Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.39
      1 /*	$NetBSD: amr.c,v 1.39 2006/10/12 01:31:28 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999,2000 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67  */
     68 
     69 /*
     70  * Driver for AMI RAID controllers.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.39 2006/10/12 01:31:28 christos Exp $");
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/device.h>
     80 #include <sys/queue.h>
     81 #include <sys/proc.h>
     82 #include <sys/buf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/conf.h>
     85 #include <sys/kthread.h>
     86 
     87 #include <uvm/uvm_extern.h>
     88 
     89 #include <machine/endian.h>
     90 #include <machine/bus.h>
     91 
     92 #include <dev/pci/pcidevs.h>
     93 #include <dev/pci/pcivar.h>
     94 #include <dev/pci/amrreg.h>
     95 #include <dev/pci/amrvar.h>
     96 #include <dev/pci/amrio.h>
     97 
     98 #include "locators.h"
     99 
    100 static void	amr_attach(struct device *, struct device *, void *);
    101 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
    102 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
    103 			     void *);
    104 static int	amr_init(struct amr_softc *, const char *,
    105 			 struct pci_attach_args *pa);
    106 static int	amr_intr(void *);
    107 static int	amr_match(struct device *, struct cfdata *, void *);
    108 static int	amr_print(void *, const char *);
    109 static void	amr_shutdown(void *);
    110 static void	amr_teardown(struct amr_softc *);
    111 static void	amr_thread(void *);
    112 static void	amr_thread_create(void *);
    113 
    114 static int	amr_quartz_get_work(struct amr_softc *,
    115 				    struct amr_mailbox_resp *);
    116 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    117 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    118 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    119 
    120 static dev_type_open(amropen);
    121 static dev_type_close(amrclose);
    122 static dev_type_ioctl(amrioctl);
    123 
    124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
    125     amr_match, amr_attach, NULL, NULL);
    126 
    127 const struct cdevsw amr_cdevsw = {
    128 	amropen, amrclose, noread, nowrite, amrioctl,
    129 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
    130 };
    131 
    132 extern struct   cfdriver amr_cd;
    133 
    134 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    135 #define	AT_SIG		0x02	/* Check for signature */
    136 
    137 static struct amr_pci_type {
    138 	u_short	apt_vendor;
    139 	u_short	apt_product;
    140 	u_short	apt_flags;
    141 } const amr_pci_type[] = {
    142 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    143 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    144 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    145 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    146 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    147 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    148 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    149 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    150 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    151 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    152 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
    153 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
    154 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    155 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    156 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    157 };
    158 
    159 static struct amr_typestr {
    160 	const char	*at_str;
    161 	int		at_sig;
    162 } const amr_typestr[] = {
    163 	{ "Series 431",			AMR_SIG_431 },
    164 	{ "Series 438",			AMR_SIG_438 },
    165 	{ "Series 466",			AMR_SIG_466 },
    166 	{ "Series 467",			AMR_SIG_467 },
    167 	{ "Series 490",			AMR_SIG_490 },
    168 	{ "Series 762",			AMR_SIG_762 },
    169 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    170 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    171 };
    172 
    173 static struct {
    174 	const char	*ds_descr;
    175 	int	ds_happy;
    176 } const amr_dstate[] = {
    177 	{ "offline",	0 },
    178 	{ "degraded",	1 },
    179 	{ "optimal",	1 },
    180 	{ "online",	1 },
    181 	{ "failed",	0 },
    182 	{ "rebuilding",	1 },
    183 	{ "hotspare",	0 },
    184 };
    185 
    186 static void	*amr_sdh;
    187 
    188 static int	amr_max_segs;
    189 int		amr_max_xfer;
    190 
    191 static inline u_int8_t
    192 amr_inb(struct amr_softc *amr, int off)
    193 {
    194 
    195 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    196 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    197 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    198 }
    199 
    200 static inline u_int32_t
    201 amr_inl(struct amr_softc *amr, int off)
    202 {
    203 
    204 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    205 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    206 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    207 }
    208 
    209 static inline void
    210 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    211 {
    212 
    213 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    214 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    215 	    BUS_SPACE_BARRIER_WRITE);
    216 }
    217 
    218 static inline void
    219 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    220 {
    221 
    222 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    223 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    224 	    BUS_SPACE_BARRIER_WRITE);
    225 }
    226 
    227 /*
    228  * Match a supported device.
    229  */
    230 static int
    231 amr_match(struct device *parent __unused, struct cfdata *match __unused,
    232     void *aux)
    233 {
    234 	struct pci_attach_args *pa;
    235 	pcireg_t s;
    236 	int i;
    237 
    238 	pa = (struct pci_attach_args *)aux;
    239 
    240 	/*
    241 	 * Don't match the device if it's operating in I2O mode.  In this
    242 	 * case it should be handled by the `iop' driver.
    243 	 */
    244 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    245 		return (0);
    246 
    247 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    248 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    249 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    250 		    	break;
    251 
    252 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    253 		return (0);
    254 
    255 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    256 		return (1);
    257 
    258 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    259 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    260 }
    261 
    262 /*
    263  * Attach a supported device.
    264  */
    265 static void
    266 amr_attach(struct device *parent __unused, struct device *self, void *aux)
    267 {
    268 	struct pci_attach_args *pa;
    269 	struct amr_attach_args amra;
    270 	const struct amr_pci_type *apt;
    271 	struct amr_softc *amr;
    272 	pci_chipset_tag_t pc;
    273 	pci_intr_handle_t ih;
    274 	const char *intrstr;
    275 	pcireg_t reg;
    276 	int rseg, i, j, size, rv, memreg, ioreg;
    277 	struct amr_ccb *ac;
    278 	int locs[AMRCF_NLOCS];
    279 
    280 	aprint_naive(": RAID controller\n");
    281 
    282 	amr = (struct amr_softc *)self;
    283 	pa = (struct pci_attach_args *)aux;
    284 	pc = pa->pa_pc;
    285 
    286 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    287 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    288 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    289 			break;
    290 	apt = amr_pci_type + i;
    291 
    292 	memreg = ioreg = 0;
    293 	for (i = 0x10; i <= 0x14; i += 4) {
    294 		reg = pci_conf_read(pc, pa->pa_tag, i);
    295 		switch (PCI_MAPREG_TYPE(reg)) {
    296 		case PCI_MAPREG_TYPE_MEM:
    297 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
    298 				memreg = i;
    299 			break;
    300 		case PCI_MAPREG_TYPE_IO:
    301 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
    302 				ioreg = i;
    303 			break;
    304 
    305 		}
    306 	}
    307 
    308 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    309 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    310 		;
    311 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    312 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    313 		;
    314 	else {
    315 		aprint_error("can't map control registers\n");
    316 		amr_teardown(amr);
    317 		return;
    318 	}
    319 
    320 	amr->amr_flags |= AMRF_PCI_REGS;
    321 	amr->amr_dmat = pa->pa_dmat;
    322 	amr->amr_pc = pa->pa_pc;
    323 
    324 	/* Enable the device. */
    325 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    326 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    327 	    reg | PCI_COMMAND_MASTER_ENABLE);
    328 
    329 	/* Map and establish the interrupt. */
    330 	if (pci_intr_map(pa, &ih)) {
    331 		aprint_error("can't map interrupt\n");
    332 		amr_teardown(amr);
    333 		return;
    334 	}
    335 	intrstr = pci_intr_string(pc, ih);
    336 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    337 	if (amr->amr_ih == NULL) {
    338 		aprint_error("can't establish interrupt");
    339 		if (intrstr != NULL)
    340 			aprint_normal(" at %s", intrstr);
    341 		aprint_normal("\n");
    342 		amr_teardown(amr);
    343 		return;
    344 	}
    345 	amr->amr_flags |= AMRF_PCI_INTR;
    346 
    347 	/*
    348 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    349 	 * don't like S/G lists to be located below 0x2000, so we allocate
    350 	 * enough slop to enable us to compensate.
    351 	 *
    352 	 * The standard mailbox structure needs to be aligned on a 16-byte
    353 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    354 	 * size, which preceeds the standard mailbox.
    355 	 */
    356 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    357 	amr->amr_dmasize = size;
    358 
    359 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
    360 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    361 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    362 		    amr->amr_dv.dv_xname, rv);
    363 		amr_teardown(amr);
    364 		return;
    365 	}
    366 	amr->amr_flags |= AMRF_DMA_ALLOC;
    367 
    368 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    369 	    (caddr_t *)&amr->amr_mbox,
    370 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    371 		aprint_error("%s: unable to map buffer, rv = %d\n",
    372 		    amr->amr_dv.dv_xname, rv);
    373 		amr_teardown(amr);
    374 		return;
    375 	}
    376 	amr->amr_flags |= AMRF_DMA_MAP;
    377 
    378 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    379 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    380 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    381 		    amr->amr_dv.dv_xname, rv);
    382 		amr_teardown(amr);
    383 		return;
    384 	}
    385 	amr->amr_flags |= AMRF_DMA_CREATE;
    386 
    387 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    388 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    389 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    390 		    amr->amr_dv.dv_xname, rv);
    391 		amr_teardown(amr);
    392 		return;
    393 	}
    394 	amr->amr_flags |= AMRF_DMA_LOAD;
    395 
    396 	memset(amr->amr_mbox, 0, size);
    397 
    398 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    399 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    400 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
    401 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    402 
    403 	/*
    404 	 * Allocate and initalise the command control blocks.
    405 	 */
    406 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    407 	amr->amr_ccbs = ac;
    408 	SLIST_INIT(&amr->amr_ccb_freelist);
    409 	TAILQ_INIT(&amr->amr_ccb_active);
    410 	amr->amr_flags |= AMRF_CCBS;
    411 
    412 	if (amr_max_xfer == 0) {
    413 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    414 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    415 	}
    416 
    417 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    418 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    419 		    amr_max_segs, amr_max_xfer, 0,
    420 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    421 		if (rv != 0)
    422 			break;
    423 
    424 		ac->ac_ident = i;
    425 		amr_ccb_free(amr, ac);
    426 	}
    427 	if (i != AMR_MAX_CMDS) {
    428 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    429 		amr_teardown(amr);
    430 		return;
    431 	}
    432 
    433 	/*
    434 	 * Take care of model-specific tasks.
    435 	 */
    436 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    437 		amr->amr_submit = amr_quartz_submit;
    438 		amr->amr_get_work = amr_quartz_get_work;
    439 	} else {
    440 		amr->amr_submit = amr_std_submit;
    441 		amr->amr_get_work = amr_std_get_work;
    442 
    443 		/* Notify the controller of the mailbox location. */
    444 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    445 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    446 
    447 		/* Clear outstanding interrupts and enable interrupts. */
    448 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    449 		amr_outb(amr, AMR_SREG_TOGL,
    450 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    451 	}
    452 
    453 	/*
    454 	 * Retrieve parameters, and tell the world about us.
    455 	 */
    456 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    457 	amr->amr_flags |= AMRF_ENQBUF;
    458 	amr->amr_maxqueuecnt = i;
    459 	aprint_normal(": AMI RAID ");
    460 	if (amr_init(amr, intrstr, pa) != 0) {
    461 		amr_teardown(amr);
    462 		return;
    463 	}
    464 
    465 	/*
    466 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    467 	 * driver doesn't trust the controller's reported value, and lockups
    468 	 * have been seen when we do.
    469 	 */
    470 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    471 	if (amr->amr_maxqueuecnt > i)
    472 		amr->amr_maxqueuecnt = i;
    473 
    474 	/* Set our `shutdownhook' before we start any device activity. */
    475 	if (amr_sdh == NULL)
    476 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    477 
    478 	/* Attach sub-devices. */
    479 	for (j = 0; j < amr->amr_numdrives; j++) {
    480 		if (amr->amr_drive[j].al_size == 0)
    481 			continue;
    482 		amra.amra_unit = j;
    483 
    484 		locs[AMRCF_UNIT] = j;
    485 
    486 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
    487 			"amr", locs, &amra, amr_print, config_stdsubmatch);
    488 	}
    489 
    490 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    491 
    492 	/* XXX This doesn't work for newer boards yet. */
    493 	if ((apt->apt_flags & AT_QUARTZ) == 0)
    494 		kthread_create(amr_thread_create, amr);
    495 }
    496 
    497 /*
    498  * Free up resources.
    499  */
    500 static void
    501 amr_teardown(struct amr_softc *amr)
    502 {
    503 	struct amr_ccb *ac;
    504 	int fl;
    505 
    506 	fl = amr->amr_flags;
    507 
    508 	if ((fl & AMRF_THREAD) != 0) {
    509 		amr->amr_flags |= AMRF_THREAD_EXIT;
    510 		wakeup(amr_thread);
    511 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    512 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    513 	}
    514 	if ((fl & AMRF_CCBS) != 0) {
    515 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    516 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    517 		}
    518 		free(amr->amr_ccbs, M_DEVBUF);
    519 	}
    520 	if ((fl & AMRF_ENQBUF) != 0)
    521 		free(amr->amr_enqbuf, M_DEVBUF);
    522 	if ((fl & AMRF_DMA_LOAD) != 0)
    523 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    524 	if ((fl & AMRF_DMA_MAP) != 0)
    525 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
    526 		    amr->amr_dmasize);
    527 	if ((fl & AMRF_DMA_ALLOC) != 0)
    528 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    529 	if ((fl & AMRF_DMA_CREATE) != 0)
    530 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    531 	if ((fl & AMRF_PCI_INTR) != 0)
    532 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    533 	if ((fl & AMRF_PCI_REGS) != 0)
    534 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    535 }
    536 
    537 /*
    538  * Print autoconfiguration message for a sub-device.
    539  */
    540 static int
    541 amr_print(void *aux, const char *pnp)
    542 {
    543 	struct amr_attach_args *amra;
    544 
    545 	amra = (struct amr_attach_args *)aux;
    546 
    547 	if (pnp != NULL)
    548 		aprint_normal("block device at %s", pnp);
    549 	aprint_normal(" unit %d", amra->amra_unit);
    550 	return (UNCONF);
    551 }
    552 
    553 /*
    554  * Retrieve operational parameters and describe the controller.
    555  */
    556 static int
    557 amr_init(struct amr_softc *amr, const char *intrstr,
    558 	 struct pci_attach_args *pa)
    559 {
    560 	struct amr_adapter_info *aa;
    561 	struct amr_prodinfo *ap;
    562 	struct amr_enquiry *ae;
    563 	struct amr_enquiry3 *aex;
    564 	const char *prodstr;
    565 	u_int i, sig, ishp;
    566 	char sbuf[64];
    567 
    568 	/*
    569 	 * Try to get 40LD product info, which tells us what the card is
    570 	 * labelled as.
    571 	 */
    572 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    573 	    amr->amr_enqbuf);
    574 	if (ap != NULL) {
    575 		aprint_normal("<%.80s>\n", ap->ap_product);
    576 		if (intrstr != NULL)
    577 			aprint_normal("%s: interrupting at %s\n",
    578 			    amr->amr_dv.dv_xname, intrstr);
    579 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    580 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    581 		    le16toh(ap->ap_memsize));
    582 
    583 		amr->amr_maxqueuecnt = ap->ap_maxio;
    584 
    585 		/*
    586 		 * Fetch and record state of logical drives.
    587 		 */
    588 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    589 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    590 		if (aex == NULL) {
    591 			aprint_error("%s ENQUIRY3 failed\n",
    592 			    amr->amr_dv.dv_xname);
    593 			return (-1);
    594 		}
    595 
    596 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
    597 			aprint_error("%s: Inquiry returned more drives (%d)"
    598 			   " than the array can handle (%zu)\n",
    599 			   amr->amr_dv.dv_xname, aex->ae_numldrives,
    600 			   __arraycount(aex->ae_drivestate));
    601 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
    602 		}
    603 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    604 			aprint_error(
    605 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    606 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
    607 			    amr->amr_numdrives);
    608 			amr->amr_numdrives = AMR_MAX_UNITS;
    609 		} else
    610 			amr->amr_numdrives = aex->ae_numldrives;
    611 
    612 		for (i = 0; i < amr->amr_numdrives; i++) {
    613 			amr->amr_drive[i].al_size =
    614 			    le32toh(aex->ae_drivesize[i]);
    615 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    616 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    617 		}
    618 
    619 		return (0);
    620 	}
    621 
    622 	/*
    623 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    624 	 * found, search for a product description.
    625 	 */
    626 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    627 	if (ae != NULL) {
    628 		i = 0;
    629 		sig = le32toh(ae->ae_signature);
    630 
    631 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    632 			if (amr_typestr[i].at_sig == sig)
    633 				break;
    634 			i++;
    635 		}
    636 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    637 			snprintf(sbuf, sizeof(sbuf),
    638 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
    639 			prodstr = sbuf;
    640 		} else
    641 			prodstr = amr_typestr[i].at_str;
    642 	} else {
    643 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    644 		if (ae == NULL) {
    645 			aprint_error("%s: unsupported controller\n",
    646 			    amr->amr_dv.dv_xname);
    647 			return (-1);
    648 		}
    649 
    650 		switch (PCI_PRODUCT(pa->pa_id)) {
    651 		case PCI_PRODUCT_AMI_MEGARAID:
    652 			prodstr = "Series 428";
    653 			break;
    654 		case PCI_PRODUCT_AMI_MEGARAID2:
    655 			prodstr = "Series 434";
    656 			break;
    657 		default:
    658 			snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
    659 			    PCI_PRODUCT(pa->pa_id));
    660 			prodstr = sbuf;
    661 			break;
    662 		}
    663 	}
    664 
    665 	/*
    666 	 * HP NetRaid controllers have a special encoding of the firmware
    667 	 * and BIOS versions.  The AMI version seems to have it as strings
    668 	 * whereas the HP version does it with a leading uppercase character
    669 	 * and two binary numbers.
    670 	*/
    671 	aa = &ae->ae_adapter;
    672 
    673 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    674 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    675 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    676 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    677 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    678 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    679 			prodstr = "HP NetRaid 3si";
    680 		}
    681 		ishp = 1;
    682 	} else
    683 		ishp = 0;
    684 
    685 	aprint_normal("<%s>\n", prodstr);
    686 	if (intrstr != NULL)
    687 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    688 		    intrstr);
    689 
    690 	if (ishp)
    691 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    692 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    693 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    694 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    695 	else
    696 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    697 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    698 		    aa->aa_memorysize);
    699 
    700 	amr->amr_maxqueuecnt = aa->aa_maxio;
    701 
    702 	/*
    703 	 * Record state of logical drives.
    704 	 */
    705 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
    706 		aprint_error("%s: Inquiry returned more drives (%d)"
    707 		   " than the array can handle (%zu)\n",
    708 		   amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    709 		   __arraycount(ae->ae_ldrv.al_size));
    710 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
    711 	}
    712 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    713 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    714 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    715 		    AMR_MAX_UNITS);
    716 		amr->amr_numdrives = AMR_MAX_UNITS;
    717 	} else
    718 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    719 
    720 	for (i = 0; i < amr->amr_numdrives; i++) {
    721 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    722 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    723 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    724 	}
    725 
    726 	return (0);
    727 }
    728 
    729 /*
    730  * Flush the internal cache on each configured controller.  Called at
    731  * shutdown time.
    732  */
    733 static void
    734 amr_shutdown(void *cookie __unused)
    735 {
    736 	extern struct cfdriver amr_cd;
    737 	struct amr_softc *amr;
    738 	struct amr_ccb *ac;
    739 	int i, rv, s;
    740 
    741 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    742 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    743 			continue;
    744 
    745 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    746 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    747 			s = splbio();
    748 			rv = amr_ccb_poll(amr, ac, 30000);
    749 			splx(s);
    750 			amr_ccb_free(amr, ac);
    751 		}
    752 		if (rv != 0)
    753 			printf("%s: unable to flush cache (%d)\n",
    754 			    amr->amr_dv.dv_xname, rv);
    755 	}
    756 }
    757 
    758 /*
    759  * Interrupt service routine.
    760  */
    761 static int
    762 amr_intr(void *cookie)
    763 {
    764 	struct amr_softc *amr;
    765 	struct amr_ccb *ac;
    766 	struct amr_mailbox_resp mbox;
    767 	u_int i, forus, idx;
    768 
    769 	amr = cookie;
    770 	forus = 0;
    771 
    772 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    773 		/* Iterate over completed commands in this result. */
    774 		for (i = 0; i < mbox.mb_nstatus; i++) {
    775 			idx = mbox.mb_completed[i] - 1;
    776 			ac = amr->amr_ccbs + idx;
    777 
    778 			if (idx >= amr->amr_maxqueuecnt) {
    779 				printf("%s: bad status (bogus ID: %u=%u)\n",
    780 				    amr->amr_dv.dv_xname, i, idx);
    781 				continue;
    782 			}
    783 
    784 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    785 				printf("%s: bad status (not active; 0x04%x)\n",
    786 				    amr->amr_dv.dv_xname, ac->ac_flags);
    787 				continue;
    788 			}
    789 
    790 			ac->ac_status = mbox.mb_status;
    791 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    792 			    AC_COMPLETE;
    793 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    794 
    795 			if ((ac->ac_flags & AC_MOAN) != 0)
    796 				printf("%s: ccb %d completed\n",
    797 				    amr->amr_dv.dv_xname, ac->ac_ident);
    798 
    799 			/* Pass notification to upper layers. */
    800 			if (ac->ac_handler != NULL)
    801 				(*ac->ac_handler)(ac);
    802 			else
    803 				wakeup(ac);
    804 		}
    805 		forus = 1;
    806 	}
    807 
    808 	if (forus)
    809 		amr_ccb_enqueue(amr, NULL);
    810 
    811 	return (forus);
    812 }
    813 
    814 /*
    815  * Create the watchdog thread.
    816  */
    817 static void
    818 amr_thread_create(void *cookie)
    819 {
    820 	struct amr_softc *amr;
    821 	int rv;
    822 
    823 	amr = cookie;
    824 
    825 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    826 		amr->amr_flags ^= AMRF_THREAD_EXIT;
    827 		wakeup(&amr->amr_flags);
    828 		return;
    829 	}
    830 
    831 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
    832 	    amr->amr_dv.dv_xname);
    833  	if (rv != 0)
    834 		aprint_error("%s: unable to create thread (%d)",
    835  		    amr->amr_dv.dv_xname, rv);
    836  	else
    837  		amr->amr_flags |= AMRF_THREAD;
    838 }
    839 
    840 /*
    841  * Watchdog thread.
    842  */
    843 static void
    844 amr_thread(void *cookie)
    845 {
    846 	struct amr_softc *amr;
    847 	struct amr_ccb *ac;
    848 	struct amr_logdrive *al;
    849 	struct amr_enquiry *ae;
    850 	int rv, i, s;
    851 
    852 	amr = cookie;
    853 	ae = amr->amr_enqbuf;
    854 
    855 	for (;;) {
    856 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    857 
    858 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    859 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    860 			wakeup(&amr->amr_flags);
    861 			kthread_exit(0);
    862 		}
    863 
    864 		s = splbio();
    865 		amr_intr(cookie);
    866 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    867 		while (ac != NULL) {
    868 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
    869 				break;
    870 			if ((ac->ac_flags & AC_MOAN) == 0) {
    871 				printf("%s: ccb %d timed out; mailbox:\n",
    872 				    amr->amr_dv.dv_xname, ac->ac_ident);
    873 				amr_ccb_dump(amr, ac);
    874 				ac->ac_flags |= AC_MOAN;
    875 			}
    876 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    877 		}
    878 		splx(s);
    879 
    880 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    881 			printf("%s: ccb_alloc failed (%d)\n",
    882  			    amr->amr_dv.dv_xname, rv);
    883 			continue;
    884 		}
    885 
    886 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    887 
    888 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    889 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    890 		if (rv != 0) {
    891 			printf("%s: ccb_map failed (%d)\n",
    892  			    amr->amr_dv.dv_xname, rv);
    893 			amr_ccb_free(amr, ac);
    894 			continue;
    895 		}
    896 
    897 		rv = amr_ccb_wait(amr, ac);
    898 		amr_ccb_unmap(amr, ac);
    899 		if (rv != 0) {
    900 			printf("%s: enquiry failed (st=%d)\n",
    901  			    amr->amr_dv.dv_xname, ac->ac_status);
    902 			continue;
    903 		}
    904 		amr_ccb_free(amr, ac);
    905 
    906 		al = amr->amr_drive;
    907 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
    908 			if (al->al_dv == NULL)
    909 				continue;
    910 			if (al->al_state == ae->ae_ldrv.al_state[i])
    911 				continue;
    912 
    913 			printf("%s: state changed: %s -> %s\n",
    914 			    al->al_dv->dv_xname,
    915 			    amr_drive_state(al->al_state, NULL),
    916 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    917 
    918 			al->al_state = ae->ae_ldrv.al_state[i];
    919 		}
    920 	}
    921 }
    922 
    923 /*
    924  * Return a text description of a logical drive's current state.
    925  */
    926 const char *
    927 amr_drive_state(int state, int *happy)
    928 {
    929 	const char *str;
    930 
    931 	state = AMR_DRV_CURSTATE(state);
    932 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    933 		if (happy)
    934 			*happy = 1;
    935 		str = "status unknown";
    936 	} else {
    937 		if (happy)
    938 			*happy = amr_dstate[state].ds_happy;
    939 		str = amr_dstate[state].ds_descr;
    940 	}
    941 
    942 	return (str);
    943 }
    944 
    945 /*
    946  * Run a generic enquiry-style command.
    947  */
    948 static void *
    949 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    950 	    u_int8_t cmdqual, void *sbuf)
    951 {
    952 	struct amr_ccb *ac;
    953 	u_int8_t *mb;
    954 	int rv;
    955 
    956 	if (amr_ccb_alloc(amr, &ac) != 0)
    957 		return (NULL);
    958 
    959 	/* Build the command proper. */
    960 	mb = (u_int8_t *)&ac->ac_cmd;
    961 	mb[0] = cmd;
    962 	mb[2] = cmdsub;
    963 	mb[3] = cmdqual;
    964 
    965 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    966 	if (rv == 0) {
    967 		rv = amr_ccb_poll(amr, ac, 2000);
    968 		amr_ccb_unmap(amr, ac);
    969 	}
    970 	amr_ccb_free(amr, ac);
    971 
    972 	return (rv ? NULL : sbuf);
    973 }
    974 
    975 /*
    976  * Allocate and initialise a CCB.
    977  */
    978 int
    979 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    980 {
    981 	int s;
    982 
    983 	s = splbio();
    984 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    985 		splx(s);
    986 		return (EAGAIN);
    987 	}
    988 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    989 	splx(s);
    990 
    991 	return (0);
    992 }
    993 
    994 /*
    995  * Free a CCB.
    996  */
    997 void
    998 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    999 {
   1000 	int s;
   1001 
   1002 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
   1003 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
   1004 	ac->ac_cmd.mb_busy = 1;
   1005 	ac->ac_handler = NULL;
   1006 	ac->ac_flags = 0;
   1007 
   1008 	s = splbio();
   1009 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
   1010 	splx(s);
   1011 }
   1012 
   1013 /*
   1014  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1015  * the order that they were enqueued and try to submit their command blocks
   1016  * to the controller for execution.
   1017  */
   1018 void
   1019 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1020 {
   1021 	int s;
   1022 
   1023 	s = splbio();
   1024 
   1025 	if (ac != NULL)
   1026 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1027 
   1028 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1029 		if ((*amr->amr_submit)(amr, ac) != 0)
   1030 			break;
   1031 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1032 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1033 	}
   1034 
   1035 	splx(s);
   1036 }
   1037 
   1038 /*
   1039  * Map the specified CCB's data buffer onto the bus, and fill the
   1040  * scatter-gather list.
   1041  */
   1042 int
   1043 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1044 	    int tflag)
   1045 {
   1046 	struct amr_sgentry *sge;
   1047 	struct amr_mailbox_cmd *mb;
   1048 	int nsegs, i, rv, sgloff;
   1049 	bus_dmamap_t xfer;
   1050 	int dmaflag = 0;
   1051 
   1052 	xfer = ac->ac_xfer_map;
   1053 
   1054 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1055 	    BUS_DMA_NOWAIT);
   1056 	if (rv != 0)
   1057 		return (rv);
   1058 
   1059 	mb = &ac->ac_cmd;
   1060 	ac->ac_xfer_size = size;
   1061 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
   1062 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1063 
   1064 	if (tflag & AC_XFER_OUT)
   1065 		dmaflag |= BUS_DMASYNC_PREWRITE;
   1066 	if (tflag & AC_XFER_IN)
   1067 		dmaflag |= BUS_DMASYNC_PREREAD;
   1068 
   1069 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1070 	nsegs = xfer->dm_nsegs;
   1071 	if (nsegs == 1) {
   1072 		mb->mb_nsgelem = 0;
   1073 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1074 		ac->ac_flags |= AC_NOSGL;
   1075 	} else {
   1076 		mb->mb_nsgelem = nsegs;
   1077 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1078 
   1079 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
   1080 		for (i = 0; i < nsegs; i++, sge++) {
   1081 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1082 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1083 		}
   1084 	}
   1085 
   1086 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
   1087 
   1088 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1089 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1090 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1091 
   1092 	return (0);
   1093 }
   1094 
   1095 /*
   1096  * Unmap the specified CCB's data buffer.
   1097  */
   1098 void
   1099 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1100 {
   1101 	int dmaflag = 0;
   1102 
   1103 	if (ac->ac_flags & AC_XFER_IN)
   1104 		dmaflag |= BUS_DMASYNC_POSTREAD;
   1105 	if (ac->ac_flags & AC_XFER_OUT)
   1106 		dmaflag |= BUS_DMASYNC_POSTWRITE;
   1107 
   1108 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1109 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1110 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1111 		    BUS_DMASYNC_POSTWRITE);
   1112 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1113 	    dmaflag);
   1114 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1115 }
   1116 
   1117 /*
   1118  * Submit a command to the controller and poll on completion.  Return
   1119  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1120  */
   1121 int
   1122 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1123 {
   1124 	int rv;
   1125 
   1126 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1127 		return (rv);
   1128 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1129 
   1130 	for (timo *= 10; timo != 0; timo--) {
   1131 		amr_intr(amr);
   1132 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1133 			break;
   1134 		DELAY(100);
   1135 	}
   1136 
   1137 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1138 }
   1139 
   1140 /*
   1141  * Submit a command to the controller and sleep on completion.  Return
   1142  * non-zero on error.
   1143  */
   1144 int
   1145 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1146 {
   1147 	int s;
   1148 
   1149 	s = splbio();
   1150 	amr_ccb_enqueue(amr, ac);
   1151 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1152 	splx(s);
   1153 
   1154 	return (ac->ac_status != 0 ? EIO : 0);
   1155 }
   1156 
   1157 #if 0
   1158 /*
   1159  * Wait for the mailbox to become available.
   1160  */
   1161 static int
   1162 amr_mbox_wait(struct amr_softc *amr)
   1163 {
   1164 	int timo;
   1165 
   1166 	for (timo = 10000; timo != 0; timo--) {
   1167 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1168 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1169 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1170 			break;
   1171 		DELAY(100);
   1172 	}
   1173 
   1174 	if (timo == 0)
   1175 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1176 
   1177 	return (timo != 0 ? 0 : EAGAIN);
   1178 }
   1179 #endif
   1180 
   1181 /*
   1182  * Tell the controller that the mailbox contains a valid command.  Must be
   1183  * called with interrupts blocked.
   1184  */
   1185 static int
   1186 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1187 {
   1188 	u_int32_t v;
   1189 
   1190 	amr->amr_mbox->mb_poll = 0;
   1191 	amr->amr_mbox->mb_ack = 0;
   1192 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1193 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1194 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1195 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1196 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1197 		return (EAGAIN);
   1198 
   1199 	v = amr_inl(amr, AMR_QREG_IDB);
   1200 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1201 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1202 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1203 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1204 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1205 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1206 		return (EAGAIN);
   1207 	}
   1208 
   1209 	amr->amr_mbox->mb_segment = 0;
   1210 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1211 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1212 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1213 
   1214 	ac->ac_start_time = time_uptime;
   1215 	ac->ac_flags |= AC_ACTIVE;
   1216 	amr_outl(amr, AMR_QREG_IDB,
   1217 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1218 	return (0);
   1219 }
   1220 
   1221 static int
   1222 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1223 {
   1224 
   1225 	amr->amr_mbox->mb_poll = 0;
   1226 	amr->amr_mbox->mb_ack = 0;
   1227 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1228 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1229 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1230 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1231 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1232 		return (EAGAIN);
   1233 
   1234 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1235 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1236 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1237 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1238 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1239 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1240 		return (EAGAIN);
   1241 	}
   1242 
   1243 	amr->amr_mbox->mb_segment = 0;
   1244 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1245 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1246 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1247 
   1248 	ac->ac_start_time = time_uptime;
   1249 	ac->ac_flags |= AC_ACTIVE;
   1250 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1251 	return (0);
   1252 }
   1253 
   1254 /*
   1255  * Claim any work that the controller has completed; acknowledge completion,
   1256  * save details of the completion in (mbsave).  Must be called with
   1257  * interrupts blocked.
   1258  */
   1259 static int
   1260 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1261 {
   1262 
   1263 	/* Work waiting for us? */
   1264 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1265 		return (-1);
   1266 
   1267 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1268 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1269 
   1270 	/* Save the mailbox, which contains a list of completed commands. */
   1271 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1272 
   1273 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1274 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1275 
   1276 	/* Ack the interrupt and mailbox transfer. */
   1277 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1278 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1279 
   1280 	/*
   1281 	 * This waits for the controller to notice that we've taken the
   1282 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1283 	 * but if we remove this code, we stop completing commands under
   1284 	 * load.
   1285 	 *
   1286 	 * Peter J says we shouldn't do this.  The documentation says we
   1287 	 * should.  Who is right?
   1288 	 */
   1289 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1290 		DELAY(10);
   1291 
   1292 	return (0);
   1293 }
   1294 
   1295 static int
   1296 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1297 {
   1298 	u_int8_t istat;
   1299 
   1300 	/* Check for valid interrupt status. */
   1301 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1302 		return (-1);
   1303 
   1304 	/* Ack the interrupt. */
   1305 	amr_outb(amr, AMR_SREG_INTR, istat);
   1306 
   1307 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1308 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1309 
   1310 	/* Save mailbox, which contains a list of completed commands. */
   1311 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1312 
   1313 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1314 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1315 
   1316 	/* Ack mailbox transfer. */
   1317 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1318 
   1319 	return (0);
   1320 }
   1321 
   1322 static void
   1323 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1324 {
   1325 	int i;
   1326 
   1327 	printf("%s: ", amr->amr_dv.dv_xname);
   1328 	for (i = 0; i < 4; i++)
   1329 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1330 	printf("\n");
   1331 }
   1332 
   1333 static int
   1334 amropen(dev_t dev, int flag __unused, int mode __unused, struct lwp *l __unused)
   1335 {
   1336 	struct amr_softc *amr;
   1337 
   1338 	if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL)
   1339 		return (ENXIO);
   1340 	if ((amr->amr_flags & AMRF_OPEN) != 0)
   1341 		return (EBUSY);
   1342 
   1343 	amr->amr_flags |= AMRF_OPEN;
   1344 	return (0);
   1345 }
   1346 
   1347 static int
   1348 amrclose(dev_t dev, int flag __unused, int mode __unused, struct lwp *l __unused)
   1349 {
   1350 	struct amr_softc *amr;
   1351 
   1352 	amr = device_lookup(&amr_cd, minor(dev));
   1353 	amr->amr_flags &= ~AMRF_OPEN;
   1354 	return (0);
   1355 }
   1356 
   1357 static int
   1358 amrioctl(dev_t dev, u_long cmd, caddr_t data, int flag __unused,
   1359     struct lwp *l __unused)
   1360 {
   1361 	struct amr_softc *amr;
   1362 	struct amr_user_ioctl *au;
   1363 	struct amr_ccb *ac;
   1364 	struct amr_mailbox_ioctl *mbi;
   1365 	unsigned long au_length;
   1366 	uint8_t *au_cmd;
   1367 	int error;
   1368 	void *dp = NULL, *au_buffer;
   1369 
   1370 	amr = device_lookup(&amr_cd, minor(dev));
   1371 
   1372 	/* This should be compatible with the FreeBSD interface */
   1373 
   1374 	switch (cmd) {
   1375 	case AMR_IO_VERSION:
   1376 		*(int *)data = AMR_IO_VERSION_NUMBER;
   1377 		return 0;
   1378 	case AMR_IO_COMMAND:
   1379 		if (securelevel >= 2)
   1380 			return (EPERM);
   1381 
   1382 		au = (struct amr_user_ioctl *)data;
   1383 		au_cmd = au->au_cmd;
   1384 		au_buffer = au->au_buffer;
   1385 		au_length = au->au_length;
   1386 		break;
   1387 	default:
   1388 		return ENOTTY;
   1389 	}
   1390 
   1391 	if (au_cmd[0] == AMR_CMD_PASS) {
   1392 		/* not yet */
   1393 		return EOPNOTSUPP;
   1394 	}
   1395 
   1396 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
   1397 		return (EINVAL);
   1398 
   1399 	/*
   1400 	 * allocate kernel memory for data, doing I/O directly to user
   1401 	 * buffer isn't that easy.
   1402 	 */
   1403 	dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
   1404 	if (dp == NULL)
   1405 		return ENOMEM;
   1406 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
   1407 		goto out;
   1408 
   1409 	/* direct command to controller */
   1410 	while (amr_ccb_alloc(amr, &ac) != 0) {
   1411 		error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
   1412 		if (error == EINTR)
   1413 			goto out;
   1414 	}
   1415 
   1416 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
   1417 	mbi->mb_command = au_cmd[0];
   1418 	mbi->mb_channel = au_cmd[1];
   1419 	mbi->mb_param = au_cmd[2];
   1420 	mbi->mb_pad[0] = au_cmd[3];
   1421 	mbi->mb_drive = au_cmd[4];
   1422 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
   1423 	    AC_XFER_IN | AC_XFER_OUT);
   1424 	if (error == 0) {
   1425 		error = amr_ccb_wait(amr, ac);
   1426 		amr_ccb_unmap(amr, ac);
   1427 		if (error == 0)
   1428 			error = copyout(dp, au_buffer, au_length);
   1429 
   1430 	}
   1431 	amr_ccb_free(amr, ac);
   1432 out:
   1433 	free(dp, M_DEVBUF);
   1434 	return (error);
   1435 }
   1436