672 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    673 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    674 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    675 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    676 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    677 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    678 			prodstr = "HP NetRaid 3si";
    679 		}
    680 		ishp = 1;
    681 	} else
    682 		ishp = 0;
    683 
    684 	aprint_normal("<%s>\n", prodstr);
    685 	if (intrstr != NULL)
    686 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    687 		    intrstr);
    688 
    689 	if (ishp)
    690 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    691 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    692 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    693 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    694 	else
    695 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    696 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    697 		    aa->aa_memorysize);
    698 
    699 	amr->amr_maxqueuecnt = aa->aa_maxio;
    700 
    701 	/*
    702 	 * Record state of logical drives.
    703 	 */
    704 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
    705 		aprint_error("%s: Inquiry returned more drives (%d)"
    706 		   " than the array can handle (%zu)\n",
    707 		   amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    708 		   __arraycount(ae->ae_ldrv.al_size));
    709 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
    710 	}
    711 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    712 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    713 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    714 		    AMR_MAX_UNITS);
    715 		amr->amr_numdrives = AMR_MAX_UNITS;
    716 	} else
    717 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    718 
    719 	for (i = 0; i < amr->amr_numdrives; i++) {
    720 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    721 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    722 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    723 	}
    724 
    725 	return (0);
    726 }
    727 
    728 /*
    729  * Flush the internal cache on each configured controller.  Called at
    730  * shutdown time.
    731  */
    732 static void
    733 amr_shutdown(void *cookie)
    734 {
    735 	extern struct cfdriver amr_cd;
    736 	struct amr_softc *amr;
    737 	struct amr_ccb *ac;
    738 	int i, rv, s;
    739 
    740 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    741 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    742 			continue;
    743 
    744 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    745 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    746 			s = splbio();
    747 			rv = amr_ccb_poll(amr, ac, 30000);
    748 			splx(s);
    749 			amr_ccb_free(amr, ac);
    750 		}
    751 		if (rv != 0)
    752 			printf("%s: unable to flush cache (%d)\n",
    753 			    amr->amr_dv.dv_xname, rv);
    754 	}
    755 }
    756 
    757 /*
    758  * Interrupt service routine.
    759  */
    760 static int
    761 amr_intr(void *cookie)
    762 {
    763 	struct amr_softc *amr;
    764 	struct amr_ccb *ac;
    765 	struct amr_mailbox_resp mbox;
    766 	u_int i, forus, idx;
    767 
    768 	amr = cookie;
    769 	forus = 0;
    770 
    771 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    772 		/* Iterate over completed commands in this result. */
    773 		for (i = 0; i < mbox.mb_nstatus; i++) {
    774 			idx = mbox.mb_completed[i] - 1;
    775 			ac = amr->amr_ccbs + idx;
    776 
    777 			if (idx >= amr->amr_maxqueuecnt) {
    778 				printf("%s: bad status (bogus ID: %u=%u)\n",
    779 				    amr->amr_dv.dv_xname, i, idx);
    780 				continue;
    781 			}
    782 
    783 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    784 				printf("%s: bad status (not active; 0x04%x)\n",
    785 				    amr->amr_dv.dv_xname, ac->ac_flags);
    786 				continue;
    787 			}
    788 
    789 			ac->ac_status = mbox.mb_status;
    790 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    791 			    AC_COMPLETE;
    792 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    793 
    794 			if ((ac->ac_flags & AC_MOAN) != 0)
    795 				printf("%s: ccb %d completed\n",
    796 				    amr->amr_dv.dv_xname, ac->ac_ident);
    797 
    798 			/* Pass notification to upper layers. */
    799 			if (ac->ac_handler != NULL)
    800 				(*ac->ac_handler)(ac);
    801 			else
    802 				wakeup(ac);
    803 		}
    804 		forus = 1;
    805 	}
    806 
    807 	if (forus)
    808 		amr_ccb_enqueue(amr, NULL);
    809 
    810 	return (forus);
    811 }
    812 
    813 /*
    814  * Create the watchdog thread.
    815  */
    816 static void
    817 amr_thread_create(void *cookie)
    818 {
    819 	struct amr_softc *amr;
    820 	int rv;
    821 
    822 	amr = cookie;
    823 
    824 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    825 		amr->amr_flags ^= AMRF_THREAD_EXIT;
    826 		wakeup(&amr->amr_flags);
    827 		return;
    828 	}
    829 
    830 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
    831 	    amr->amr_dv.dv_xname);
    832  	if (rv != 0)
    833 		aprint_error("%s: unable to create thread (%d)",
    834  		    amr->amr_dv.dv_xname, rv);
    835  	else
    836  		amr->amr_flags |= AMRF_THREAD;
    837 }
    838 
    839 /*
    840  * Watchdog thread.
    841  */
    842 static void
    843 amr_thread(void *cookie)
    844 {
    845 	struct amr_softc *amr;
    846 	struct amr_ccb *ac;
    847 	struct amr_logdrive *al;
    848 	struct amr_enquiry *ae;
    849 	int rv, i, s;
    850 
    851 	amr = cookie;
    852 	ae = amr->amr_enqbuf;
    853 
    854 	for (;;) {
    855 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    856 
    857 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    858 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    859 			wakeup(&amr->amr_flags);
    860 			kthread_exit(0);
    861 		}
    862 
    863 		s = splbio();
    864 		amr_intr(cookie);
    865 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    866 		while (ac != NULL) {
    867 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
    868 				break;
    869 			if ((ac->ac_flags & AC_MOAN) == 0) {
    870 				printf("%s: ccb %d timed out; mailbox:\n",
    871 				    amr->amr_dv.dv_xname, ac->ac_ident);
    872 				amr_ccb_dump(amr, ac);
    873 				ac->ac_flags |= AC_MOAN;
    874 			}
    875 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    876 		}
    877 		splx(s);
    878 
    879 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    880 			printf("%s: ccb_alloc failed (%d)\n",
    881  			    amr->amr_dv.dv_xname, rv);
    882 			continue;
    883 		}
    884 
    885 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    886 
    887 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    888 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    889 		if (rv != 0) {
    890 			printf("%s: ccb_map failed (%d)\n",
    891  			    amr->amr_dv.dv_xname, rv);
    892 			amr_ccb_free(amr, ac);
    893 			continue;
    894 		}
    895 
    896 		rv = amr_ccb_wait(amr, ac);
    897 		amr_ccb_unmap(amr, ac);
    898 		if (rv != 0) {
    899 			printf("%s: enquiry failed (st=%d)\n",
    900  			    amr->amr_dv.dv_xname, ac->ac_status);
    901 			continue;
    902 		}
    903 		amr_ccb_free(amr, ac);
    904 
    905 		al = amr->amr_drive;
    906 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
    907 			if (al->al_dv == NULL)
    908 				continue;
    909 			if (al->al_state == ae->ae_ldrv.al_state[i])
    910 				continue;
    911 
    912 			printf("%s: state changed: %s -> %s\n",
    913 			    al->al_dv->dv_xname,
    914 			    amr_drive_state(al->al_state, NULL),
    915 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    916 
    917 			al->al_state = ae->ae_ldrv.al_state[i];
    918 		}
    919 	}
    920 }
    921 
    922 /*
    923  * Return a text description of a logical drive's current state.
    924  */
    925 const char *
    926 amr_drive_state(int state, int *happy)
    927 {
    928 	const char *str;
    929 
    930 	state = AMR_DRV_CURSTATE(state);
    931 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    932 		if (happy)
    933 			*happy = 1;
    934 		str = "status unknown";
    935 	} else {
    936 		if (happy)
    937 			*happy = amr_dstate[state].ds_happy;
    938 		str = amr_dstate[state].ds_descr;
    939 	}
    940 
    941 	return (str);
    942 }
    943 
    944 /*
    945  * Run a generic enquiry-style command.
    946  */
    947 static void *
    948 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    949 	    u_int8_t cmdqual, void *sbuf)
    950 {
    951 	struct amr_ccb *ac;
    952 	u_int8_t *mb;
    953 	int rv;
    954 
    955 	if (amr_ccb_alloc(amr, &ac) != 0)
    956 		return (NULL);
    957 
    958 	/* Build the command proper. */
    959 	mb = (u_int8_t *)&ac->ac_cmd;
    960 	mb[0] = cmd;
    961 	mb[2] = cmdsub;
    962 	mb[3] = cmdqual;
    963 
    964 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    965 	if (rv == 0) {
    966 		rv = amr_ccb_poll(amr, ac, 2000);
    967 		amr_ccb_unmap(amr, ac);
    968 	}
    969 	amr_ccb_free(amr, ac);
    970 
    971 	return (rv ? NULL : sbuf);
    972 }
    973 
    974 /*
    975  * Allocate and initialise a CCB.
    976  */
    977 int
    978 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    979 {
    980 	int s;
    981 
    982 	s = splbio();
    983 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    984 		splx(s);
    985 		return (EAGAIN);
    986 	}
    987 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    988 	splx(s);
    989 
    990 	return (0);
    991 }
    992 
    993 /*
    994  * Free a CCB.
    995  */
    996 void
    997 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    998 {
    999 	int s;
   1000 
   1001 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
   1002 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
   1003 	ac->ac_cmd.mb_busy = 1;
   1004 	ac->ac_handler = NULL;
   1005 	ac->ac_flags = 0;
   1006 
   1007 	s = splbio();
   1008 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
   1009 	splx(s);
   1010 }
   1011 
   1012 /*
   1013  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1014  * the order that they were enqueued and try to submit their command blocks
   1015  * to the controller for execution.
   1016  */
   1017 void
   1018 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1019 {
   1020 	int s;
   1021 
   1022 	s = splbio();
   1023 
   1024 	if (ac != NULL)
   1025 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1026 
   1027 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1028 		if ((*amr->amr_submit)(amr, ac) != 0)
   1029 			break;
   1030 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1031 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1032 	}
   1033 
   1034 	splx(s);
   1035 }
   1036 
   1037 /*
   1038  * Map the specified CCB's data buffer onto the bus, and fill the
   1039  * scatter-gather list.
   1040  */
   1041 int
   1042 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1043 	    int tflag)
   1044 {
   1045 	struct amr_sgentry *sge;
   1046 	struct amr_mailbox_cmd *mb;
   1047 	int nsegs, i, rv, sgloff;
   1048 	bus_dmamap_t xfer;
   1049 	int dmaflag = 0;
   1050 
   1051 	xfer = ac->ac_xfer_map;
   1052 
   1053 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1054 	    BUS_DMA_NOWAIT);
   1055 	if (rv != 0)
   1056 		return (rv);
   1057 
   1058 	mb = &ac->ac_cmd;
   1059 	ac->ac_xfer_size = size;
   1060 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
   1061 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1062 
   1063 	if (tflag & AC_XFER_OUT)
   1064 		dmaflag |= BUS_DMASYNC_PREWRITE;
   1065 	if (tflag & AC_XFER_IN)
   1066 		dmaflag |= BUS_DMASYNC_PREREAD;
   1067 
   1068 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1069 	nsegs = xfer->dm_nsegs;
   1070 	if (nsegs == 1) {
   1071 		mb->mb_nsgelem = 0;
   1072 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1073 		ac->ac_flags |= AC_NOSGL;
   1074 	} else {
   1075 		mb->mb_nsgelem = nsegs;
   1076 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1077 
   1078 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
   1079 		for (i = 0; i < nsegs; i++, sge++) {
   1080 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1081 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1082 		}
   1083 	}
   1084 
   1085 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
   1086 
   1087 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1088 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1089 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1090 
   1091 	return (0);
   1092 }
   1093 
   1094 /*
   1095  * Unmap the specified CCB's data buffer.
   1096  */
   1097 void
   1098 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1099 {
   1100 	int dmaflag = 0;
   1101 
   1102 	if (ac->ac_flags & AC_XFER_IN)
   1103 		dmaflag |= BUS_DMASYNC_POSTREAD;
   1104 	if (ac->ac_flags & AC_XFER_OUT)
   1105 		dmaflag |= BUS_DMASYNC_POSTWRITE;
   1106 
   1107 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1108 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1109 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1110 		    BUS_DMASYNC_POSTWRITE);
   1111 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1112 	    dmaflag);
   1113 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1114 }
   1115 
   1116 /*
   1117  * Submit a command to the controller and poll on completion.  Return
   1118  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1119  */
   1120 int
   1121 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1122 {
   1123 	int rv;
   1124 
   1125 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1126 		return (rv);
   1127 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1128 
   1129 	for (timo *= 10; timo != 0; timo--) {
   1130 		amr_intr(amr);
   1131 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1132 			break;
   1133 		DELAY(100);
   1134 	}
   1135 
   1136 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1137 }
   1138 
   1139 /*
   1140  * Submit a command to the controller and sleep on completion.  Return
   1141  * non-zero on error.
   1142  */
   1143 int
   1144 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1145 {
   1146 	int s;
   1147 
   1148 	s = splbio();
   1149 	amr_ccb_enqueue(amr, ac);
   1150 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1151 	splx(s);
   1152 
   1153 	return (ac->ac_status != 0 ? EIO : 0);
   1154 }
   1155 
   1156 #if 0
   1157 /*
   1158  * Wait for the mailbox to become available.
   1159  */
   1160 static int
   1161 amr_mbox_wait(struct amr_softc *amr)
   1162 {
   1163 	int timo;
   1164 
   1165 	for (timo = 10000; timo != 0; timo--) {
   1166 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1167 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1168 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1169 			break;
   1170 		DELAY(100);
   1171 	}
   1172 
   1173 	if (timo == 0)
   1174 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1175 
   1176 	return (timo != 0 ? 0 : EAGAIN);
   1177 }
   1178 #endif
   1179 
   1180 /*
   1181  * Tell the controller that the mailbox contains a valid command.  Must be
   1182  * called with interrupts blocked.
   1183  */
   1184 static int
   1185 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1186 {
   1187 	u_int32_t v;
   1188 
   1189 	amr->amr_mbox->mb_poll = 0;
   1190 	amr->amr_mbox->mb_ack = 0;
   1191 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1192 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1193 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1194 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1195 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1196 		return (EAGAIN);
   1197 
   1198 	v = amr_inl(amr, AMR_QREG_IDB);
   1199 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1200 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1201 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1202 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1203 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1204 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1205 		return (EAGAIN);
   1206 	}
   1207 
   1208 	amr->amr_mbox->mb_segment = 0;
   1209 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1210 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1211 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1212 
   1213 	ac->ac_start_time = time_uptime;
   1214 	ac->ac_flags |= AC_ACTIVE;
   1215 	amr_outl(amr, AMR_QREG_IDB,
   1216 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1217 	return (0);
   1218 }
   1219 
   1220 static int
   1221 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1222 {
   1223 
   1224 	amr->amr_mbox->mb_poll = 0;
   1225 	amr->amr_mbox->mb_ack = 0;
   1226 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1227 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1228 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1229 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1230 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1231 		return (EAGAIN);
   1232 
   1233 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1234 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1235 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1236 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1237 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1238 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1239 		return (EAGAIN);
   1240 	}
   1241 
   1242 	amr->amr_mbox->mb_segment = 0;
   1243 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1244 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1245 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1246 
   1247 	ac->ac_start_time = time_uptime;
   1248 	ac->ac_flags |= AC_ACTIVE;
   1249 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1250 	return (0);
   1251 }
   1252 
   1253 /*
   1254  * Claim any work that the controller has completed; acknowledge completion,
   1255  * save details of the completion in (mbsave).  Must be called with
   1256  * interrupts blocked.
   1257  */
   1258 static int
   1259 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1260 {
   1261 
   1262 	/* Work waiting for us? */
   1263 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1264 		return (-1);
   1265 
   1266 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1267 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1268 
   1269 	/* Save the mailbox, which contains a list of completed commands. */
   1270 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1271 
   1272 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1273 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1274 
   1275 	/* Ack the interrupt and mailbox transfer. */
   1276 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1277 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1278 
   1279 	/*
   1280 	 * This waits for the controller to notice that we've taken the
   1281 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1282 	 * but if we remove this code, we stop completing commands under
   1283 	 * load.
   1284 	 *
   1285 	 * Peter J says we shouldn't do this.  The documentation says we
   1286 	 * should.  Who is right?
   1287 	 */
   1288 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1289 		DELAY(10);
   1290 
   1291 	return (0);
   1292 }
   1293 
   1294 static int
   1295 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1296 {
   1297 	u_int8_t istat;
   1298 
   1299 	/* Check for valid interrupt status. */
   1300 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1301 		return (-1);
   1302 
   1303 	/* Ack the interrupt. */
   1304 	amr_outb(amr, AMR_SREG_INTR, istat);
   1305 
   1306 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1307 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1308 
   1309 	/* Save mailbox, which contains a list of completed commands. */
   1310 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1311 
   1312 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1313 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1314 
   1315 	/* Ack mailbox transfer. */
   1316 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1317 
   1318 	return (0);
   1319 }
   1320 
   1321 static void
   1322 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1323 {
   1324 	int i;
   1325 
   1326 	printf("%s: ", amr->amr_dv.dv_xname);
   1327 	for (i = 0; i < 4; i++)
   1328 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1329 	printf("\n");
   1330 }
   1331 
   1332 static int
   1333 amropen(dev_t dev, int flag, int mode, struct lwp *l)
   1334 {
   1335 	struct amr_softc *amr;
   1336 
   1337 	if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL)
   1338 		return (ENXIO);
   1339 	if ((amr->amr_flags & AMRF_OPEN) != 0)
   1340 		return (EBUSY);
   1341 
   1342 	amr->amr_flags |= AMRF_OPEN;
   1343 	return (0);
   1344 }
   1345 
   1346 static int
   1347 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
   1348 {
   1349 	struct amr_softc *amr;
   1350 
   1351 	amr = device_lookup(&amr_cd, minor(dev));
   1352 	amr->amr_flags &= ~AMRF_OPEN;
   1353 	return (0);
   1354 }
   1355 
   1356 static int
   1357 amrioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
   1358 {
   1359 	struct amr_softc *amr;
   1360 	struct amr_user_ioctl *au;
   1361 	struct amr_ccb *ac;
   1362 	struct amr_mailbox_ioctl *mbi;
   1363 	unsigned long au_length;
   1364 	uint8_t *au_cmd;
   1365 	int error;
   1366 	void *dp = NULL, *au_buffer;
   1367 
   1368 	amr = device_lookup(&amr_cd, minor(dev));
   1369 
   1370 	/* This should be compatible with the FreeBSD interface */
   1371 
   1372 	switch (cmd) {
   1373 	case AMR_IO_VERSION:
   1374 		*(int *)data = AMR_IO_VERSION_NUMBER;
   1375 		return 0;
   1376 	case AMR_IO_COMMAND:
   1377 		if (securelevel >= 2)
   1378 			return (EPERM);
   1379 
   1380 		au = (struct amr_user_ioctl *)data;
   1381 		au_cmd = au->au_cmd;
   1382 		au_buffer = au->au_buffer;
   1383 		au_length = au->au_length;
   1384 		break;
   1385 	default:
   1386 		return ENOTTY;
   1387 	}
   1388 
   1389 	if (au_cmd[0] == AMR_CMD_PASS) {
   1390 		/* not yet */
   1391 		return EOPNOTSUPP;
   1392 	}
   1393 
   1394 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
   1395 		return (EINVAL);
   1396 
   1397 	/*
   1398 	 * allocate kernel memory for data, doing I/O directly to user
   1399 	 * buffer isn't that easy.
   1400 	 */
   1401 	dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
   1402 	if (dp == NULL)
   1403 		return ENOMEM;
   1404 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
   1405 		goto out;
   1406 
   1407 	/* direct command to controller */
   1408 	while (amr_ccb_alloc(amr, &ac) != 0) {
   1409 		error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
   1410 		if (error == EINTR)
   1411 			goto out;
   1412 	}
   1413 
   1414 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
   1415 	mbi->mb_command = au_cmd[0];
   1416 	mbi->mb_channel = au_cmd[1];
   1417 	mbi->mb_param = au_cmd[2];
   1418 	mbi->mb_pad[0] = au_cmd[3];
   1419 	mbi->mb_drive = au_cmd[4];
   1420 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
   1421 	    AC_XFER_IN | AC_XFER_OUT);
   1422 	if (error == 0) {
   1423 		error = amr_ccb_wait(amr, ac);
   1424 		amr_ccb_unmap(amr, ac);
   1425 		if (error == 0)
   1426 			error = copyout(dp, au_buffer, au_length);
   1427 
   1428 	}
   1429 	amr_ccb_free(amr, ac);
   1430 out:
   1431 	free(dp, M_DEVBUF);
   1432 	return (error);
   1433 }
   1434