amr.c revision 1.38 1 /* $NetBSD: amr.c,v 1.38 2006/08/27 23:31:15 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.38 2006/08/27 23:31:15 christos Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/kthread.h>
86
87 #include <uvm/uvm_extern.h>
88
89 #include <machine/endian.h>
90 #include <machine/bus.h>
91
92 #include <dev/pci/pcidevs.h>
93 #include <dev/pci/pcivar.h>
94 #include <dev/pci/amrreg.h>
95 #include <dev/pci/amrvar.h>
96 #include <dev/pci/amrio.h>
97
98 #include "locators.h"
99
100 static void amr_attach(struct device *, struct device *, void *);
101 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
102 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
103 void *);
104 static int amr_init(struct amr_softc *, const char *,
105 struct pci_attach_args *pa);
106 static int amr_intr(void *);
107 static int amr_match(struct device *, struct cfdata *, void *);
108 static int amr_print(void *, const char *);
109 static void amr_shutdown(void *);
110 static void amr_teardown(struct amr_softc *);
111 static void amr_thread(void *);
112 static void amr_thread_create(void *);
113
114 static int amr_quartz_get_work(struct amr_softc *,
115 struct amr_mailbox_resp *);
116 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
117 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
118 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
119
120 static dev_type_open(amropen);
121 static dev_type_close(amrclose);
122 static dev_type_ioctl(amrioctl);
123
124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
125 amr_match, amr_attach, NULL, NULL);
126
127 const struct cdevsw amr_cdevsw = {
128 amropen, amrclose, noread, nowrite, amrioctl,
129 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
130 };
131
132 extern struct cfdriver amr_cd;
133
134 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
135 #define AT_SIG 0x02 /* Check for signature */
136
137 static struct amr_pci_type {
138 u_short apt_vendor;
139 u_short apt_product;
140 u_short apt_flags;
141 } const amr_pci_type[] = {
142 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
143 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
144 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
145 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
146 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
149 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
150 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
151 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
152 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
153 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
154 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
155 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
156 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
157 };
158
159 static struct amr_typestr {
160 const char *at_str;
161 int at_sig;
162 } const amr_typestr[] = {
163 { "Series 431", AMR_SIG_431 },
164 { "Series 438", AMR_SIG_438 },
165 { "Series 466", AMR_SIG_466 },
166 { "Series 467", AMR_SIG_467 },
167 { "Series 490", AMR_SIG_490 },
168 { "Series 762", AMR_SIG_762 },
169 { "HP NetRAID (T5)", AMR_SIG_T5 },
170 { "HP NetRAID (T7)", AMR_SIG_T7 },
171 };
172
173 static struct {
174 const char *ds_descr;
175 int ds_happy;
176 } const amr_dstate[] = {
177 { "offline", 0 },
178 { "degraded", 1 },
179 { "optimal", 1 },
180 { "online", 1 },
181 { "failed", 0 },
182 { "rebuilding", 1 },
183 { "hotspare", 0 },
184 };
185
186 static void *amr_sdh;
187
188 static int amr_max_segs;
189 int amr_max_xfer;
190
191 static inline u_int8_t
192 amr_inb(struct amr_softc *amr, int off)
193 {
194
195 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
196 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
197 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
198 }
199
200 static inline u_int32_t
201 amr_inl(struct amr_softc *amr, int off)
202 {
203
204 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
205 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
206 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
207 }
208
209 static inline void
210 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
211 {
212
213 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
214 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
215 BUS_SPACE_BARRIER_WRITE);
216 }
217
218 static inline void
219 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
220 {
221
222 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
223 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
224 BUS_SPACE_BARRIER_WRITE);
225 }
226
227 /*
228 * Match a supported device.
229 */
230 static int
231 amr_match(struct device *parent, struct cfdata *match, void *aux)
232 {
233 struct pci_attach_args *pa;
234 pcireg_t s;
235 int i;
236
237 pa = (struct pci_attach_args *)aux;
238
239 /*
240 * Don't match the device if it's operating in I2O mode. In this
241 * case it should be handled by the `iop' driver.
242 */
243 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
244 return (0);
245
246 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
247 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
248 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
249 break;
250
251 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
252 return (0);
253
254 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
255 return (1);
256
257 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
258 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
259 }
260
261 /*
262 * Attach a supported device.
263 */
264 static void
265 amr_attach(struct device *parent, struct device *self, void *aux)
266 {
267 struct pci_attach_args *pa;
268 struct amr_attach_args amra;
269 const struct amr_pci_type *apt;
270 struct amr_softc *amr;
271 pci_chipset_tag_t pc;
272 pci_intr_handle_t ih;
273 const char *intrstr;
274 pcireg_t reg;
275 int rseg, i, j, size, rv, memreg, ioreg;
276 struct amr_ccb *ac;
277 int locs[AMRCF_NLOCS];
278
279 aprint_naive(": RAID controller\n");
280
281 amr = (struct amr_softc *)self;
282 pa = (struct pci_attach_args *)aux;
283 pc = pa->pa_pc;
284
285 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
286 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
287 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
288 break;
289 apt = amr_pci_type + i;
290
291 memreg = ioreg = 0;
292 for (i = 0x10; i <= 0x14; i += 4) {
293 reg = pci_conf_read(pc, pa->pa_tag, i);
294 switch (PCI_MAPREG_TYPE(reg)) {
295 case PCI_MAPREG_TYPE_MEM:
296 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
297 memreg = i;
298 break;
299 case PCI_MAPREG_TYPE_IO:
300 if (PCI_MAPREG_IO_SIZE(reg) != 0)
301 ioreg = i;
302 break;
303
304 }
305 }
306
307 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
308 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
309 ;
310 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
311 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
312 ;
313 else {
314 aprint_error("can't map control registers\n");
315 amr_teardown(amr);
316 return;
317 }
318
319 amr->amr_flags |= AMRF_PCI_REGS;
320 amr->amr_dmat = pa->pa_dmat;
321 amr->amr_pc = pa->pa_pc;
322
323 /* Enable the device. */
324 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
325 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
326 reg | PCI_COMMAND_MASTER_ENABLE);
327
328 /* Map and establish the interrupt. */
329 if (pci_intr_map(pa, &ih)) {
330 aprint_error("can't map interrupt\n");
331 amr_teardown(amr);
332 return;
333 }
334 intrstr = pci_intr_string(pc, ih);
335 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
336 if (amr->amr_ih == NULL) {
337 aprint_error("can't establish interrupt");
338 if (intrstr != NULL)
339 aprint_normal(" at %s", intrstr);
340 aprint_normal("\n");
341 amr_teardown(amr);
342 return;
343 }
344 amr->amr_flags |= AMRF_PCI_INTR;
345
346 /*
347 * Allocate space for the mailbox and S/G lists. Some controllers
348 * don't like S/G lists to be located below 0x2000, so we allocate
349 * enough slop to enable us to compensate.
350 *
351 * The standard mailbox structure needs to be aligned on a 16-byte
352 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
353 * size, which preceeds the standard mailbox.
354 */
355 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
356 amr->amr_dmasize = size;
357
358 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
359 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
360 aprint_error("%s: unable to allocate buffer, rv = %d\n",
361 amr->amr_dv.dv_xname, rv);
362 amr_teardown(amr);
363 return;
364 }
365 amr->amr_flags |= AMRF_DMA_ALLOC;
366
367 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
368 (caddr_t *)&amr->amr_mbox,
369 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
370 aprint_error("%s: unable to map buffer, rv = %d\n",
371 amr->amr_dv.dv_xname, rv);
372 amr_teardown(amr);
373 return;
374 }
375 amr->amr_flags |= AMRF_DMA_MAP;
376
377 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
378 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
379 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
380 amr->amr_dv.dv_xname, rv);
381 amr_teardown(amr);
382 return;
383 }
384 amr->amr_flags |= AMRF_DMA_CREATE;
385
386 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
387 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
388 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
389 amr->amr_dv.dv_xname, rv);
390 amr_teardown(amr);
391 return;
392 }
393 amr->amr_flags |= AMRF_DMA_LOAD;
394
395 memset(amr->amr_mbox, 0, size);
396
397 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
398 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
399 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
400 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
401
402 /*
403 * Allocate and initalise the command control blocks.
404 */
405 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
406 amr->amr_ccbs = ac;
407 SLIST_INIT(&amr->amr_ccb_freelist);
408 TAILQ_INIT(&amr->amr_ccb_active);
409 amr->amr_flags |= AMRF_CCBS;
410
411 if (amr_max_xfer == 0) {
412 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
413 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
414 }
415
416 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
417 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
418 amr_max_segs, amr_max_xfer, 0,
419 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
420 if (rv != 0)
421 break;
422
423 ac->ac_ident = i;
424 amr_ccb_free(amr, ac);
425 }
426 if (i != AMR_MAX_CMDS) {
427 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
428 amr_teardown(amr);
429 return;
430 }
431
432 /*
433 * Take care of model-specific tasks.
434 */
435 if ((apt->apt_flags & AT_QUARTZ) != 0) {
436 amr->amr_submit = amr_quartz_submit;
437 amr->amr_get_work = amr_quartz_get_work;
438 } else {
439 amr->amr_submit = amr_std_submit;
440 amr->amr_get_work = amr_std_get_work;
441
442 /* Notify the controller of the mailbox location. */
443 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
444 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
445
446 /* Clear outstanding interrupts and enable interrupts. */
447 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
448 amr_outb(amr, AMR_SREG_TOGL,
449 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
450 }
451
452 /*
453 * Retrieve parameters, and tell the world about us.
454 */
455 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
456 amr->amr_flags |= AMRF_ENQBUF;
457 amr->amr_maxqueuecnt = i;
458 aprint_normal(": AMI RAID ");
459 if (amr_init(amr, intrstr, pa) != 0) {
460 amr_teardown(amr);
461 return;
462 }
463
464 /*
465 * Cap the maximum number of outstanding commands. AMI's Linux
466 * driver doesn't trust the controller's reported value, and lockups
467 * have been seen when we do.
468 */
469 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
470 if (amr->amr_maxqueuecnt > i)
471 amr->amr_maxqueuecnt = i;
472
473 /* Set our `shutdownhook' before we start any device activity. */
474 if (amr_sdh == NULL)
475 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
476
477 /* Attach sub-devices. */
478 for (j = 0; j < amr->amr_numdrives; j++) {
479 if (amr->amr_drive[j].al_size == 0)
480 continue;
481 amra.amra_unit = j;
482
483 locs[AMRCF_UNIT] = j;
484
485 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
486 "amr", locs, &amra, amr_print, config_stdsubmatch);
487 }
488
489 SIMPLEQ_INIT(&amr->amr_ccb_queue);
490
491 /* XXX This doesn't work for newer boards yet. */
492 if ((apt->apt_flags & AT_QUARTZ) == 0)
493 kthread_create(amr_thread_create, amr);
494 }
495
496 /*
497 * Free up resources.
498 */
499 static void
500 amr_teardown(struct amr_softc *amr)
501 {
502 struct amr_ccb *ac;
503 int fl;
504
505 fl = amr->amr_flags;
506
507 if ((fl & AMRF_THREAD) != 0) {
508 amr->amr_flags |= AMRF_THREAD_EXIT;
509 wakeup(amr_thread);
510 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
511 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
512 }
513 if ((fl & AMRF_CCBS) != 0) {
514 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
515 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
516 }
517 free(amr->amr_ccbs, M_DEVBUF);
518 }
519 if ((fl & AMRF_ENQBUF) != 0)
520 free(amr->amr_enqbuf, M_DEVBUF);
521 if ((fl & AMRF_DMA_LOAD) != 0)
522 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
523 if ((fl & AMRF_DMA_MAP) != 0)
524 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
525 amr->amr_dmasize);
526 if ((fl & AMRF_DMA_ALLOC) != 0)
527 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
528 if ((fl & AMRF_DMA_CREATE) != 0)
529 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
530 if ((fl & AMRF_PCI_INTR) != 0)
531 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
532 if ((fl & AMRF_PCI_REGS) != 0)
533 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
534 }
535
536 /*
537 * Print autoconfiguration message for a sub-device.
538 */
539 static int
540 amr_print(void *aux, const char *pnp)
541 {
542 struct amr_attach_args *amra;
543
544 amra = (struct amr_attach_args *)aux;
545
546 if (pnp != NULL)
547 aprint_normal("block device at %s", pnp);
548 aprint_normal(" unit %d", amra->amra_unit);
549 return (UNCONF);
550 }
551
552 /*
553 * Retrieve operational parameters and describe the controller.
554 */
555 static int
556 amr_init(struct amr_softc *amr, const char *intrstr,
557 struct pci_attach_args *pa)
558 {
559 struct amr_adapter_info *aa;
560 struct amr_prodinfo *ap;
561 struct amr_enquiry *ae;
562 struct amr_enquiry3 *aex;
563 const char *prodstr;
564 u_int i, sig, ishp;
565 char sbuf[64];
566
567 /*
568 * Try to get 40LD product info, which tells us what the card is
569 * labelled as.
570 */
571 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
572 amr->amr_enqbuf);
573 if (ap != NULL) {
574 aprint_normal("<%.80s>\n", ap->ap_product);
575 if (intrstr != NULL)
576 aprint_normal("%s: interrupting at %s\n",
577 amr->amr_dv.dv_xname, intrstr);
578 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
579 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
580 le16toh(ap->ap_memsize));
581
582 amr->amr_maxqueuecnt = ap->ap_maxio;
583
584 /*
585 * Fetch and record state of logical drives.
586 */
587 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
588 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
589 if (aex == NULL) {
590 aprint_error("%s ENQUIRY3 failed\n",
591 amr->amr_dv.dv_xname);
592 return (-1);
593 }
594
595 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
596 aprint_error("%s: Inquiry returned more drives (%d)"
597 " than the array can handle (%zu)\n",
598 amr->amr_dv.dv_xname, aex->ae_numldrives,
599 __arraycount(aex->ae_drivestate));
600 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
601 }
602 if (aex->ae_numldrives > AMR_MAX_UNITS) {
603 aprint_error(
604 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
605 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
606 amr->amr_numdrives);
607 amr->amr_numdrives = AMR_MAX_UNITS;
608 } else
609 amr->amr_numdrives = aex->ae_numldrives;
610
611 for (i = 0; i < amr->amr_numdrives; i++) {
612 amr->amr_drive[i].al_size =
613 le32toh(aex->ae_drivesize[i]);
614 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
615 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
616 }
617
618 return (0);
619 }
620
621 /*
622 * Try 8LD extended ENQUIRY to get the controller signature. Once
623 * found, search for a product description.
624 */
625 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
626 if (ae != NULL) {
627 i = 0;
628 sig = le32toh(ae->ae_signature);
629
630 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
631 if (amr_typestr[i].at_sig == sig)
632 break;
633 i++;
634 }
635 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
636 snprintf(sbuf, sizeof(sbuf),
637 "unknown ENQUIRY2 sig (0x%08x)", sig);
638 prodstr = sbuf;
639 } else
640 prodstr = amr_typestr[i].at_str;
641 } else {
642 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
643 if (ae == NULL) {
644 aprint_error("%s: unsupported controller\n",
645 amr->amr_dv.dv_xname);
646 return (-1);
647 }
648
649 switch (PCI_PRODUCT(pa->pa_id)) {
650 case PCI_PRODUCT_AMI_MEGARAID:
651 prodstr = "Series 428";
652 break;
653 case PCI_PRODUCT_AMI_MEGARAID2:
654 prodstr = "Series 434";
655 break;
656 default:
657 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
658 PCI_PRODUCT(pa->pa_id));
659 prodstr = sbuf;
660 break;
661 }
662 }
663
664 /*
665 * HP NetRaid controllers have a special encoding of the firmware
666 * and BIOS versions. The AMI version seems to have it as strings
667 * whereas the HP version does it with a leading uppercase character
668 * and two binary numbers.
669 */
670 aa = &ae->ae_adapter;
671
672 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
673 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
674 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
675 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
676 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
677 /* The AMI 438 is a NetRaid 3si in HP-land. */
678 prodstr = "HP NetRaid 3si";
679 }
680 ishp = 1;
681 } else
682 ishp = 0;
683
684 aprint_normal("<%s>\n", prodstr);
685 if (intrstr != NULL)
686 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
687 intrstr);
688
689 if (ishp)
690 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
691 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
692 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
693 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
694 else
695 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
696 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
697 aa->aa_memorysize);
698
699 amr->amr_maxqueuecnt = aa->aa_maxio;
700
701 /*
702 * Record state of logical drives.
703 */
704 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
705 aprint_error("%s: Inquiry returned more drives (%d)"
706 " than the array can handle (%zu)\n",
707 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
708 __arraycount(ae->ae_ldrv.al_size));
709 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
710 }
711 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
712 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
713 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
714 AMR_MAX_UNITS);
715 amr->amr_numdrives = AMR_MAX_UNITS;
716 } else
717 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
718
719 for (i = 0; i < amr->amr_numdrives; i++) {
720 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
721 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
722 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
723 }
724
725 return (0);
726 }
727
728 /*
729 * Flush the internal cache on each configured controller. Called at
730 * shutdown time.
731 */
732 static void
733 amr_shutdown(void *cookie)
734 {
735 extern struct cfdriver amr_cd;
736 struct amr_softc *amr;
737 struct amr_ccb *ac;
738 int i, rv, s;
739
740 for (i = 0; i < amr_cd.cd_ndevs; i++) {
741 if ((amr = device_lookup(&amr_cd, i)) == NULL)
742 continue;
743
744 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
745 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
746 s = splbio();
747 rv = amr_ccb_poll(amr, ac, 30000);
748 splx(s);
749 amr_ccb_free(amr, ac);
750 }
751 if (rv != 0)
752 printf("%s: unable to flush cache (%d)\n",
753 amr->amr_dv.dv_xname, rv);
754 }
755 }
756
757 /*
758 * Interrupt service routine.
759 */
760 static int
761 amr_intr(void *cookie)
762 {
763 struct amr_softc *amr;
764 struct amr_ccb *ac;
765 struct amr_mailbox_resp mbox;
766 u_int i, forus, idx;
767
768 amr = cookie;
769 forus = 0;
770
771 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
772 /* Iterate over completed commands in this result. */
773 for (i = 0; i < mbox.mb_nstatus; i++) {
774 idx = mbox.mb_completed[i] - 1;
775 ac = amr->amr_ccbs + idx;
776
777 if (idx >= amr->amr_maxqueuecnt) {
778 printf("%s: bad status (bogus ID: %u=%u)\n",
779 amr->amr_dv.dv_xname, i, idx);
780 continue;
781 }
782
783 if ((ac->ac_flags & AC_ACTIVE) == 0) {
784 printf("%s: bad status (not active; 0x04%x)\n",
785 amr->amr_dv.dv_xname, ac->ac_flags);
786 continue;
787 }
788
789 ac->ac_status = mbox.mb_status;
790 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
791 AC_COMPLETE;
792 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
793
794 if ((ac->ac_flags & AC_MOAN) != 0)
795 printf("%s: ccb %d completed\n",
796 amr->amr_dv.dv_xname, ac->ac_ident);
797
798 /* Pass notification to upper layers. */
799 if (ac->ac_handler != NULL)
800 (*ac->ac_handler)(ac);
801 else
802 wakeup(ac);
803 }
804 forus = 1;
805 }
806
807 if (forus)
808 amr_ccb_enqueue(amr, NULL);
809
810 return (forus);
811 }
812
813 /*
814 * Create the watchdog thread.
815 */
816 static void
817 amr_thread_create(void *cookie)
818 {
819 struct amr_softc *amr;
820 int rv;
821
822 amr = cookie;
823
824 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
825 amr->amr_flags ^= AMRF_THREAD_EXIT;
826 wakeup(&amr->amr_flags);
827 return;
828 }
829
830 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
831 amr->amr_dv.dv_xname);
832 if (rv != 0)
833 aprint_error("%s: unable to create thread (%d)",
834 amr->amr_dv.dv_xname, rv);
835 else
836 amr->amr_flags |= AMRF_THREAD;
837 }
838
839 /*
840 * Watchdog thread.
841 */
842 static void
843 amr_thread(void *cookie)
844 {
845 struct amr_softc *amr;
846 struct amr_ccb *ac;
847 struct amr_logdrive *al;
848 struct amr_enquiry *ae;
849 int rv, i, s;
850
851 amr = cookie;
852 ae = amr->amr_enqbuf;
853
854 for (;;) {
855 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
856
857 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
858 amr->amr_flags ^= AMRF_THREAD_EXIT;
859 wakeup(&amr->amr_flags);
860 kthread_exit(0);
861 }
862
863 s = splbio();
864 amr_intr(cookie);
865 ac = TAILQ_FIRST(&amr->amr_ccb_active);
866 while (ac != NULL) {
867 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
868 break;
869 if ((ac->ac_flags & AC_MOAN) == 0) {
870 printf("%s: ccb %d timed out; mailbox:\n",
871 amr->amr_dv.dv_xname, ac->ac_ident);
872 amr_ccb_dump(amr, ac);
873 ac->ac_flags |= AC_MOAN;
874 }
875 ac = TAILQ_NEXT(ac, ac_chain.tailq);
876 }
877 splx(s);
878
879 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
880 printf("%s: ccb_alloc failed (%d)\n",
881 amr->amr_dv.dv_xname, rv);
882 continue;
883 }
884
885 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
886
887 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
888 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
889 if (rv != 0) {
890 printf("%s: ccb_map failed (%d)\n",
891 amr->amr_dv.dv_xname, rv);
892 amr_ccb_free(amr, ac);
893 continue;
894 }
895
896 rv = amr_ccb_wait(amr, ac);
897 amr_ccb_unmap(amr, ac);
898 if (rv != 0) {
899 printf("%s: enquiry failed (st=%d)\n",
900 amr->amr_dv.dv_xname, ac->ac_status);
901 continue;
902 }
903 amr_ccb_free(amr, ac);
904
905 al = amr->amr_drive;
906 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
907 if (al->al_dv == NULL)
908 continue;
909 if (al->al_state == ae->ae_ldrv.al_state[i])
910 continue;
911
912 printf("%s: state changed: %s -> %s\n",
913 al->al_dv->dv_xname,
914 amr_drive_state(al->al_state, NULL),
915 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
916
917 al->al_state = ae->ae_ldrv.al_state[i];
918 }
919 }
920 }
921
922 /*
923 * Return a text description of a logical drive's current state.
924 */
925 const char *
926 amr_drive_state(int state, int *happy)
927 {
928 const char *str;
929
930 state = AMR_DRV_CURSTATE(state);
931 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
932 if (happy)
933 *happy = 1;
934 str = "status unknown";
935 } else {
936 if (happy)
937 *happy = amr_dstate[state].ds_happy;
938 str = amr_dstate[state].ds_descr;
939 }
940
941 return (str);
942 }
943
944 /*
945 * Run a generic enquiry-style command.
946 */
947 static void *
948 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
949 u_int8_t cmdqual, void *sbuf)
950 {
951 struct amr_ccb *ac;
952 u_int8_t *mb;
953 int rv;
954
955 if (amr_ccb_alloc(amr, &ac) != 0)
956 return (NULL);
957
958 /* Build the command proper. */
959 mb = (u_int8_t *)&ac->ac_cmd;
960 mb[0] = cmd;
961 mb[2] = cmdsub;
962 mb[3] = cmdqual;
963
964 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
965 if (rv == 0) {
966 rv = amr_ccb_poll(amr, ac, 2000);
967 amr_ccb_unmap(amr, ac);
968 }
969 amr_ccb_free(amr, ac);
970
971 return (rv ? NULL : sbuf);
972 }
973
974 /*
975 * Allocate and initialise a CCB.
976 */
977 int
978 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
979 {
980 int s;
981
982 s = splbio();
983 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
984 splx(s);
985 return (EAGAIN);
986 }
987 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
988 splx(s);
989
990 return (0);
991 }
992
993 /*
994 * Free a CCB.
995 */
996 void
997 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
998 {
999 int s;
1000
1001 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1002 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1003 ac->ac_cmd.mb_busy = 1;
1004 ac->ac_handler = NULL;
1005 ac->ac_flags = 0;
1006
1007 s = splbio();
1008 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1009 splx(s);
1010 }
1011
1012 /*
1013 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1014 * the order that they were enqueued and try to submit their command blocks
1015 * to the controller for execution.
1016 */
1017 void
1018 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1019 {
1020 int s;
1021
1022 s = splbio();
1023
1024 if (ac != NULL)
1025 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1026
1027 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1028 if ((*amr->amr_submit)(amr, ac) != 0)
1029 break;
1030 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1031 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1032 }
1033
1034 splx(s);
1035 }
1036
1037 /*
1038 * Map the specified CCB's data buffer onto the bus, and fill the
1039 * scatter-gather list.
1040 */
1041 int
1042 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1043 int tflag)
1044 {
1045 struct amr_sgentry *sge;
1046 struct amr_mailbox_cmd *mb;
1047 int nsegs, i, rv, sgloff;
1048 bus_dmamap_t xfer;
1049 int dmaflag = 0;
1050
1051 xfer = ac->ac_xfer_map;
1052
1053 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1054 BUS_DMA_NOWAIT);
1055 if (rv != 0)
1056 return (rv);
1057
1058 mb = &ac->ac_cmd;
1059 ac->ac_xfer_size = size;
1060 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1061 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1062
1063 if (tflag & AC_XFER_OUT)
1064 dmaflag |= BUS_DMASYNC_PREWRITE;
1065 if (tflag & AC_XFER_IN)
1066 dmaflag |= BUS_DMASYNC_PREREAD;
1067
1068 /* We don't need to use a scatter/gather list for just 1 segment. */
1069 nsegs = xfer->dm_nsegs;
1070 if (nsegs == 1) {
1071 mb->mb_nsgelem = 0;
1072 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1073 ac->ac_flags |= AC_NOSGL;
1074 } else {
1075 mb->mb_nsgelem = nsegs;
1076 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1077
1078 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1079 for (i = 0; i < nsegs; i++, sge++) {
1080 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1081 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1082 }
1083 }
1084
1085 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1086
1087 if ((ac->ac_flags & AC_NOSGL) == 0)
1088 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1089 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1090
1091 return (0);
1092 }
1093
1094 /*
1095 * Unmap the specified CCB's data buffer.
1096 */
1097 void
1098 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1099 {
1100 int dmaflag = 0;
1101
1102 if (ac->ac_flags & AC_XFER_IN)
1103 dmaflag |= BUS_DMASYNC_POSTREAD;
1104 if (ac->ac_flags & AC_XFER_OUT)
1105 dmaflag |= BUS_DMASYNC_POSTWRITE;
1106
1107 if ((ac->ac_flags & AC_NOSGL) == 0)
1108 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1109 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1110 BUS_DMASYNC_POSTWRITE);
1111 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1112 dmaflag);
1113 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1114 }
1115
1116 /*
1117 * Submit a command to the controller and poll on completion. Return
1118 * non-zero on timeout or error. Must be called with interrupts blocked.
1119 */
1120 int
1121 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1122 {
1123 int rv;
1124
1125 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1126 return (rv);
1127 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1128
1129 for (timo *= 10; timo != 0; timo--) {
1130 amr_intr(amr);
1131 if ((ac->ac_flags & AC_COMPLETE) != 0)
1132 break;
1133 DELAY(100);
1134 }
1135
1136 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1137 }
1138
1139 /*
1140 * Submit a command to the controller and sleep on completion. Return
1141 * non-zero on error.
1142 */
1143 int
1144 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1145 {
1146 int s;
1147
1148 s = splbio();
1149 amr_ccb_enqueue(amr, ac);
1150 tsleep(ac, PRIBIO, "amrcmd", 0);
1151 splx(s);
1152
1153 return (ac->ac_status != 0 ? EIO : 0);
1154 }
1155
1156 #if 0
1157 /*
1158 * Wait for the mailbox to become available.
1159 */
1160 static int
1161 amr_mbox_wait(struct amr_softc *amr)
1162 {
1163 int timo;
1164
1165 for (timo = 10000; timo != 0; timo--) {
1166 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1167 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1168 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1169 break;
1170 DELAY(100);
1171 }
1172
1173 if (timo == 0)
1174 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1175
1176 return (timo != 0 ? 0 : EAGAIN);
1177 }
1178 #endif
1179
1180 /*
1181 * Tell the controller that the mailbox contains a valid command. Must be
1182 * called with interrupts blocked.
1183 */
1184 static int
1185 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1186 {
1187 u_int32_t v;
1188
1189 amr->amr_mbox->mb_poll = 0;
1190 amr->amr_mbox->mb_ack = 0;
1191 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1192 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1193 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1194 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1195 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1196 return (EAGAIN);
1197
1198 v = amr_inl(amr, AMR_QREG_IDB);
1199 if ((v & AMR_QIDB_SUBMIT) != 0) {
1200 amr->amr_mbox->mb_cmd.mb_busy = 0;
1201 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1202 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1203 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1204 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1205 return (EAGAIN);
1206 }
1207
1208 amr->amr_mbox->mb_segment = 0;
1209 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1210 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1211 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1212
1213 ac->ac_start_time = time_uptime;
1214 ac->ac_flags |= AC_ACTIVE;
1215 amr_outl(amr, AMR_QREG_IDB,
1216 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1217 return (0);
1218 }
1219
1220 static int
1221 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1222 {
1223
1224 amr->amr_mbox->mb_poll = 0;
1225 amr->amr_mbox->mb_ack = 0;
1226 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1227 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1228 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1229 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1230 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1231 return (EAGAIN);
1232
1233 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1234 amr->amr_mbox->mb_cmd.mb_busy = 0;
1235 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1236 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1237 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1238 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1239 return (EAGAIN);
1240 }
1241
1242 amr->amr_mbox->mb_segment = 0;
1243 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1244 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1245 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1246
1247 ac->ac_start_time = time_uptime;
1248 ac->ac_flags |= AC_ACTIVE;
1249 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1250 return (0);
1251 }
1252
1253 /*
1254 * Claim any work that the controller has completed; acknowledge completion,
1255 * save details of the completion in (mbsave). Must be called with
1256 * interrupts blocked.
1257 */
1258 static int
1259 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1260 {
1261
1262 /* Work waiting for us? */
1263 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1264 return (-1);
1265
1266 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1267 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1268
1269 /* Save the mailbox, which contains a list of completed commands. */
1270 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1271
1272 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1273 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1274
1275 /* Ack the interrupt and mailbox transfer. */
1276 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1277 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1278
1279 /*
1280 * This waits for the controller to notice that we've taken the
1281 * command from it. It's very inefficient, and we shouldn't do it,
1282 * but if we remove this code, we stop completing commands under
1283 * load.
1284 *
1285 * Peter J says we shouldn't do this. The documentation says we
1286 * should. Who is right?
1287 */
1288 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1289 DELAY(10);
1290
1291 return (0);
1292 }
1293
1294 static int
1295 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1296 {
1297 u_int8_t istat;
1298
1299 /* Check for valid interrupt status. */
1300 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1301 return (-1);
1302
1303 /* Ack the interrupt. */
1304 amr_outb(amr, AMR_SREG_INTR, istat);
1305
1306 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1307 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1308
1309 /* Save mailbox, which contains a list of completed commands. */
1310 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1311
1312 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1313 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1314
1315 /* Ack mailbox transfer. */
1316 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1317
1318 return (0);
1319 }
1320
1321 static void
1322 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1323 {
1324 int i;
1325
1326 printf("%s: ", amr->amr_dv.dv_xname);
1327 for (i = 0; i < 4; i++)
1328 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1329 printf("\n");
1330 }
1331
1332 static int
1333 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1334 {
1335 struct amr_softc *amr;
1336
1337 if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL)
1338 return (ENXIO);
1339 if ((amr->amr_flags & AMRF_OPEN) != 0)
1340 return (EBUSY);
1341
1342 amr->amr_flags |= AMRF_OPEN;
1343 return (0);
1344 }
1345
1346 static int
1347 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1348 {
1349 struct amr_softc *amr;
1350
1351 amr = device_lookup(&amr_cd, minor(dev));
1352 amr->amr_flags &= ~AMRF_OPEN;
1353 return (0);
1354 }
1355
1356 static int
1357 amrioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
1358 {
1359 struct amr_softc *amr;
1360 struct amr_user_ioctl *au;
1361 struct amr_ccb *ac;
1362 struct amr_mailbox_ioctl *mbi;
1363 unsigned long au_length;
1364 uint8_t *au_cmd;
1365 int error;
1366 void *dp = NULL, *au_buffer;
1367
1368 amr = device_lookup(&amr_cd, minor(dev));
1369
1370 /* This should be compatible with the FreeBSD interface */
1371
1372 switch (cmd) {
1373 case AMR_IO_VERSION:
1374 *(int *)data = AMR_IO_VERSION_NUMBER;
1375 return 0;
1376 case AMR_IO_COMMAND:
1377 if (securelevel >= 2)
1378 return (EPERM);
1379
1380 au = (struct amr_user_ioctl *)data;
1381 au_cmd = au->au_cmd;
1382 au_buffer = au->au_buffer;
1383 au_length = au->au_length;
1384 break;
1385 default:
1386 return ENOTTY;
1387 }
1388
1389 if (au_cmd[0] == AMR_CMD_PASS) {
1390 /* not yet */
1391 return EOPNOTSUPP;
1392 }
1393
1394 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1395 return (EINVAL);
1396
1397 /*
1398 * allocate kernel memory for data, doing I/O directly to user
1399 * buffer isn't that easy.
1400 */
1401 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1402 if (dp == NULL)
1403 return ENOMEM;
1404 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1405 goto out;
1406
1407 /* direct command to controller */
1408 while (amr_ccb_alloc(amr, &ac) != 0) {
1409 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1410 if (error == EINTR)
1411 goto out;
1412 }
1413
1414 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1415 mbi->mb_command = au_cmd[0];
1416 mbi->mb_channel = au_cmd[1];
1417 mbi->mb_param = au_cmd[2];
1418 mbi->mb_pad[0] = au_cmd[3];
1419 mbi->mb_drive = au_cmd[4];
1420 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1421 AC_XFER_IN | AC_XFER_OUT);
1422 if (error == 0) {
1423 error = amr_ccb_wait(amr, ac);
1424 amr_ccb_unmap(amr, ac);
1425 if (error == 0)
1426 error = copyout(dp, au_buffer, au_length);
1427
1428 }
1429 amr_ccb_free(amr, ac);
1430 out:
1431 free(dp, M_DEVBUF);
1432 return (error);
1433 }
1434