amr.c revision 1.41 1 /* $NetBSD: amr.c,v 1.41 2006/11/16 01:33:08 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.41 2006/11/16 01:33:08 christos Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/kthread.h>
86 #include <sys/kauth.h>
87
88 #include <uvm/uvm_extern.h>
89
90 #include <machine/endian.h>
91 #include <machine/bus.h>
92
93 #include <dev/pci/pcidevs.h>
94 #include <dev/pci/pcivar.h>
95 #include <dev/pci/amrreg.h>
96 #include <dev/pci/amrvar.h>
97 #include <dev/pci/amrio.h>
98
99 #include "locators.h"
100
101 static void amr_attach(struct device *, struct device *, void *);
102 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
103 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
104 void *);
105 static int amr_init(struct amr_softc *, const char *,
106 struct pci_attach_args *pa);
107 static int amr_intr(void *);
108 static int amr_match(struct device *, struct cfdata *, void *);
109 static int amr_print(void *, const char *);
110 static void amr_shutdown(void *);
111 static void amr_teardown(struct amr_softc *);
112 static void amr_thread(void *);
113 static void amr_thread_create(void *);
114
115 static int amr_quartz_get_work(struct amr_softc *,
116 struct amr_mailbox_resp *);
117 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
118 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
119 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
120
121 static dev_type_open(amropen);
122 static dev_type_close(amrclose);
123 static dev_type_ioctl(amrioctl);
124
125 CFATTACH_DECL(amr, sizeof(struct amr_softc),
126 amr_match, amr_attach, NULL, NULL);
127
128 const struct cdevsw amr_cdevsw = {
129 amropen, amrclose, noread, nowrite, amrioctl,
130 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
131 };
132
133 extern struct cfdriver amr_cd;
134
135 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
136 #define AT_SIG 0x02 /* Check for signature */
137
138 static struct amr_pci_type {
139 u_short apt_vendor;
140 u_short apt_product;
141 u_short apt_flags;
142 } const amr_pci_type[] = {
143 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
144 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
145 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
146 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
150 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
151 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
152 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
153 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
154 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
155 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
156 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
157 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
158 };
159
160 static struct amr_typestr {
161 const char *at_str;
162 int at_sig;
163 } const amr_typestr[] = {
164 { "Series 431", AMR_SIG_431 },
165 { "Series 438", AMR_SIG_438 },
166 { "Series 466", AMR_SIG_466 },
167 { "Series 467", AMR_SIG_467 },
168 { "Series 490", AMR_SIG_490 },
169 { "Series 762", AMR_SIG_762 },
170 { "HP NetRAID (T5)", AMR_SIG_T5 },
171 { "HP NetRAID (T7)", AMR_SIG_T7 },
172 };
173
174 static struct {
175 const char *ds_descr;
176 int ds_happy;
177 } const amr_dstate[] = {
178 { "offline", 0 },
179 { "degraded", 1 },
180 { "optimal", 1 },
181 { "online", 1 },
182 { "failed", 0 },
183 { "rebuilding", 1 },
184 { "hotspare", 0 },
185 };
186
187 static void *amr_sdh;
188
189 static int amr_max_segs;
190 int amr_max_xfer;
191
192 static inline u_int8_t
193 amr_inb(struct amr_softc *amr, int off)
194 {
195
196 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
197 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
198 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
199 }
200
201 static inline u_int32_t
202 amr_inl(struct amr_softc *amr, int off)
203 {
204
205 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
206 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
207 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
208 }
209
210 static inline void
211 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
212 {
213
214 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
215 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
216 BUS_SPACE_BARRIER_WRITE);
217 }
218
219 static inline void
220 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
221 {
222
223 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
224 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
225 BUS_SPACE_BARRIER_WRITE);
226 }
227
228 /*
229 * Match a supported device.
230 */
231 static int
232 amr_match(struct device *parent, struct cfdata *match,
233 void *aux)
234 {
235 struct pci_attach_args *pa;
236 pcireg_t s;
237 int i;
238
239 pa = (struct pci_attach_args *)aux;
240
241 /*
242 * Don't match the device if it's operating in I2O mode. In this
243 * case it should be handled by the `iop' driver.
244 */
245 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
246 return (0);
247
248 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
249 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
250 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
251 break;
252
253 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
254 return (0);
255
256 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
257 return (1);
258
259 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
260 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
261 }
262
263 /*
264 * Attach a supported device.
265 */
266 static void
267 amr_attach(struct device *parent, struct device *self, void *aux)
268 {
269 struct pci_attach_args *pa;
270 struct amr_attach_args amra;
271 const struct amr_pci_type *apt;
272 struct amr_softc *amr;
273 pci_chipset_tag_t pc;
274 pci_intr_handle_t ih;
275 const char *intrstr;
276 pcireg_t reg;
277 int rseg, i, j, size, rv, memreg, ioreg;
278 struct amr_ccb *ac;
279 int locs[AMRCF_NLOCS];
280
281 aprint_naive(": RAID controller\n");
282
283 amr = (struct amr_softc *)self;
284 pa = (struct pci_attach_args *)aux;
285 pc = pa->pa_pc;
286
287 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
288 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
289 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
290 break;
291 apt = amr_pci_type + i;
292
293 memreg = ioreg = 0;
294 for (i = 0x10; i <= 0x14; i += 4) {
295 reg = pci_conf_read(pc, pa->pa_tag, i);
296 switch (PCI_MAPREG_TYPE(reg)) {
297 case PCI_MAPREG_TYPE_MEM:
298 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
299 memreg = i;
300 break;
301 case PCI_MAPREG_TYPE_IO:
302 if (PCI_MAPREG_IO_SIZE(reg) != 0)
303 ioreg = i;
304 break;
305
306 }
307 }
308
309 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
310 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
311 ;
312 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
313 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
314 ;
315 else {
316 aprint_error("can't map control registers\n");
317 amr_teardown(amr);
318 return;
319 }
320
321 amr->amr_flags |= AMRF_PCI_REGS;
322 amr->amr_dmat = pa->pa_dmat;
323 amr->amr_pc = pa->pa_pc;
324
325 /* Enable the device. */
326 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
327 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
328 reg | PCI_COMMAND_MASTER_ENABLE);
329
330 /* Map and establish the interrupt. */
331 if (pci_intr_map(pa, &ih)) {
332 aprint_error("can't map interrupt\n");
333 amr_teardown(amr);
334 return;
335 }
336 intrstr = pci_intr_string(pc, ih);
337 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
338 if (amr->amr_ih == NULL) {
339 aprint_error("can't establish interrupt");
340 if (intrstr != NULL)
341 aprint_normal(" at %s", intrstr);
342 aprint_normal("\n");
343 amr_teardown(amr);
344 return;
345 }
346 amr->amr_flags |= AMRF_PCI_INTR;
347
348 /*
349 * Allocate space for the mailbox and S/G lists. Some controllers
350 * don't like S/G lists to be located below 0x2000, so we allocate
351 * enough slop to enable us to compensate.
352 *
353 * The standard mailbox structure needs to be aligned on a 16-byte
354 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
355 * size, which preceeds the standard mailbox.
356 */
357 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
358 amr->amr_dmasize = size;
359
360 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
361 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
362 aprint_error("%s: unable to allocate buffer, rv = %d\n",
363 amr->amr_dv.dv_xname, rv);
364 amr_teardown(amr);
365 return;
366 }
367 amr->amr_flags |= AMRF_DMA_ALLOC;
368
369 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
370 (caddr_t *)&amr->amr_mbox,
371 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
372 aprint_error("%s: unable to map buffer, rv = %d\n",
373 amr->amr_dv.dv_xname, rv);
374 amr_teardown(amr);
375 return;
376 }
377 amr->amr_flags |= AMRF_DMA_MAP;
378
379 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
380 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
381 aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
382 amr->amr_dv.dv_xname, rv);
383 amr_teardown(amr);
384 return;
385 }
386 amr->amr_flags |= AMRF_DMA_CREATE;
387
388 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
389 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
390 aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
391 amr->amr_dv.dv_xname, rv);
392 amr_teardown(amr);
393 return;
394 }
395 amr->amr_flags |= AMRF_DMA_LOAD;
396
397 memset(amr->amr_mbox, 0, size);
398
399 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
400 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
401 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
402 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
403
404 /*
405 * Allocate and initalise the command control blocks.
406 */
407 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
408 amr->amr_ccbs = ac;
409 SLIST_INIT(&amr->amr_ccb_freelist);
410 TAILQ_INIT(&amr->amr_ccb_active);
411 amr->amr_flags |= AMRF_CCBS;
412
413 if (amr_max_xfer == 0) {
414 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
415 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
416 }
417
418 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
419 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
420 amr_max_segs, amr_max_xfer, 0,
421 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
422 if (rv != 0)
423 break;
424
425 ac->ac_ident = i;
426 amr_ccb_free(amr, ac);
427 }
428 if (i != AMR_MAX_CMDS) {
429 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
430 amr_teardown(amr);
431 return;
432 }
433
434 /*
435 * Take care of model-specific tasks.
436 */
437 if ((apt->apt_flags & AT_QUARTZ) != 0) {
438 amr->amr_submit = amr_quartz_submit;
439 amr->amr_get_work = amr_quartz_get_work;
440 } else {
441 amr->amr_submit = amr_std_submit;
442 amr->amr_get_work = amr_std_get_work;
443
444 /* Notify the controller of the mailbox location. */
445 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
446 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
447
448 /* Clear outstanding interrupts and enable interrupts. */
449 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
450 amr_outb(amr, AMR_SREG_TOGL,
451 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
452 }
453
454 /*
455 * Retrieve parameters, and tell the world about us.
456 */
457 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
458 amr->amr_flags |= AMRF_ENQBUF;
459 amr->amr_maxqueuecnt = i;
460 aprint_normal(": AMI RAID ");
461 if (amr_init(amr, intrstr, pa) != 0) {
462 amr_teardown(amr);
463 return;
464 }
465
466 /*
467 * Cap the maximum number of outstanding commands. AMI's Linux
468 * driver doesn't trust the controller's reported value, and lockups
469 * have been seen when we do.
470 */
471 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
472 if (amr->amr_maxqueuecnt > i)
473 amr->amr_maxqueuecnt = i;
474
475 /* Set our `shutdownhook' before we start any device activity. */
476 if (amr_sdh == NULL)
477 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
478
479 /* Attach sub-devices. */
480 for (j = 0; j < amr->amr_numdrives; j++) {
481 if (amr->amr_drive[j].al_size == 0)
482 continue;
483 amra.amra_unit = j;
484
485 locs[AMRCF_UNIT] = j;
486
487 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
488 "amr", locs, &amra, amr_print, config_stdsubmatch);
489 }
490
491 SIMPLEQ_INIT(&amr->amr_ccb_queue);
492
493 /* XXX This doesn't work for newer boards yet. */
494 if ((apt->apt_flags & AT_QUARTZ) == 0)
495 kthread_create(amr_thread_create, amr);
496 }
497
498 /*
499 * Free up resources.
500 */
501 static void
502 amr_teardown(struct amr_softc *amr)
503 {
504 struct amr_ccb *ac;
505 int fl;
506
507 fl = amr->amr_flags;
508
509 if ((fl & AMRF_THREAD) != 0) {
510 amr->amr_flags |= AMRF_THREAD_EXIT;
511 wakeup(amr_thread);
512 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
513 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
514 }
515 if ((fl & AMRF_CCBS) != 0) {
516 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
517 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
518 }
519 free(amr->amr_ccbs, M_DEVBUF);
520 }
521 if ((fl & AMRF_ENQBUF) != 0)
522 free(amr->amr_enqbuf, M_DEVBUF);
523 if ((fl & AMRF_DMA_LOAD) != 0)
524 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
525 if ((fl & AMRF_DMA_MAP) != 0)
526 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
527 amr->amr_dmasize);
528 if ((fl & AMRF_DMA_ALLOC) != 0)
529 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
530 if ((fl & AMRF_DMA_CREATE) != 0)
531 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
532 if ((fl & AMRF_PCI_INTR) != 0)
533 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
534 if ((fl & AMRF_PCI_REGS) != 0)
535 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
536 }
537
538 /*
539 * Print autoconfiguration message for a sub-device.
540 */
541 static int
542 amr_print(void *aux, const char *pnp)
543 {
544 struct amr_attach_args *amra;
545
546 amra = (struct amr_attach_args *)aux;
547
548 if (pnp != NULL)
549 aprint_normal("block device at %s", pnp);
550 aprint_normal(" unit %d", amra->amra_unit);
551 return (UNCONF);
552 }
553
554 /*
555 * Retrieve operational parameters and describe the controller.
556 */
557 static int
558 amr_init(struct amr_softc *amr, const char *intrstr,
559 struct pci_attach_args *pa)
560 {
561 struct amr_adapter_info *aa;
562 struct amr_prodinfo *ap;
563 struct amr_enquiry *ae;
564 struct amr_enquiry3 *aex;
565 const char *prodstr;
566 u_int i, sig, ishp;
567 char sbuf[64];
568
569 /*
570 * Try to get 40LD product info, which tells us what the card is
571 * labelled as.
572 */
573 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
574 amr->amr_enqbuf);
575 if (ap != NULL) {
576 aprint_normal("<%.80s>\n", ap->ap_product);
577 if (intrstr != NULL)
578 aprint_normal("%s: interrupting at %s\n",
579 amr->amr_dv.dv_xname, intrstr);
580 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
581 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
582 le16toh(ap->ap_memsize));
583
584 amr->amr_maxqueuecnt = ap->ap_maxio;
585
586 /*
587 * Fetch and record state of logical drives.
588 */
589 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
590 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
591 if (aex == NULL) {
592 aprint_error("%s ENQUIRY3 failed\n",
593 amr->amr_dv.dv_xname);
594 return (-1);
595 }
596
597 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
598 aprint_error("%s: Inquiry returned more drives (%d)"
599 " than the array can handle (%zu)\n",
600 amr->amr_dv.dv_xname, aex->ae_numldrives,
601 __arraycount(aex->ae_drivestate));
602 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
603 }
604 if (aex->ae_numldrives > AMR_MAX_UNITS) {
605 aprint_error(
606 "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
607 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
608 amr->amr_numdrives);
609 amr->amr_numdrives = AMR_MAX_UNITS;
610 } else
611 amr->amr_numdrives = aex->ae_numldrives;
612
613 for (i = 0; i < amr->amr_numdrives; i++) {
614 amr->amr_drive[i].al_size =
615 le32toh(aex->ae_drivesize[i]);
616 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
617 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
618 }
619
620 return (0);
621 }
622
623 /*
624 * Try 8LD extended ENQUIRY to get the controller signature. Once
625 * found, search for a product description.
626 */
627 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
628 if (ae != NULL) {
629 i = 0;
630 sig = le32toh(ae->ae_signature);
631
632 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
633 if (amr_typestr[i].at_sig == sig)
634 break;
635 i++;
636 }
637 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
638 snprintf(sbuf, sizeof(sbuf),
639 "unknown ENQUIRY2 sig (0x%08x)", sig);
640 prodstr = sbuf;
641 } else
642 prodstr = amr_typestr[i].at_str;
643 } else {
644 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
645 if (ae == NULL) {
646 aprint_error("%s: unsupported controller\n",
647 amr->amr_dv.dv_xname);
648 return (-1);
649 }
650
651 switch (PCI_PRODUCT(pa->pa_id)) {
652 case PCI_PRODUCT_AMI_MEGARAID:
653 prodstr = "Series 428";
654 break;
655 case PCI_PRODUCT_AMI_MEGARAID2:
656 prodstr = "Series 434";
657 break;
658 default:
659 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
660 PCI_PRODUCT(pa->pa_id));
661 prodstr = sbuf;
662 break;
663 }
664 }
665
666 /*
667 * HP NetRaid controllers have a special encoding of the firmware
668 * and BIOS versions. The AMI version seems to have it as strings
669 * whereas the HP version does it with a leading uppercase character
670 * and two binary numbers.
671 */
672 aa = &ae->ae_adapter;
673
674 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
675 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
676 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
677 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
678 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
679 /* The AMI 438 is a NetRaid 3si in HP-land. */
680 prodstr = "HP NetRaid 3si";
681 }
682 ishp = 1;
683 } else
684 ishp = 0;
685
686 aprint_normal("<%s>\n", prodstr);
687 if (intrstr != NULL)
688 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
689 intrstr);
690
691 if (ishp)
692 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
693 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
694 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
695 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
696 else
697 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
698 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
699 aa->aa_memorysize);
700
701 amr->amr_maxqueuecnt = aa->aa_maxio;
702
703 /*
704 * Record state of logical drives.
705 */
706 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
707 aprint_error("%s: Inquiry returned more drives (%d)"
708 " than the array can handle (%zu)\n",
709 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
710 __arraycount(ae->ae_ldrv.al_size));
711 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
712 }
713 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
714 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
715 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
716 AMR_MAX_UNITS);
717 amr->amr_numdrives = AMR_MAX_UNITS;
718 } else
719 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
720
721 for (i = 0; i < amr->amr_numdrives; i++) {
722 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
723 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
724 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
725 }
726
727 return (0);
728 }
729
730 /*
731 * Flush the internal cache on each configured controller. Called at
732 * shutdown time.
733 */
734 static void
735 amr_shutdown(void *cookie)
736 {
737 extern struct cfdriver amr_cd;
738 struct amr_softc *amr;
739 struct amr_ccb *ac;
740 int i, rv, s;
741
742 for (i = 0; i < amr_cd.cd_ndevs; i++) {
743 if ((amr = device_lookup(&amr_cd, i)) == NULL)
744 continue;
745
746 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
747 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
748 s = splbio();
749 rv = amr_ccb_poll(amr, ac, 30000);
750 splx(s);
751 amr_ccb_free(amr, ac);
752 }
753 if (rv != 0)
754 printf("%s: unable to flush cache (%d)\n",
755 amr->amr_dv.dv_xname, rv);
756 }
757 }
758
759 /*
760 * Interrupt service routine.
761 */
762 static int
763 amr_intr(void *cookie)
764 {
765 struct amr_softc *amr;
766 struct amr_ccb *ac;
767 struct amr_mailbox_resp mbox;
768 u_int i, forus, idx;
769
770 amr = cookie;
771 forus = 0;
772
773 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
774 /* Iterate over completed commands in this result. */
775 for (i = 0; i < mbox.mb_nstatus; i++) {
776 idx = mbox.mb_completed[i] - 1;
777 ac = amr->amr_ccbs + idx;
778
779 if (idx >= amr->amr_maxqueuecnt) {
780 printf("%s: bad status (bogus ID: %u=%u)\n",
781 amr->amr_dv.dv_xname, i, idx);
782 continue;
783 }
784
785 if ((ac->ac_flags & AC_ACTIVE) == 0) {
786 printf("%s: bad status (not active; 0x04%x)\n",
787 amr->amr_dv.dv_xname, ac->ac_flags);
788 continue;
789 }
790
791 ac->ac_status = mbox.mb_status;
792 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
793 AC_COMPLETE;
794 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
795
796 if ((ac->ac_flags & AC_MOAN) != 0)
797 printf("%s: ccb %d completed\n",
798 amr->amr_dv.dv_xname, ac->ac_ident);
799
800 /* Pass notification to upper layers. */
801 if (ac->ac_handler != NULL)
802 (*ac->ac_handler)(ac);
803 else
804 wakeup(ac);
805 }
806 forus = 1;
807 }
808
809 if (forus)
810 amr_ccb_enqueue(amr, NULL);
811
812 return (forus);
813 }
814
815 /*
816 * Create the watchdog thread.
817 */
818 static void
819 amr_thread_create(void *cookie)
820 {
821 struct amr_softc *amr;
822 int rv;
823
824 amr = cookie;
825
826 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
827 amr->amr_flags ^= AMRF_THREAD_EXIT;
828 wakeup(&amr->amr_flags);
829 return;
830 }
831
832 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
833 amr->amr_dv.dv_xname);
834 if (rv != 0)
835 aprint_error("%s: unable to create thread (%d)",
836 amr->amr_dv.dv_xname, rv);
837 else
838 amr->amr_flags |= AMRF_THREAD;
839 }
840
841 /*
842 * Watchdog thread.
843 */
844 static void
845 amr_thread(void *cookie)
846 {
847 struct amr_softc *amr;
848 struct amr_ccb *ac;
849 struct amr_logdrive *al;
850 struct amr_enquiry *ae;
851 int rv, i, s;
852
853 amr = cookie;
854 ae = amr->amr_enqbuf;
855
856 for (;;) {
857 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
858
859 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
860 amr->amr_flags ^= AMRF_THREAD_EXIT;
861 wakeup(&amr->amr_flags);
862 kthread_exit(0);
863 }
864
865 s = splbio();
866 amr_intr(cookie);
867 ac = TAILQ_FIRST(&amr->amr_ccb_active);
868 while (ac != NULL) {
869 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
870 break;
871 if ((ac->ac_flags & AC_MOAN) == 0) {
872 printf("%s: ccb %d timed out; mailbox:\n",
873 amr->amr_dv.dv_xname, ac->ac_ident);
874 amr_ccb_dump(amr, ac);
875 ac->ac_flags |= AC_MOAN;
876 }
877 ac = TAILQ_NEXT(ac, ac_chain.tailq);
878 }
879 splx(s);
880
881 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
882 printf("%s: ccb_alloc failed (%d)\n",
883 amr->amr_dv.dv_xname, rv);
884 continue;
885 }
886
887 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
888
889 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
890 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
891 if (rv != 0) {
892 printf("%s: ccb_map failed (%d)\n",
893 amr->amr_dv.dv_xname, rv);
894 amr_ccb_free(amr, ac);
895 continue;
896 }
897
898 rv = amr_ccb_wait(amr, ac);
899 amr_ccb_unmap(amr, ac);
900 if (rv != 0) {
901 printf("%s: enquiry failed (st=%d)\n",
902 amr->amr_dv.dv_xname, ac->ac_status);
903 continue;
904 }
905 amr_ccb_free(amr, ac);
906
907 al = amr->amr_drive;
908 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
909 if (al->al_dv == NULL)
910 continue;
911 if (al->al_state == ae->ae_ldrv.al_state[i])
912 continue;
913
914 printf("%s: state changed: %s -> %s\n",
915 al->al_dv->dv_xname,
916 amr_drive_state(al->al_state, NULL),
917 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
918
919 al->al_state = ae->ae_ldrv.al_state[i];
920 }
921 }
922 }
923
924 /*
925 * Return a text description of a logical drive's current state.
926 */
927 const char *
928 amr_drive_state(int state, int *happy)
929 {
930 const char *str;
931
932 state = AMR_DRV_CURSTATE(state);
933 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
934 if (happy)
935 *happy = 1;
936 str = "status unknown";
937 } else {
938 if (happy)
939 *happy = amr_dstate[state].ds_happy;
940 str = amr_dstate[state].ds_descr;
941 }
942
943 return (str);
944 }
945
946 /*
947 * Run a generic enquiry-style command.
948 */
949 static void *
950 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
951 u_int8_t cmdqual, void *sbuf)
952 {
953 struct amr_ccb *ac;
954 u_int8_t *mb;
955 int rv;
956
957 if (amr_ccb_alloc(amr, &ac) != 0)
958 return (NULL);
959
960 /* Build the command proper. */
961 mb = (u_int8_t *)&ac->ac_cmd;
962 mb[0] = cmd;
963 mb[2] = cmdsub;
964 mb[3] = cmdqual;
965
966 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
967 if (rv == 0) {
968 rv = amr_ccb_poll(amr, ac, 2000);
969 amr_ccb_unmap(amr, ac);
970 }
971 amr_ccb_free(amr, ac);
972
973 return (rv ? NULL : sbuf);
974 }
975
976 /*
977 * Allocate and initialise a CCB.
978 */
979 int
980 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
981 {
982 int s;
983
984 s = splbio();
985 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
986 splx(s);
987 return (EAGAIN);
988 }
989 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
990 splx(s);
991
992 return (0);
993 }
994
995 /*
996 * Free a CCB.
997 */
998 void
999 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
1000 {
1001 int s;
1002
1003 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1004 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1005 ac->ac_cmd.mb_busy = 1;
1006 ac->ac_handler = NULL;
1007 ac->ac_flags = 0;
1008
1009 s = splbio();
1010 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1011 splx(s);
1012 }
1013
1014 /*
1015 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1016 * the order that they were enqueued and try to submit their command blocks
1017 * to the controller for execution.
1018 */
1019 void
1020 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1021 {
1022 int s;
1023
1024 s = splbio();
1025
1026 if (ac != NULL)
1027 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1028
1029 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1030 if ((*amr->amr_submit)(amr, ac) != 0)
1031 break;
1032 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1033 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1034 }
1035
1036 splx(s);
1037 }
1038
1039 /*
1040 * Map the specified CCB's data buffer onto the bus, and fill the
1041 * scatter-gather list.
1042 */
1043 int
1044 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1045 int tflag)
1046 {
1047 struct amr_sgentry *sge;
1048 struct amr_mailbox_cmd *mb;
1049 int nsegs, i, rv, sgloff;
1050 bus_dmamap_t xfer;
1051 int dmaflag = 0;
1052
1053 xfer = ac->ac_xfer_map;
1054
1055 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1056 BUS_DMA_NOWAIT);
1057 if (rv != 0)
1058 return (rv);
1059
1060 mb = &ac->ac_cmd;
1061 ac->ac_xfer_size = size;
1062 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1063 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1064
1065 if (tflag & AC_XFER_OUT)
1066 dmaflag |= BUS_DMASYNC_PREWRITE;
1067 if (tflag & AC_XFER_IN)
1068 dmaflag |= BUS_DMASYNC_PREREAD;
1069
1070 /* We don't need to use a scatter/gather list for just 1 segment. */
1071 nsegs = xfer->dm_nsegs;
1072 if (nsegs == 1) {
1073 mb->mb_nsgelem = 0;
1074 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1075 ac->ac_flags |= AC_NOSGL;
1076 } else {
1077 mb->mb_nsgelem = nsegs;
1078 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1079
1080 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1081 for (i = 0; i < nsegs; i++, sge++) {
1082 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1083 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1084 }
1085 }
1086
1087 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1088
1089 if ((ac->ac_flags & AC_NOSGL) == 0)
1090 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1091 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1092
1093 return (0);
1094 }
1095
1096 /*
1097 * Unmap the specified CCB's data buffer.
1098 */
1099 void
1100 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1101 {
1102 int dmaflag = 0;
1103
1104 if (ac->ac_flags & AC_XFER_IN)
1105 dmaflag |= BUS_DMASYNC_POSTREAD;
1106 if (ac->ac_flags & AC_XFER_OUT)
1107 dmaflag |= BUS_DMASYNC_POSTWRITE;
1108
1109 if ((ac->ac_flags & AC_NOSGL) == 0)
1110 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1111 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1112 BUS_DMASYNC_POSTWRITE);
1113 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1114 dmaflag);
1115 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1116 }
1117
1118 /*
1119 * Submit a command to the controller and poll on completion. Return
1120 * non-zero on timeout or error. Must be called with interrupts blocked.
1121 */
1122 int
1123 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1124 {
1125 int rv;
1126
1127 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1128 return (rv);
1129 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1130
1131 for (timo *= 10; timo != 0; timo--) {
1132 amr_intr(amr);
1133 if ((ac->ac_flags & AC_COMPLETE) != 0)
1134 break;
1135 DELAY(100);
1136 }
1137
1138 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1139 }
1140
1141 /*
1142 * Submit a command to the controller and sleep on completion. Return
1143 * non-zero on error.
1144 */
1145 int
1146 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1147 {
1148 int s;
1149
1150 s = splbio();
1151 amr_ccb_enqueue(amr, ac);
1152 tsleep(ac, PRIBIO, "amrcmd", 0);
1153 splx(s);
1154
1155 return (ac->ac_status != 0 ? EIO : 0);
1156 }
1157
1158 #if 0
1159 /*
1160 * Wait for the mailbox to become available.
1161 */
1162 static int
1163 amr_mbox_wait(struct amr_softc *amr)
1164 {
1165 int timo;
1166
1167 for (timo = 10000; timo != 0; timo--) {
1168 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1169 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1170 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1171 break;
1172 DELAY(100);
1173 }
1174
1175 if (timo == 0)
1176 printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1177
1178 return (timo != 0 ? 0 : EAGAIN);
1179 }
1180 #endif
1181
1182 /*
1183 * Tell the controller that the mailbox contains a valid command. Must be
1184 * called with interrupts blocked.
1185 */
1186 static int
1187 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1188 {
1189 u_int32_t v;
1190
1191 amr->amr_mbox->mb_poll = 0;
1192 amr->amr_mbox->mb_ack = 0;
1193 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1194 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1195 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1196 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1197 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1198 return (EAGAIN);
1199
1200 v = amr_inl(amr, AMR_QREG_IDB);
1201 if ((v & AMR_QIDB_SUBMIT) != 0) {
1202 amr->amr_mbox->mb_cmd.mb_busy = 0;
1203 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1204 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1205 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1206 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1207 return (EAGAIN);
1208 }
1209
1210 amr->amr_mbox->mb_segment = 0;
1211 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1212 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1213 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1214
1215 ac->ac_start_time = time_uptime;
1216 ac->ac_flags |= AC_ACTIVE;
1217 amr_outl(amr, AMR_QREG_IDB,
1218 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1219 return (0);
1220 }
1221
1222 static int
1223 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1224 {
1225
1226 amr->amr_mbox->mb_poll = 0;
1227 amr->amr_mbox->mb_ack = 0;
1228 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1229 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1230 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1231 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1232 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1233 return (EAGAIN);
1234
1235 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1236 amr->amr_mbox->mb_cmd.mb_busy = 0;
1237 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1238 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1239 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1240 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1241 return (EAGAIN);
1242 }
1243
1244 amr->amr_mbox->mb_segment = 0;
1245 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1246 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1247 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1248
1249 ac->ac_start_time = time_uptime;
1250 ac->ac_flags |= AC_ACTIVE;
1251 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1252 return (0);
1253 }
1254
1255 /*
1256 * Claim any work that the controller has completed; acknowledge completion,
1257 * save details of the completion in (mbsave). Must be called with
1258 * interrupts blocked.
1259 */
1260 static int
1261 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1262 {
1263
1264 /* Work waiting for us? */
1265 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1266 return (-1);
1267
1268 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1269 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1270
1271 /* Save the mailbox, which contains a list of completed commands. */
1272 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1273
1274 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1275 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1276
1277 /* Ack the interrupt and mailbox transfer. */
1278 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1279 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1280
1281 /*
1282 * This waits for the controller to notice that we've taken the
1283 * command from it. It's very inefficient, and we shouldn't do it,
1284 * but if we remove this code, we stop completing commands under
1285 * load.
1286 *
1287 * Peter J says we shouldn't do this. The documentation says we
1288 * should. Who is right?
1289 */
1290 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1291 DELAY(10);
1292
1293 return (0);
1294 }
1295
1296 static int
1297 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1298 {
1299 u_int8_t istat;
1300
1301 /* Check for valid interrupt status. */
1302 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1303 return (-1);
1304
1305 /* Ack the interrupt. */
1306 amr_outb(amr, AMR_SREG_INTR, istat);
1307
1308 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1309 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1310
1311 /* Save mailbox, which contains a list of completed commands. */
1312 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1313
1314 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1315 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1316
1317 /* Ack mailbox transfer. */
1318 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1319
1320 return (0);
1321 }
1322
1323 static void
1324 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1325 {
1326 int i;
1327
1328 printf("%s: ", amr->amr_dv.dv_xname);
1329 for (i = 0; i < 4; i++)
1330 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1331 printf("\n");
1332 }
1333
1334 static int
1335 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1336 {
1337 struct amr_softc *amr;
1338
1339 if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL)
1340 return (ENXIO);
1341 if ((amr->amr_flags & AMRF_OPEN) != 0)
1342 return (EBUSY);
1343
1344 amr->amr_flags |= AMRF_OPEN;
1345 return (0);
1346 }
1347
1348 static int
1349 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1350 {
1351 struct amr_softc *amr;
1352
1353 amr = device_lookup(&amr_cd, minor(dev));
1354 amr->amr_flags &= ~AMRF_OPEN;
1355 return (0);
1356 }
1357
1358 static int
1359 amrioctl(dev_t dev, u_long cmd, caddr_t data, int flag,
1360 struct lwp *l)
1361 {
1362 struct amr_softc *amr;
1363 struct amr_user_ioctl *au;
1364 struct amr_ccb *ac;
1365 struct amr_mailbox_ioctl *mbi;
1366 unsigned long au_length;
1367 uint8_t *au_cmd;
1368 int error;
1369 void *dp = NULL, *au_buffer;
1370
1371 amr = device_lookup(&amr_cd, minor(dev));
1372
1373 /* This should be compatible with the FreeBSD interface */
1374
1375 switch (cmd) {
1376 case AMR_IO_VERSION:
1377 *(int *)data = AMR_IO_VERSION_NUMBER;
1378 return 0;
1379 case AMR_IO_COMMAND:
1380 error = kauth_authorize_device_passthru(l->l_cred, dev, data);
1381 if (error)
1382 return (error);
1383
1384 au = (struct amr_user_ioctl *)data;
1385 au_cmd = au->au_cmd;
1386 au_buffer = au->au_buffer;
1387 au_length = au->au_length;
1388 break;
1389 default:
1390 return ENOTTY;
1391 }
1392
1393 if (au_cmd[0] == AMR_CMD_PASS) {
1394 /* not yet */
1395 return EOPNOTSUPP;
1396 }
1397
1398 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1399 return (EINVAL);
1400
1401 /*
1402 * allocate kernel memory for data, doing I/O directly to user
1403 * buffer isn't that easy.
1404 */
1405 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1406 if (dp == NULL)
1407 return ENOMEM;
1408 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1409 goto out;
1410
1411 /* direct command to controller */
1412 while (amr_ccb_alloc(amr, &ac) != 0) {
1413 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1414 if (error == EINTR)
1415 goto out;
1416 }
1417
1418 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1419 mbi->mb_command = au_cmd[0];
1420 mbi->mb_channel = au_cmd[1];
1421 mbi->mb_param = au_cmd[2];
1422 mbi->mb_pad[0] = au_cmd[3];
1423 mbi->mb_drive = au_cmd[4];
1424 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1425 AC_XFER_IN | AC_XFER_OUT);
1426 if (error == 0) {
1427 error = amr_ccb_wait(amr, ac);
1428 amr_ccb_unmap(amr, ac);
1429 if (error == 0)
1430 error = copyout(dp, au_buffer, au_length);
1431
1432 }
1433 amr_ccb_free(amr, ac);
1434 out:
1435 free(dp, M_DEVBUF);
1436 return (error);
1437 }
1438