Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.46.16.1
      1 /*	$NetBSD: amr.c,v 1.46.16.1 2008/04/05 23:33:22 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999,2000 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     67  */
     68 
     69 /*
     70  * Driver for AMI RAID controllers.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.46.16.1 2008/04/05 23:33:22 mjf Exp $");
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/device.h>
     80 #include <sys/queue.h>
     81 #include <sys/proc.h>
     82 #include <sys/buf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/conf.h>
     85 #include <sys/kthread.h>
     86 #include <sys/kauth.h>
     87 
     88 #include <uvm/uvm_extern.h>
     89 
     90 #include <machine/endian.h>
     91 #include <sys/bus.h>
     92 
     93 #include <dev/pci/pcidevs.h>
     94 #include <dev/pci/pcivar.h>
     95 #include <dev/pci/amrreg.h>
     96 #include <dev/pci/amrvar.h>
     97 #include <dev/pci/amrio.h>
     98 
     99 #include "locators.h"
    100 
    101 static void	amr_attach(struct device *, struct device *, void *);
    102 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
    103 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
    104 			     void *);
    105 static int	amr_init(struct amr_softc *, const char *,
    106 			 struct pci_attach_args *pa);
    107 static int	amr_intr(void *);
    108 static int	amr_match(struct device *, struct cfdata *, void *);
    109 static int	amr_print(void *, const char *);
    110 static void	amr_shutdown(void *);
    111 static void	amr_teardown(struct amr_softc *);
    112 static void	amr_thread(void *);
    113 
    114 static int	amr_quartz_get_work(struct amr_softc *,
    115 				    struct amr_mailbox_resp *);
    116 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    117 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    118 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    119 
    120 static dev_type_open(amropen);
    121 static dev_type_close(amrclose);
    122 static dev_type_ioctl(amrioctl);
    123 
    124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
    125     amr_match, amr_attach, NULL, NULL);
    126 
    127 const struct cdevsw amr_cdevsw = {
    128 	amropen, amrclose, noread, nowrite, amrioctl,
    129 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
    130 };
    131 
    132 extern struct   cfdriver amr_cd;
    133 
    134 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    135 #define	AT_SIG		0x02	/* Check for signature */
    136 
    137 static struct amr_pci_type {
    138 	u_short	apt_vendor;
    139 	u_short	apt_product;
    140 	u_short	apt_flags;
    141 } const amr_pci_type[] = {
    142 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    143 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    144 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    145 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    146 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    147 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    148 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    149 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    150 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    151 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    152 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
    153 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
    154 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    155 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    156 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    157 };
    158 
    159 static struct amr_typestr {
    160 	const char	*at_str;
    161 	int		at_sig;
    162 } const amr_typestr[] = {
    163 	{ "Series 431",			AMR_SIG_431 },
    164 	{ "Series 438",			AMR_SIG_438 },
    165 	{ "Series 466",			AMR_SIG_466 },
    166 	{ "Series 467",			AMR_SIG_467 },
    167 	{ "Series 490",			AMR_SIG_490 },
    168 	{ "Series 762",			AMR_SIG_762 },
    169 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    170 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    171 };
    172 
    173 static struct {
    174 	const char	*ds_descr;
    175 	int	ds_happy;
    176 } const amr_dstate[] = {
    177 	{ "offline",	0 },
    178 	{ "degraded",	1 },
    179 	{ "optimal",	1 },
    180 	{ "online",	1 },
    181 	{ "failed",	0 },
    182 	{ "rebuilding",	1 },
    183 	{ "hotspare",	0 },
    184 };
    185 
    186 static void	*amr_sdh;
    187 
    188 static int	amr_max_segs;
    189 int		amr_max_xfer;
    190 
    191 static inline u_int8_t
    192 amr_inb(struct amr_softc *amr, int off)
    193 {
    194 
    195 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    196 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    197 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    198 }
    199 
    200 static inline u_int32_t
    201 amr_inl(struct amr_softc *amr, int off)
    202 {
    203 
    204 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    205 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    206 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    207 }
    208 
    209 static inline void
    210 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    211 {
    212 
    213 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    214 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    215 	    BUS_SPACE_BARRIER_WRITE);
    216 }
    217 
    218 static inline void
    219 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    220 {
    221 
    222 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    223 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    224 	    BUS_SPACE_BARRIER_WRITE);
    225 }
    226 
    227 /*
    228  * Match a supported device.
    229  */
    230 static int
    231 amr_match(struct device *parent, struct cfdata *match,
    232     void *aux)
    233 {
    234 	struct pci_attach_args *pa;
    235 	pcireg_t s;
    236 	int i;
    237 
    238 	pa = (struct pci_attach_args *)aux;
    239 
    240 	/*
    241 	 * Don't match the device if it's operating in I2O mode.  In this
    242 	 * case it should be handled by the `iop' driver.
    243 	 */
    244 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    245 		return (0);
    246 
    247 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    248 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    249 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    250 		    	break;
    251 
    252 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    253 		return (0);
    254 
    255 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    256 		return (1);
    257 
    258 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    259 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    260 }
    261 
    262 /*
    263  * Attach a supported device.
    264  */
    265 static void
    266 amr_attach(struct device *parent, struct device *self, void *aux)
    267 {
    268 	struct pci_attach_args *pa;
    269 	struct amr_attach_args amra;
    270 	const struct amr_pci_type *apt;
    271 	struct amr_softc *amr;
    272 	pci_chipset_tag_t pc;
    273 	pci_intr_handle_t ih;
    274 	const char *intrstr;
    275 	pcireg_t reg;
    276 	int rseg, i, j, size, rv, memreg, ioreg;
    277 	struct amr_ccb *ac;
    278 	int locs[AMRCF_NLOCS];
    279 	int unit, major;
    280 
    281 	aprint_naive(": RAID controller\n");
    282 
    283 	amr = (struct amr_softc *)self;
    284 	pa = (struct pci_attach_args *)aux;
    285 	pc = pa->pa_pc;
    286 
    287 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    288 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    289 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    290 			break;
    291 	apt = amr_pci_type + i;
    292 
    293 	memreg = ioreg = 0;
    294 	for (i = 0x10; i <= 0x14; i += 4) {
    295 		reg = pci_conf_read(pc, pa->pa_tag, i);
    296 		switch (PCI_MAPREG_TYPE(reg)) {
    297 		case PCI_MAPREG_TYPE_MEM:
    298 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
    299 				memreg = i;
    300 			break;
    301 		case PCI_MAPREG_TYPE_IO:
    302 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
    303 				ioreg = i;
    304 			break;
    305 
    306 		}
    307 	}
    308 
    309 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    310 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    311 		;
    312 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    313 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    314 		;
    315 	else {
    316 		aprint_error("can't map control registers\n");
    317 		amr_teardown(amr);
    318 		return;
    319 	}
    320 
    321 	amr->amr_flags |= AMRF_PCI_REGS;
    322 	amr->amr_dmat = pa->pa_dmat;
    323 	amr->amr_pc = pa->pa_pc;
    324 
    325 	/* Enable the device. */
    326 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    327 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    328 	    reg | PCI_COMMAND_MASTER_ENABLE);
    329 
    330 	/* Map and establish the interrupt. */
    331 	if (pci_intr_map(pa, &ih)) {
    332 		aprint_error("can't map interrupt\n");
    333 		amr_teardown(amr);
    334 		return;
    335 	}
    336 	intrstr = pci_intr_string(pc, ih);
    337 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    338 	if (amr->amr_ih == NULL) {
    339 		aprint_error("can't establish interrupt");
    340 		if (intrstr != NULL)
    341 			aprint_normal(" at %s", intrstr);
    342 		aprint_normal("\n");
    343 		amr_teardown(amr);
    344 		return;
    345 	}
    346 	amr->amr_flags |= AMRF_PCI_INTR;
    347 
    348 	/*
    349 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    350 	 * don't like S/G lists to be located below 0x2000, so we allocate
    351 	 * enough slop to enable us to compensate.
    352 	 *
    353 	 * The standard mailbox structure needs to be aligned on a 16-byte
    354 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    355 	 * size, which precedes the standard mailbox.
    356 	 */
    357 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    358 	amr->amr_dmasize = size;
    359 
    360 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
    361 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    362 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
    363 		    amr->amr_dv.dv_xname, rv);
    364 		amr_teardown(amr);
    365 		return;
    366 	}
    367 	amr->amr_flags |= AMRF_DMA_ALLOC;
    368 
    369 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    370 	    (void **)&amr->amr_mbox,
    371 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    372 		aprint_error("%s: unable to map buffer, rv = %d\n",
    373 		    amr->amr_dv.dv_xname, rv);
    374 		amr_teardown(amr);
    375 		return;
    376 	}
    377 	amr->amr_flags |= AMRF_DMA_MAP;
    378 
    379 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    380 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    381 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
    382 		    amr->amr_dv.dv_xname, rv);
    383 		amr_teardown(amr);
    384 		return;
    385 	}
    386 	amr->amr_flags |= AMRF_DMA_CREATE;
    387 
    388 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    389 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    390 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
    391 		    amr->amr_dv.dv_xname, rv);
    392 		amr_teardown(amr);
    393 		return;
    394 	}
    395 	amr->amr_flags |= AMRF_DMA_LOAD;
    396 
    397 	memset(amr->amr_mbox, 0, size);
    398 
    399 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    400 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    401 	amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
    402 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    403 
    404 	/*
    405 	 * Allocate and initalise the command control blocks.
    406 	 */
    407 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    408 	amr->amr_ccbs = ac;
    409 	SLIST_INIT(&amr->amr_ccb_freelist);
    410 	TAILQ_INIT(&amr->amr_ccb_active);
    411 	amr->amr_flags |= AMRF_CCBS;
    412 
    413 	if (amr_max_xfer == 0) {
    414 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    415 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    416 	}
    417 
    418 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    419 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    420 		    amr_max_segs, amr_max_xfer, 0,
    421 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    422 		if (rv != 0)
    423 			break;
    424 
    425 		ac->ac_ident = i;
    426 		amr_ccb_free(amr, ac);
    427 	}
    428 	if (i != AMR_MAX_CMDS) {
    429 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
    430 		amr_teardown(amr);
    431 		return;
    432 	}
    433 
    434 	/*
    435 	 * Take care of model-specific tasks.
    436 	 */
    437 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    438 		amr->amr_submit = amr_quartz_submit;
    439 		amr->amr_get_work = amr_quartz_get_work;
    440 	} else {
    441 		amr->amr_submit = amr_std_submit;
    442 		amr->amr_get_work = amr_std_get_work;
    443 
    444 		/* Notify the controller of the mailbox location. */
    445 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    446 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    447 
    448 		/* Clear outstanding interrupts and enable interrupts. */
    449 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    450 		amr_outb(amr, AMR_SREG_TOGL,
    451 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    452 	}
    453 
    454 	/*
    455 	 * Retrieve parameters, and tell the world about us.
    456 	 */
    457 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    458 	amr->amr_flags |= AMRF_ENQBUF;
    459 	amr->amr_maxqueuecnt = i;
    460 	aprint_normal(": AMI RAID ");
    461 	if (amr_init(amr, intrstr, pa) != 0) {
    462 		amr_teardown(amr);
    463 		return;
    464 	}
    465 
    466 	/*
    467 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    468 	 * driver doesn't trust the controller's reported value, and lockups
    469 	 * have been seen when we do.
    470 	 */
    471 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    472 	if (amr->amr_maxqueuecnt > i)
    473 		amr->amr_maxqueuecnt = i;
    474 
    475 	/* Set our `shutdownhook' before we start any device activity. */
    476 	if (amr_sdh == NULL)
    477 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    478 
    479 	/* Attach sub-devices. */
    480 	for (j = 0; j < amr->amr_numdrives; j++) {
    481 		if (amr->amr_drive[j].al_size == 0)
    482 			continue;
    483 		amra.amra_unit = j;
    484 
    485 		locs[AMRCF_UNIT] = j;
    486 
    487 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
    488 			"amr", locs, &amra, amr_print, config_stdsubmatch);
    489 	}
    490 
    491 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    492 
    493 	/* XXX This doesn't work for newer boards yet. */
    494 	if ((apt->apt_flags & AT_QUARTZ) == 0) {
    495 		rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
    496 		    &amr->amr_thread, "%s", amr->amr_dv.dv_xname);
    497  		if (rv != 0)
    498 			aprint_error("%s: unable to create thread (%d)",
    499  			    amr->amr_dv.dv_xname, rv);
    500  		else
    501  			amr->amr_flags |= AMRF_THREAD;
    502 	}
    503 
    504 	major = cdevsw_lookup_major(&amr_cdevsw);
    505 	unit = device_unit(self);
    506 	device_register_name(makedev(major, unit), self, true,
    507 	    DEV_DISK, device_xname(self));
    508 }
    509 
    510 /*
    511  * Free up resources.
    512  */
    513 static void
    514 amr_teardown(struct amr_softc *amr)
    515 {
    516 	struct amr_ccb *ac;
    517 	int fl;
    518 
    519 	fl = amr->amr_flags;
    520 
    521 	if ((fl & AMRF_THREAD) != 0) {
    522 		amr->amr_flags |= AMRF_THREAD_EXIT;
    523 		wakeup(amr_thread);
    524 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    525 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    526 	}
    527 	if ((fl & AMRF_CCBS) != 0) {
    528 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    529 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    530 		}
    531 		free(amr->amr_ccbs, M_DEVBUF);
    532 	}
    533 	if ((fl & AMRF_ENQBUF) != 0)
    534 		free(amr->amr_enqbuf, M_DEVBUF);
    535 	if ((fl & AMRF_DMA_LOAD) != 0)
    536 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    537 	if ((fl & AMRF_DMA_MAP) != 0)
    538 		bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
    539 		    amr->amr_dmasize);
    540 	if ((fl & AMRF_DMA_ALLOC) != 0)
    541 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    542 	if ((fl & AMRF_DMA_CREATE) != 0)
    543 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    544 	if ((fl & AMRF_PCI_INTR) != 0)
    545 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    546 	if ((fl & AMRF_PCI_REGS) != 0)
    547 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    548 }
    549 
    550 /*
    551  * Print autoconfiguration message for a sub-device.
    552  */
    553 static int
    554 amr_print(void *aux, const char *pnp)
    555 {
    556 	struct amr_attach_args *amra;
    557 
    558 	amra = (struct amr_attach_args *)aux;
    559 
    560 	if (pnp != NULL)
    561 		aprint_normal("block device at %s", pnp);
    562 	aprint_normal(" unit %d", amra->amra_unit);
    563 	return (UNCONF);
    564 }
    565 
    566 /*
    567  * Retrieve operational parameters and describe the controller.
    568  */
    569 static int
    570 amr_init(struct amr_softc *amr, const char *intrstr,
    571 	 struct pci_attach_args *pa)
    572 {
    573 	struct amr_adapter_info *aa;
    574 	struct amr_prodinfo *ap;
    575 	struct amr_enquiry *ae;
    576 	struct amr_enquiry3 *aex;
    577 	const char *prodstr;
    578 	u_int i, sig, ishp;
    579 	char sbuf[64];
    580 
    581 	/*
    582 	 * Try to get 40LD product info, which tells us what the card is
    583 	 * labelled as.
    584 	 */
    585 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    586 	    amr->amr_enqbuf);
    587 	if (ap != NULL) {
    588 		aprint_normal("<%.80s>\n", ap->ap_product);
    589 		if (intrstr != NULL)
    590 			aprint_normal("%s: interrupting at %s\n",
    591 			    amr->amr_dv.dv_xname, intrstr);
    592 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
    593 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
    594 		    le16toh(ap->ap_memsize));
    595 
    596 		amr->amr_maxqueuecnt = ap->ap_maxio;
    597 
    598 		/*
    599 		 * Fetch and record state of logical drives.
    600 		 */
    601 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    602 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    603 		if (aex == NULL) {
    604 			aprint_error("%s ENQUIRY3 failed\n",
    605 			    amr->amr_dv.dv_xname);
    606 			return (-1);
    607 		}
    608 
    609 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
    610 			aprint_error("%s: Inquiry returned more drives (%d)"
    611 			   " than the array can handle (%zu)\n",
    612 			   amr->amr_dv.dv_xname, aex->ae_numldrives,
    613 			   __arraycount(aex->ae_drivestate));
    614 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
    615 		}
    616 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    617 			aprint_error(
    618 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
    619 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
    620 			    amr->amr_numdrives);
    621 			amr->amr_numdrives = AMR_MAX_UNITS;
    622 		} else
    623 			amr->amr_numdrives = aex->ae_numldrives;
    624 
    625 		for (i = 0; i < amr->amr_numdrives; i++) {
    626 			amr->amr_drive[i].al_size =
    627 			    le32toh(aex->ae_drivesize[i]);
    628 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    629 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    630 		}
    631 
    632 		return (0);
    633 	}
    634 
    635 	/*
    636 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    637 	 * found, search for a product description.
    638 	 */
    639 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    640 	if (ae != NULL) {
    641 		i = 0;
    642 		sig = le32toh(ae->ae_signature);
    643 
    644 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    645 			if (amr_typestr[i].at_sig == sig)
    646 				break;
    647 			i++;
    648 		}
    649 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    650 			snprintf(sbuf, sizeof(sbuf),
    651 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
    652 			prodstr = sbuf;
    653 		} else
    654 			prodstr = amr_typestr[i].at_str;
    655 	} else {
    656 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    657 		if (ae == NULL) {
    658 			aprint_error("%s: unsupported controller\n",
    659 			    amr->amr_dv.dv_xname);
    660 			return (-1);
    661 		}
    662 
    663 		switch (PCI_PRODUCT(pa->pa_id)) {
    664 		case PCI_PRODUCT_AMI_MEGARAID:
    665 			prodstr = "Series 428";
    666 			break;
    667 		case PCI_PRODUCT_AMI_MEGARAID2:
    668 			prodstr = "Series 434";
    669 			break;
    670 		default:
    671 			snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
    672 			    PCI_PRODUCT(pa->pa_id));
    673 			prodstr = sbuf;
    674 			break;
    675 		}
    676 	}
    677 
    678 	/*
    679 	 * HP NetRaid controllers have a special encoding of the firmware
    680 	 * and BIOS versions.  The AMI version seems to have it as strings
    681 	 * whereas the HP version does it with a leading uppercase character
    682 	 * and two binary numbers.
    683 	*/
    684 	aa = &ae->ae_adapter;
    685 
    686 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    687 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    688 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    689 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    690 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    691 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    692 			prodstr = "HP NetRaid 3si";
    693 		}
    694 		ishp = 1;
    695 	} else
    696 		ishp = 0;
    697 
    698 	aprint_normal("<%s>\n", prodstr);
    699 	if (intrstr != NULL)
    700 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
    701 		    intrstr);
    702 
    703 	if (ishp)
    704 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    705 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
    706 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    707 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    708 	else
    709 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    710 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
    711 		    aa->aa_memorysize);
    712 
    713 	amr->amr_maxqueuecnt = aa->aa_maxio;
    714 
    715 	/*
    716 	 * Record state of logical drives.
    717 	 */
    718 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
    719 		aprint_error("%s: Inquiry returned more drives (%d)"
    720 		   " than the array can handle (%zu)\n",
    721 		   amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    722 		   __arraycount(ae->ae_ldrv.al_size));
    723 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
    724 	}
    725 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    726 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
    727 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
    728 		    AMR_MAX_UNITS);
    729 		amr->amr_numdrives = AMR_MAX_UNITS;
    730 	} else
    731 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    732 
    733 	for (i = 0; i < amr->amr_numdrives; i++) {
    734 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    735 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    736 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    737 	}
    738 
    739 	return (0);
    740 }
    741 
    742 /*
    743  * Flush the internal cache on each configured controller.  Called at
    744  * shutdown time.
    745  */
    746 static void
    747 amr_shutdown(void *cookie)
    748 {
    749 	extern struct cfdriver amr_cd;
    750 	struct amr_softc *amr;
    751 	struct amr_ccb *ac;
    752 	int i, rv, s;
    753 
    754 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    755 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
    756 			continue;
    757 
    758 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    759 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    760 			s = splbio();
    761 			rv = amr_ccb_poll(amr, ac, 30000);
    762 			splx(s);
    763 			amr_ccb_free(amr, ac);
    764 		}
    765 		if (rv != 0)
    766 			printf("%s: unable to flush cache (%d)\n",
    767 			    amr->amr_dv.dv_xname, rv);
    768 	}
    769 }
    770 
    771 /*
    772  * Interrupt service routine.
    773  */
    774 static int
    775 amr_intr(void *cookie)
    776 {
    777 	struct amr_softc *amr;
    778 	struct amr_ccb *ac;
    779 	struct amr_mailbox_resp mbox;
    780 	u_int i, forus, idx;
    781 
    782 	amr = cookie;
    783 	forus = 0;
    784 
    785 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    786 		/* Iterate over completed commands in this result. */
    787 		for (i = 0; i < mbox.mb_nstatus; i++) {
    788 			idx = mbox.mb_completed[i] - 1;
    789 			ac = amr->amr_ccbs + idx;
    790 
    791 			if (idx >= amr->amr_maxqueuecnt) {
    792 				printf("%s: bad status (bogus ID: %u=%u)\n",
    793 				    amr->amr_dv.dv_xname, i, idx);
    794 				continue;
    795 			}
    796 
    797 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    798 				printf("%s: bad status (not active; 0x04%x)\n",
    799 				    amr->amr_dv.dv_xname, ac->ac_flags);
    800 				continue;
    801 			}
    802 
    803 			ac->ac_status = mbox.mb_status;
    804 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    805 			    AC_COMPLETE;
    806 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    807 
    808 			if ((ac->ac_flags & AC_MOAN) != 0)
    809 				printf("%s: ccb %d completed\n",
    810 				    amr->amr_dv.dv_xname, ac->ac_ident);
    811 
    812 			/* Pass notification to upper layers. */
    813 			if (ac->ac_handler != NULL)
    814 				(*ac->ac_handler)(ac);
    815 			else
    816 				wakeup(ac);
    817 		}
    818 		forus = 1;
    819 	}
    820 
    821 	if (forus)
    822 		amr_ccb_enqueue(amr, NULL);
    823 
    824 	return (forus);
    825 }
    826 
    827 /*
    828  * Watchdog thread.
    829  */
    830 static void
    831 amr_thread(void *cookie)
    832 {
    833 	struct amr_softc *amr;
    834 	struct amr_ccb *ac;
    835 	struct amr_logdrive *al;
    836 	struct amr_enquiry *ae;
    837 	int rv, i, s;
    838 
    839 	amr = cookie;
    840 	ae = amr->amr_enqbuf;
    841 
    842 	for (;;) {
    843 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    844 
    845 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    846 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    847 			wakeup(&amr->amr_flags);
    848 			kthread_exit(0);
    849 		}
    850 
    851 		s = splbio();
    852 		amr_intr(cookie);
    853 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    854 		while (ac != NULL) {
    855 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
    856 				break;
    857 			if ((ac->ac_flags & AC_MOAN) == 0) {
    858 				printf("%s: ccb %d timed out; mailbox:\n",
    859 				    amr->amr_dv.dv_xname, ac->ac_ident);
    860 				amr_ccb_dump(amr, ac);
    861 				ac->ac_flags |= AC_MOAN;
    862 			}
    863 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    864 		}
    865 		splx(s);
    866 
    867 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    868 			printf("%s: ccb_alloc failed (%d)\n",
    869  			    amr->amr_dv.dv_xname, rv);
    870 			continue;
    871 		}
    872 
    873 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    874 
    875 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    876 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    877 		if (rv != 0) {
    878 			printf("%s: ccb_map failed (%d)\n",
    879  			    amr->amr_dv.dv_xname, rv);
    880 			amr_ccb_free(amr, ac);
    881 			continue;
    882 		}
    883 
    884 		rv = amr_ccb_wait(amr, ac);
    885 		amr_ccb_unmap(amr, ac);
    886 		if (rv != 0) {
    887 			printf("%s: enquiry failed (st=%d)\n",
    888  			    amr->amr_dv.dv_xname, ac->ac_status);
    889 			continue;
    890 		}
    891 		amr_ccb_free(amr, ac);
    892 
    893 		al = amr->amr_drive;
    894 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
    895 			if (al->al_dv == NULL)
    896 				continue;
    897 			if (al->al_state == ae->ae_ldrv.al_state[i])
    898 				continue;
    899 
    900 			printf("%s: state changed: %s -> %s\n",
    901 			    al->al_dv->dv_xname,
    902 			    amr_drive_state(al->al_state, NULL),
    903 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    904 
    905 			al->al_state = ae->ae_ldrv.al_state[i];
    906 		}
    907 	}
    908 }
    909 
    910 /*
    911  * Return a text description of a logical drive's current state.
    912  */
    913 const char *
    914 amr_drive_state(int state, int *happy)
    915 {
    916 	const char *str;
    917 
    918 	state = AMR_DRV_CURSTATE(state);
    919 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    920 		if (happy)
    921 			*happy = 1;
    922 		str = "status unknown";
    923 	} else {
    924 		if (happy)
    925 			*happy = amr_dstate[state].ds_happy;
    926 		str = amr_dstate[state].ds_descr;
    927 	}
    928 
    929 	return (str);
    930 }
    931 
    932 /*
    933  * Run a generic enquiry-style command.
    934  */
    935 static void *
    936 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    937 	    u_int8_t cmdqual, void *sbuf)
    938 {
    939 	struct amr_ccb *ac;
    940 	u_int8_t *mb;
    941 	int rv;
    942 
    943 	if (amr_ccb_alloc(amr, &ac) != 0)
    944 		return (NULL);
    945 
    946 	/* Build the command proper. */
    947 	mb = (u_int8_t *)&ac->ac_cmd;
    948 	mb[0] = cmd;
    949 	mb[2] = cmdsub;
    950 	mb[3] = cmdqual;
    951 
    952 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    953 	if (rv == 0) {
    954 		rv = amr_ccb_poll(amr, ac, 2000);
    955 		amr_ccb_unmap(amr, ac);
    956 	}
    957 	amr_ccb_free(amr, ac);
    958 
    959 	return (rv ? NULL : sbuf);
    960 }
    961 
    962 /*
    963  * Allocate and initialise a CCB.
    964  */
    965 int
    966 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    967 {
    968 	int s;
    969 
    970 	s = splbio();
    971 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    972 		splx(s);
    973 		return (EAGAIN);
    974 	}
    975 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    976 	splx(s);
    977 
    978 	return (0);
    979 }
    980 
    981 /*
    982  * Free a CCB.
    983  */
    984 void
    985 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    986 {
    987 	int s;
    988 
    989 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    990 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    991 	ac->ac_cmd.mb_busy = 1;
    992 	ac->ac_handler = NULL;
    993 	ac->ac_flags = 0;
    994 
    995 	s = splbio();
    996 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
    997 	splx(s);
    998 }
    999 
   1000 /*
   1001  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1002  * the order that they were enqueued and try to submit their command blocks
   1003  * to the controller for execution.
   1004  */
   1005 void
   1006 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
   1007 {
   1008 	int s;
   1009 
   1010 	s = splbio();
   1011 
   1012 	if (ac != NULL)
   1013 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
   1014 
   1015 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
   1016 		if ((*amr->amr_submit)(amr, ac) != 0)
   1017 			break;
   1018 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1019 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1020 	}
   1021 
   1022 	splx(s);
   1023 }
   1024 
   1025 /*
   1026  * Map the specified CCB's data buffer onto the bus, and fill the
   1027  * scatter-gather list.
   1028  */
   1029 int
   1030 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1031 	    int tflag)
   1032 {
   1033 	struct amr_sgentry *sge;
   1034 	struct amr_mailbox_cmd *mb;
   1035 	int nsegs, i, rv, sgloff;
   1036 	bus_dmamap_t xfer;
   1037 	int dmaflag = 0;
   1038 
   1039 	xfer = ac->ac_xfer_map;
   1040 
   1041 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1042 	    BUS_DMA_NOWAIT);
   1043 	if (rv != 0)
   1044 		return (rv);
   1045 
   1046 	mb = &ac->ac_cmd;
   1047 	ac->ac_xfer_size = size;
   1048 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
   1049 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1050 
   1051 	if (tflag & AC_XFER_OUT)
   1052 		dmaflag |= BUS_DMASYNC_PREWRITE;
   1053 	if (tflag & AC_XFER_IN)
   1054 		dmaflag |= BUS_DMASYNC_PREREAD;
   1055 
   1056 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1057 	nsegs = xfer->dm_nsegs;
   1058 	if (nsegs == 1) {
   1059 		mb->mb_nsgelem = 0;
   1060 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1061 		ac->ac_flags |= AC_NOSGL;
   1062 	} else {
   1063 		mb->mb_nsgelem = nsegs;
   1064 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1065 
   1066 		sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
   1067 		for (i = 0; i < nsegs; i++, sge++) {
   1068 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1069 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1070 		}
   1071 	}
   1072 
   1073 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
   1074 
   1075 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1076 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1077 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1078 
   1079 	return (0);
   1080 }
   1081 
   1082 /*
   1083  * Unmap the specified CCB's data buffer.
   1084  */
   1085 void
   1086 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1087 {
   1088 	int dmaflag = 0;
   1089 
   1090 	if (ac->ac_flags & AC_XFER_IN)
   1091 		dmaflag |= BUS_DMASYNC_POSTREAD;
   1092 	if (ac->ac_flags & AC_XFER_OUT)
   1093 		dmaflag |= BUS_DMASYNC_POSTWRITE;
   1094 
   1095 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1096 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1097 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1098 		    BUS_DMASYNC_POSTWRITE);
   1099 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1100 	    dmaflag);
   1101 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1102 }
   1103 
   1104 /*
   1105  * Submit a command to the controller and poll on completion.  Return
   1106  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1107  */
   1108 int
   1109 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1110 {
   1111 	int rv;
   1112 
   1113 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1114 		return (rv);
   1115 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1116 
   1117 	for (timo *= 10; timo != 0; timo--) {
   1118 		amr_intr(amr);
   1119 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1120 			break;
   1121 		DELAY(100);
   1122 	}
   1123 
   1124 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1125 }
   1126 
   1127 /*
   1128  * Submit a command to the controller and sleep on completion.  Return
   1129  * non-zero on error.
   1130  */
   1131 int
   1132 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1133 {
   1134 	int s;
   1135 
   1136 	s = splbio();
   1137 	amr_ccb_enqueue(amr, ac);
   1138 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1139 	splx(s);
   1140 
   1141 	return (ac->ac_status != 0 ? EIO : 0);
   1142 }
   1143 
   1144 #if 0
   1145 /*
   1146  * Wait for the mailbox to become available.
   1147  */
   1148 static int
   1149 amr_mbox_wait(struct amr_softc *amr)
   1150 {
   1151 	int timo;
   1152 
   1153 	for (timo = 10000; timo != 0; timo--) {
   1154 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1155 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1156 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1157 			break;
   1158 		DELAY(100);
   1159 	}
   1160 
   1161 	if (timo == 0)
   1162 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
   1163 
   1164 	return (timo != 0 ? 0 : EAGAIN);
   1165 }
   1166 #endif
   1167 
   1168 /*
   1169  * Tell the controller that the mailbox contains a valid command.  Must be
   1170  * called with interrupts blocked.
   1171  */
   1172 static int
   1173 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1174 {
   1175 	u_int32_t v;
   1176 
   1177 	amr->amr_mbox->mb_poll = 0;
   1178 	amr->amr_mbox->mb_ack = 0;
   1179 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1180 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1181 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1182 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1183 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1184 		return (EAGAIN);
   1185 
   1186 	v = amr_inl(amr, AMR_QREG_IDB);
   1187 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1188 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1189 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1190 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1191 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1192 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1193 		return (EAGAIN);
   1194 	}
   1195 
   1196 	amr->amr_mbox->mb_segment = 0;
   1197 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1198 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1199 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1200 
   1201 	ac->ac_start_time = time_uptime;
   1202 	ac->ac_flags |= AC_ACTIVE;
   1203 	amr_outl(amr, AMR_QREG_IDB,
   1204 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1205 	return (0);
   1206 }
   1207 
   1208 static int
   1209 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1210 {
   1211 
   1212 	amr->amr_mbox->mb_poll = 0;
   1213 	amr->amr_mbox->mb_ack = 0;
   1214 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1215 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1216 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1217 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1218 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1219 		return (EAGAIN);
   1220 
   1221 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1222 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1223 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1224 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1225 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1226 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1227 		return (EAGAIN);
   1228 	}
   1229 
   1230 	amr->amr_mbox->mb_segment = 0;
   1231 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1232 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1233 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1234 
   1235 	ac->ac_start_time = time_uptime;
   1236 	ac->ac_flags |= AC_ACTIVE;
   1237 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1238 	return (0);
   1239 }
   1240 
   1241 /*
   1242  * Claim any work that the controller has completed; acknowledge completion,
   1243  * save details of the completion in (mbsave).  Must be called with
   1244  * interrupts blocked.
   1245  */
   1246 static int
   1247 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1248 {
   1249 
   1250 	/* Work waiting for us? */
   1251 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1252 		return (-1);
   1253 
   1254 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1255 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1256 
   1257 	/* Save the mailbox, which contains a list of completed commands. */
   1258 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1259 
   1260 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1261 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1262 
   1263 	/* Ack the interrupt and mailbox transfer. */
   1264 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1265 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1266 
   1267 	/*
   1268 	 * This waits for the controller to notice that we've taken the
   1269 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1270 	 * but if we remove this code, we stop completing commands under
   1271 	 * load.
   1272 	 *
   1273 	 * Peter J says we shouldn't do this.  The documentation says we
   1274 	 * should.  Who is right?
   1275 	 */
   1276 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1277 		DELAY(10);
   1278 
   1279 	return (0);
   1280 }
   1281 
   1282 static int
   1283 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1284 {
   1285 	u_int8_t istat;
   1286 
   1287 	/* Check for valid interrupt status. */
   1288 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1289 		return (-1);
   1290 
   1291 	/* Ack the interrupt. */
   1292 	amr_outb(amr, AMR_SREG_INTR, istat);
   1293 
   1294 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1295 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1296 
   1297 	/* Save mailbox, which contains a list of completed commands. */
   1298 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1299 
   1300 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1301 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1302 
   1303 	/* Ack mailbox transfer. */
   1304 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1305 
   1306 	return (0);
   1307 }
   1308 
   1309 static void
   1310 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1311 {
   1312 	int i;
   1313 
   1314 	printf("%s: ", amr->amr_dv.dv_xname);
   1315 	for (i = 0; i < 4; i++)
   1316 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1317 	printf("\n");
   1318 }
   1319 
   1320 static int
   1321 amropen(dev_t dev, int flag, int mode, struct lwp *l)
   1322 {
   1323 	struct amr_softc *amr;
   1324 
   1325 	if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL)
   1326 		return (ENXIO);
   1327 	if ((amr->amr_flags & AMRF_OPEN) != 0)
   1328 		return (EBUSY);
   1329 
   1330 	amr->amr_flags |= AMRF_OPEN;
   1331 	return (0);
   1332 }
   1333 
   1334 static int
   1335 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
   1336 {
   1337 	struct amr_softc *amr;
   1338 
   1339 	amr = device_lookup(&amr_cd, minor(dev));
   1340 	amr->amr_flags &= ~AMRF_OPEN;
   1341 	return (0);
   1342 }
   1343 
   1344 static int
   1345 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
   1346     struct lwp *l)
   1347 {
   1348 	struct amr_softc *amr;
   1349 	struct amr_user_ioctl *au;
   1350 	struct amr_ccb *ac;
   1351 	struct amr_mailbox_ioctl *mbi;
   1352 	unsigned long au_length;
   1353 	uint8_t *au_cmd;
   1354 	int error;
   1355 	void *dp = NULL, *au_buffer;
   1356 
   1357 	amr = device_lookup(&amr_cd, minor(dev));
   1358 
   1359 	/* This should be compatible with the FreeBSD interface */
   1360 
   1361 	switch (cmd) {
   1362 	case AMR_IO_VERSION:
   1363 		*(int *)data = AMR_IO_VERSION_NUMBER;
   1364 		return 0;
   1365 	case AMR_IO_COMMAND:
   1366 		error = kauth_authorize_device_passthru(l->l_cred, dev,
   1367 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
   1368 		if (error)
   1369 			return (error);
   1370 
   1371 		au = (struct amr_user_ioctl *)data;
   1372 		au_cmd = au->au_cmd;
   1373 		au_buffer = au->au_buffer;
   1374 		au_length = au->au_length;
   1375 		break;
   1376 	default:
   1377 		return ENOTTY;
   1378 	}
   1379 
   1380 	if (au_cmd[0] == AMR_CMD_PASS) {
   1381 		/* not yet */
   1382 		return EOPNOTSUPP;
   1383 	}
   1384 
   1385 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
   1386 		return (EINVAL);
   1387 
   1388 	/*
   1389 	 * allocate kernel memory for data, doing I/O directly to user
   1390 	 * buffer isn't that easy.
   1391 	 */
   1392 	dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
   1393 	if (dp == NULL)
   1394 		return ENOMEM;
   1395 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
   1396 		goto out;
   1397 
   1398 	/* direct command to controller */
   1399 	while (amr_ccb_alloc(amr, &ac) != 0) {
   1400 		error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
   1401 		if (error == EINTR)
   1402 			goto out;
   1403 	}
   1404 
   1405 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
   1406 	mbi->mb_command = au_cmd[0];
   1407 	mbi->mb_channel = au_cmd[1];
   1408 	mbi->mb_param = au_cmd[2];
   1409 	mbi->mb_pad[0] = au_cmd[3];
   1410 	mbi->mb_drive = au_cmd[4];
   1411 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
   1412 	    AC_XFER_IN | AC_XFER_OUT);
   1413 	if (error == 0) {
   1414 		error = amr_ccb_wait(amr, ac);
   1415 		amr_ccb_unmap(amr, ac);
   1416 		if (error == 0)
   1417 			error = copyout(dp, au_buffer, au_length);
   1418 
   1419 	}
   1420 	amr_ccb_free(amr, ac);
   1421 out:
   1422 	free(dp, M_DEVBUF);
   1423 	return (error);
   1424 }
   1425