amr.c revision 1.47 1 /* $NetBSD: amr.c,v 1.47 2008/04/10 19:13:36 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999,2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67 */
68
69 /*
70 * Driver for AMI RAID controllers.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.47 2008/04/10 19:13:36 cegger Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/kthread.h>
86 #include <sys/kauth.h>
87
88 #include <uvm/uvm_extern.h>
89
90 #include <machine/endian.h>
91 #include <sys/bus.h>
92
93 #include <dev/pci/pcidevs.h>
94 #include <dev/pci/pcivar.h>
95 #include <dev/pci/amrreg.h>
96 #include <dev/pci/amrvar.h>
97 #include <dev/pci/amrio.h>
98
99 #include "locators.h"
100
101 static void amr_attach(struct device *, struct device *, void *);
102 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
103 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
104 void *);
105 static int amr_init(struct amr_softc *, const char *,
106 struct pci_attach_args *pa);
107 static int amr_intr(void *);
108 static int amr_match(struct device *, struct cfdata *, void *);
109 static int amr_print(void *, const char *);
110 static void amr_shutdown(void *);
111 static void amr_teardown(struct amr_softc *);
112 static void amr_thread(void *);
113
114 static int amr_quartz_get_work(struct amr_softc *,
115 struct amr_mailbox_resp *);
116 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
117 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
118 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
119
120 static dev_type_open(amropen);
121 static dev_type_close(amrclose);
122 static dev_type_ioctl(amrioctl);
123
124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
125 amr_match, amr_attach, NULL, NULL);
126
127 const struct cdevsw amr_cdevsw = {
128 amropen, amrclose, noread, nowrite, amrioctl,
129 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
130 };
131
132 extern struct cfdriver amr_cd;
133
134 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
135 #define AT_SIG 0x02 /* Check for signature */
136
137 static struct amr_pci_type {
138 u_short apt_vendor;
139 u_short apt_product;
140 u_short apt_flags;
141 } const amr_pci_type[] = {
142 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
143 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
144 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
145 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
146 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
149 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
150 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
151 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
152 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
153 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
154 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
155 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
156 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
157 };
158
159 static struct amr_typestr {
160 const char *at_str;
161 int at_sig;
162 } const amr_typestr[] = {
163 { "Series 431", AMR_SIG_431 },
164 { "Series 438", AMR_SIG_438 },
165 { "Series 466", AMR_SIG_466 },
166 { "Series 467", AMR_SIG_467 },
167 { "Series 490", AMR_SIG_490 },
168 { "Series 762", AMR_SIG_762 },
169 { "HP NetRAID (T5)", AMR_SIG_T5 },
170 { "HP NetRAID (T7)", AMR_SIG_T7 },
171 };
172
173 static struct {
174 const char *ds_descr;
175 int ds_happy;
176 } const amr_dstate[] = {
177 { "offline", 0 },
178 { "degraded", 1 },
179 { "optimal", 1 },
180 { "online", 1 },
181 { "failed", 0 },
182 { "rebuilding", 1 },
183 { "hotspare", 0 },
184 };
185
186 static void *amr_sdh;
187
188 static int amr_max_segs;
189 int amr_max_xfer;
190
191 static inline u_int8_t
192 amr_inb(struct amr_softc *amr, int off)
193 {
194
195 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
196 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
197 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
198 }
199
200 static inline u_int32_t
201 amr_inl(struct amr_softc *amr, int off)
202 {
203
204 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
205 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
206 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
207 }
208
209 static inline void
210 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
211 {
212
213 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
214 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
215 BUS_SPACE_BARRIER_WRITE);
216 }
217
218 static inline void
219 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
220 {
221
222 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
223 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
224 BUS_SPACE_BARRIER_WRITE);
225 }
226
227 /*
228 * Match a supported device.
229 */
230 static int
231 amr_match(struct device *parent, struct cfdata *match,
232 void *aux)
233 {
234 struct pci_attach_args *pa;
235 pcireg_t s;
236 int i;
237
238 pa = (struct pci_attach_args *)aux;
239
240 /*
241 * Don't match the device if it's operating in I2O mode. In this
242 * case it should be handled by the `iop' driver.
243 */
244 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
245 return (0);
246
247 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
248 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
249 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
250 break;
251
252 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
253 return (0);
254
255 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
256 return (1);
257
258 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
259 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
260 }
261
262 /*
263 * Attach a supported device.
264 */
265 static void
266 amr_attach(struct device *parent, struct device *self, void *aux)
267 {
268 struct pci_attach_args *pa;
269 struct amr_attach_args amra;
270 const struct amr_pci_type *apt;
271 struct amr_softc *amr;
272 pci_chipset_tag_t pc;
273 pci_intr_handle_t ih;
274 const char *intrstr;
275 pcireg_t reg;
276 int rseg, i, j, size, rv, memreg, ioreg;
277 struct amr_ccb *ac;
278 int locs[AMRCF_NLOCS];
279
280 aprint_naive(": RAID controller\n");
281
282 amr = (struct amr_softc *)self;
283 pa = (struct pci_attach_args *)aux;
284 pc = pa->pa_pc;
285
286 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
287 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
288 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
289 break;
290 apt = amr_pci_type + i;
291
292 memreg = ioreg = 0;
293 for (i = 0x10; i <= 0x14; i += 4) {
294 reg = pci_conf_read(pc, pa->pa_tag, i);
295 switch (PCI_MAPREG_TYPE(reg)) {
296 case PCI_MAPREG_TYPE_MEM:
297 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
298 memreg = i;
299 break;
300 case PCI_MAPREG_TYPE_IO:
301 if (PCI_MAPREG_IO_SIZE(reg) != 0)
302 ioreg = i;
303 break;
304
305 }
306 }
307
308 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
309 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
310 ;
311 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
312 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
313 ;
314 else {
315 aprint_error("can't map control registers\n");
316 amr_teardown(amr);
317 return;
318 }
319
320 amr->amr_flags |= AMRF_PCI_REGS;
321 amr->amr_dmat = pa->pa_dmat;
322 amr->amr_pc = pa->pa_pc;
323
324 /* Enable the device. */
325 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
326 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
327 reg | PCI_COMMAND_MASTER_ENABLE);
328
329 /* Map and establish the interrupt. */
330 if (pci_intr_map(pa, &ih)) {
331 aprint_error("can't map interrupt\n");
332 amr_teardown(amr);
333 return;
334 }
335 intrstr = pci_intr_string(pc, ih);
336 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
337 if (amr->amr_ih == NULL) {
338 aprint_error("can't establish interrupt");
339 if (intrstr != NULL)
340 aprint_normal(" at %s", intrstr);
341 aprint_normal("\n");
342 amr_teardown(amr);
343 return;
344 }
345 amr->amr_flags |= AMRF_PCI_INTR;
346
347 /*
348 * Allocate space for the mailbox and S/G lists. Some controllers
349 * don't like S/G lists to be located below 0x2000, so we allocate
350 * enough slop to enable us to compensate.
351 *
352 * The standard mailbox structure needs to be aligned on a 16-byte
353 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
354 * size, which precedes the standard mailbox.
355 */
356 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
357 amr->amr_dmasize = size;
358
359 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
360 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
361 aprint_error_dev(&amr->amr_dv, "unable to allocate buffer, rv = %d\n",
362 rv);
363 amr_teardown(amr);
364 return;
365 }
366 amr->amr_flags |= AMRF_DMA_ALLOC;
367
368 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
369 (void **)&amr->amr_mbox,
370 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
371 aprint_error_dev(&amr->amr_dv, "unable to map buffer, rv = %d\n",
372 rv);
373 amr_teardown(amr);
374 return;
375 }
376 amr->amr_flags |= AMRF_DMA_MAP;
377
378 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
379 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
380 aprint_error_dev(&amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
381 rv);
382 amr_teardown(amr);
383 return;
384 }
385 amr->amr_flags |= AMRF_DMA_CREATE;
386
387 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
388 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
389 aprint_error_dev(&amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
390 rv);
391 amr_teardown(amr);
392 return;
393 }
394 amr->amr_flags |= AMRF_DMA_LOAD;
395
396 memset(amr->amr_mbox, 0, size);
397
398 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
399 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
400 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
401 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
402
403 /*
404 * Allocate and initalise the command control blocks.
405 */
406 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
407 amr->amr_ccbs = ac;
408 SLIST_INIT(&amr->amr_ccb_freelist);
409 TAILQ_INIT(&amr->amr_ccb_active);
410 amr->amr_flags |= AMRF_CCBS;
411
412 if (amr_max_xfer == 0) {
413 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
414 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
415 }
416
417 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
418 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
419 amr_max_segs, amr_max_xfer, 0,
420 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
421 if (rv != 0)
422 break;
423
424 ac->ac_ident = i;
425 amr_ccb_free(amr, ac);
426 }
427 if (i != AMR_MAX_CMDS) {
428 aprint_error_dev(&amr->amr_dv, "memory exhausted\n");
429 amr_teardown(amr);
430 return;
431 }
432
433 /*
434 * Take care of model-specific tasks.
435 */
436 if ((apt->apt_flags & AT_QUARTZ) != 0) {
437 amr->amr_submit = amr_quartz_submit;
438 amr->amr_get_work = amr_quartz_get_work;
439 } else {
440 amr->amr_submit = amr_std_submit;
441 amr->amr_get_work = amr_std_get_work;
442
443 /* Notify the controller of the mailbox location. */
444 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
445 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
446
447 /* Clear outstanding interrupts and enable interrupts. */
448 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
449 amr_outb(amr, AMR_SREG_TOGL,
450 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
451 }
452
453 /*
454 * Retrieve parameters, and tell the world about us.
455 */
456 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
457 amr->amr_flags |= AMRF_ENQBUF;
458 amr->amr_maxqueuecnt = i;
459 aprint_normal(": AMI RAID ");
460 if (amr_init(amr, intrstr, pa) != 0) {
461 amr_teardown(amr);
462 return;
463 }
464
465 /*
466 * Cap the maximum number of outstanding commands. AMI's Linux
467 * driver doesn't trust the controller's reported value, and lockups
468 * have been seen when we do.
469 */
470 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
471 if (amr->amr_maxqueuecnt > i)
472 amr->amr_maxqueuecnt = i;
473
474 /* Set our `shutdownhook' before we start any device activity. */
475 if (amr_sdh == NULL)
476 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
477
478 /* Attach sub-devices. */
479 for (j = 0; j < amr->amr_numdrives; j++) {
480 if (amr->amr_drive[j].al_size == 0)
481 continue;
482 amra.amra_unit = j;
483
484 locs[AMRCF_UNIT] = j;
485
486 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
487 "amr", locs, &amra, amr_print, config_stdsubmatch);
488 }
489
490 SIMPLEQ_INIT(&amr->amr_ccb_queue);
491
492 /* XXX This doesn't work for newer boards yet. */
493 if ((apt->apt_flags & AT_QUARTZ) == 0) {
494 rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
495 &amr->amr_thread, "%s", device_xname(&amr->amr_dv));
496 if (rv != 0)
497 aprint_error_dev(&amr->amr_dv, "unable to create thread (%d)",
498 rv);
499 else
500 amr->amr_flags |= AMRF_THREAD;
501 }
502 }
503
504 /*
505 * Free up resources.
506 */
507 static void
508 amr_teardown(struct amr_softc *amr)
509 {
510 struct amr_ccb *ac;
511 int fl;
512
513 fl = amr->amr_flags;
514
515 if ((fl & AMRF_THREAD) != 0) {
516 amr->amr_flags |= AMRF_THREAD_EXIT;
517 wakeup(amr_thread);
518 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
519 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
520 }
521 if ((fl & AMRF_CCBS) != 0) {
522 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
523 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
524 }
525 free(amr->amr_ccbs, M_DEVBUF);
526 }
527 if ((fl & AMRF_ENQBUF) != 0)
528 free(amr->amr_enqbuf, M_DEVBUF);
529 if ((fl & AMRF_DMA_LOAD) != 0)
530 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
531 if ((fl & AMRF_DMA_MAP) != 0)
532 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
533 amr->amr_dmasize);
534 if ((fl & AMRF_DMA_ALLOC) != 0)
535 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
536 if ((fl & AMRF_DMA_CREATE) != 0)
537 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
538 if ((fl & AMRF_PCI_INTR) != 0)
539 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
540 if ((fl & AMRF_PCI_REGS) != 0)
541 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
542 }
543
544 /*
545 * Print autoconfiguration message for a sub-device.
546 */
547 static int
548 amr_print(void *aux, const char *pnp)
549 {
550 struct amr_attach_args *amra;
551
552 amra = (struct amr_attach_args *)aux;
553
554 if (pnp != NULL)
555 aprint_normal("block device at %s", pnp);
556 aprint_normal(" unit %d", amra->amra_unit);
557 return (UNCONF);
558 }
559
560 /*
561 * Retrieve operational parameters and describe the controller.
562 */
563 static int
564 amr_init(struct amr_softc *amr, const char *intrstr,
565 struct pci_attach_args *pa)
566 {
567 struct amr_adapter_info *aa;
568 struct amr_prodinfo *ap;
569 struct amr_enquiry *ae;
570 struct amr_enquiry3 *aex;
571 const char *prodstr;
572 u_int i, sig, ishp;
573 char sbuf[64];
574
575 /*
576 * Try to get 40LD product info, which tells us what the card is
577 * labelled as.
578 */
579 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
580 amr->amr_enqbuf);
581 if (ap != NULL) {
582 aprint_normal("<%.80s>\n", ap->ap_product);
583 if (intrstr != NULL)
584 aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
585 intrstr);
586 aprint_normal_dev(&amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
587 ap->ap_firmware, ap->ap_bios,
588 le16toh(ap->ap_memsize));
589
590 amr->amr_maxqueuecnt = ap->ap_maxio;
591
592 /*
593 * Fetch and record state of logical drives.
594 */
595 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
596 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
597 if (aex == NULL) {
598 aprint_error_dev(&amr->amr_dv, "ENQUIRY3 failed\n");
599 return (-1);
600 }
601
602 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
603 aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
604 " than the array can handle (%zu)\n",
605 aex->ae_numldrives,
606 __arraycount(aex->ae_drivestate));
607 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
608 }
609 if (aex->ae_numldrives > AMR_MAX_UNITS) {
610 aprint_error_dev(&amr->amr_dv,
611 "adjust AMR_MAX_UNITS to %d (currently %d)"
612 "\n", AMR_MAX_UNITS,
613 amr->amr_numdrives);
614 amr->amr_numdrives = AMR_MAX_UNITS;
615 } else
616 amr->amr_numdrives = aex->ae_numldrives;
617
618 for (i = 0; i < amr->amr_numdrives; i++) {
619 amr->amr_drive[i].al_size =
620 le32toh(aex->ae_drivesize[i]);
621 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
622 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
623 }
624
625 return (0);
626 }
627
628 /*
629 * Try 8LD extended ENQUIRY to get the controller signature. Once
630 * found, search for a product description.
631 */
632 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
633 if (ae != NULL) {
634 i = 0;
635 sig = le32toh(ae->ae_signature);
636
637 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
638 if (amr_typestr[i].at_sig == sig)
639 break;
640 i++;
641 }
642 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
643 snprintf(sbuf, sizeof(sbuf),
644 "unknown ENQUIRY2 sig (0x%08x)", sig);
645 prodstr = sbuf;
646 } else
647 prodstr = amr_typestr[i].at_str;
648 } else {
649 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
650 if (ae == NULL) {
651 aprint_error_dev(&amr->amr_dv, "unsupported controller\n");
652 return (-1);
653 }
654
655 switch (PCI_PRODUCT(pa->pa_id)) {
656 case PCI_PRODUCT_AMI_MEGARAID:
657 prodstr = "Series 428";
658 break;
659 case PCI_PRODUCT_AMI_MEGARAID2:
660 prodstr = "Series 434";
661 break;
662 default:
663 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
664 PCI_PRODUCT(pa->pa_id));
665 prodstr = sbuf;
666 break;
667 }
668 }
669
670 /*
671 * HP NetRaid controllers have a special encoding of the firmware
672 * and BIOS versions. The AMI version seems to have it as strings
673 * whereas the HP version does it with a leading uppercase character
674 * and two binary numbers.
675 */
676 aa = &ae->ae_adapter;
677
678 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
679 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
680 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
681 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
682 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
683 /* The AMI 438 is a NetRaid 3si in HP-land. */
684 prodstr = "HP NetRaid 3si";
685 }
686 ishp = 1;
687 } else
688 ishp = 0;
689
690 aprint_normal("<%s>\n", prodstr);
691 if (intrstr != NULL)
692 aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
693 intrstr);
694
695 if (ishp)
696 aprint_normal_dev(&amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
697 ", %dMB RAM\n", aa->aa_firmware[2],
698 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
699 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
700 else
701 aprint_normal_dev(&amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
702 aa->aa_firmware, aa->aa_bios,
703 aa->aa_memorysize);
704
705 amr->amr_maxqueuecnt = aa->aa_maxio;
706
707 /*
708 * Record state of logical drives.
709 */
710 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
711 aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
712 " than the array can handle (%zu)\n",
713 ae->ae_ldrv.al_numdrives,
714 __arraycount(ae->ae_ldrv.al_size));
715 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
716 }
717 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
718 aprint_error_dev(&amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
719 ae->ae_ldrv.al_numdrives,
720 AMR_MAX_UNITS);
721 amr->amr_numdrives = AMR_MAX_UNITS;
722 } else
723 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
724
725 for (i = 0; i < amr->amr_numdrives; i++) {
726 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
727 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
728 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
729 }
730
731 return (0);
732 }
733
734 /*
735 * Flush the internal cache on each configured controller. Called at
736 * shutdown time.
737 */
738 static void
739 amr_shutdown(void *cookie)
740 {
741 extern struct cfdriver amr_cd;
742 struct amr_softc *amr;
743 struct amr_ccb *ac;
744 int i, rv, s;
745
746 for (i = 0; i < amr_cd.cd_ndevs; i++) {
747 if ((amr = device_lookup(&amr_cd, i)) == NULL)
748 continue;
749
750 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
751 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
752 s = splbio();
753 rv = amr_ccb_poll(amr, ac, 30000);
754 splx(s);
755 amr_ccb_free(amr, ac);
756 }
757 if (rv != 0)
758 aprint_error_dev(&amr->amr_dv, "unable to flush cache (%d)\n", rv);
759 }
760 }
761
762 /*
763 * Interrupt service routine.
764 */
765 static int
766 amr_intr(void *cookie)
767 {
768 struct amr_softc *amr;
769 struct amr_ccb *ac;
770 struct amr_mailbox_resp mbox;
771 u_int i, forus, idx;
772
773 amr = cookie;
774 forus = 0;
775
776 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
777 /* Iterate over completed commands in this result. */
778 for (i = 0; i < mbox.mb_nstatus; i++) {
779 idx = mbox.mb_completed[i] - 1;
780 ac = amr->amr_ccbs + idx;
781
782 if (idx >= amr->amr_maxqueuecnt) {
783 printf("%s: bad status (bogus ID: %u=%u)\n",
784 device_xname(&amr->amr_dv), i, idx);
785 continue;
786 }
787
788 if ((ac->ac_flags & AC_ACTIVE) == 0) {
789 printf("%s: bad status (not active; 0x04%x)\n",
790 device_xname(&amr->amr_dv), ac->ac_flags);
791 continue;
792 }
793
794 ac->ac_status = mbox.mb_status;
795 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
796 AC_COMPLETE;
797 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
798
799 if ((ac->ac_flags & AC_MOAN) != 0)
800 printf("%s: ccb %d completed\n",
801 device_xname(&amr->amr_dv), ac->ac_ident);
802
803 /* Pass notification to upper layers. */
804 if (ac->ac_handler != NULL)
805 (*ac->ac_handler)(ac);
806 else
807 wakeup(ac);
808 }
809 forus = 1;
810 }
811
812 if (forus)
813 amr_ccb_enqueue(amr, NULL);
814
815 return (forus);
816 }
817
818 /*
819 * Watchdog thread.
820 */
821 static void
822 amr_thread(void *cookie)
823 {
824 struct amr_softc *amr;
825 struct amr_ccb *ac;
826 struct amr_logdrive *al;
827 struct amr_enquiry *ae;
828 int rv, i, s;
829
830 amr = cookie;
831 ae = amr->amr_enqbuf;
832
833 for (;;) {
834 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
835
836 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
837 amr->amr_flags ^= AMRF_THREAD_EXIT;
838 wakeup(&amr->amr_flags);
839 kthread_exit(0);
840 }
841
842 s = splbio();
843 amr_intr(cookie);
844 ac = TAILQ_FIRST(&amr->amr_ccb_active);
845 while (ac != NULL) {
846 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
847 break;
848 if ((ac->ac_flags & AC_MOAN) == 0) {
849 printf("%s: ccb %d timed out; mailbox:\n",
850 device_xname(&amr->amr_dv), ac->ac_ident);
851 amr_ccb_dump(amr, ac);
852 ac->ac_flags |= AC_MOAN;
853 }
854 ac = TAILQ_NEXT(ac, ac_chain.tailq);
855 }
856 splx(s);
857
858 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
859 printf("%s: ccb_alloc failed (%d)\n",
860 device_xname(&amr->amr_dv), rv);
861 continue;
862 }
863
864 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
865
866 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
867 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
868 if (rv != 0) {
869 aprint_error_dev(&amr->amr_dv, "ccb_map failed (%d)\n",
870 rv);
871 amr_ccb_free(amr, ac);
872 continue;
873 }
874
875 rv = amr_ccb_wait(amr, ac);
876 amr_ccb_unmap(amr, ac);
877 if (rv != 0) {
878 aprint_error_dev(&amr->amr_dv, "enquiry failed (st=%d)\n",
879 ac->ac_status);
880 continue;
881 }
882 amr_ccb_free(amr, ac);
883
884 al = amr->amr_drive;
885 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
886 if (al->al_dv == NULL)
887 continue;
888 if (al->al_state == ae->ae_ldrv.al_state[i])
889 continue;
890
891 printf("%s: state changed: %s -> %s\n",
892 device_xname(al->al_dv),
893 amr_drive_state(al->al_state, NULL),
894 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
895
896 al->al_state = ae->ae_ldrv.al_state[i];
897 }
898 }
899 }
900
901 /*
902 * Return a text description of a logical drive's current state.
903 */
904 const char *
905 amr_drive_state(int state, int *happy)
906 {
907 const char *str;
908
909 state = AMR_DRV_CURSTATE(state);
910 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
911 if (happy)
912 *happy = 1;
913 str = "status unknown";
914 } else {
915 if (happy)
916 *happy = amr_dstate[state].ds_happy;
917 str = amr_dstate[state].ds_descr;
918 }
919
920 return (str);
921 }
922
923 /*
924 * Run a generic enquiry-style command.
925 */
926 static void *
927 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
928 u_int8_t cmdqual, void *sbuf)
929 {
930 struct amr_ccb *ac;
931 u_int8_t *mb;
932 int rv;
933
934 if (amr_ccb_alloc(amr, &ac) != 0)
935 return (NULL);
936
937 /* Build the command proper. */
938 mb = (u_int8_t *)&ac->ac_cmd;
939 mb[0] = cmd;
940 mb[2] = cmdsub;
941 mb[3] = cmdqual;
942
943 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
944 if (rv == 0) {
945 rv = amr_ccb_poll(amr, ac, 2000);
946 amr_ccb_unmap(amr, ac);
947 }
948 amr_ccb_free(amr, ac);
949
950 return (rv ? NULL : sbuf);
951 }
952
953 /*
954 * Allocate and initialise a CCB.
955 */
956 int
957 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
958 {
959 int s;
960
961 s = splbio();
962 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
963 splx(s);
964 return (EAGAIN);
965 }
966 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
967 splx(s);
968
969 return (0);
970 }
971
972 /*
973 * Free a CCB.
974 */
975 void
976 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
977 {
978 int s;
979
980 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
981 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
982 ac->ac_cmd.mb_busy = 1;
983 ac->ac_handler = NULL;
984 ac->ac_flags = 0;
985
986 s = splbio();
987 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
988 splx(s);
989 }
990
991 /*
992 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
993 * the order that they were enqueued and try to submit their command blocks
994 * to the controller for execution.
995 */
996 void
997 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
998 {
999 int s;
1000
1001 s = splbio();
1002
1003 if (ac != NULL)
1004 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1005
1006 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1007 if ((*amr->amr_submit)(amr, ac) != 0)
1008 break;
1009 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1010 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1011 }
1012
1013 splx(s);
1014 }
1015
1016 /*
1017 * Map the specified CCB's data buffer onto the bus, and fill the
1018 * scatter-gather list.
1019 */
1020 int
1021 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1022 int tflag)
1023 {
1024 struct amr_sgentry *sge;
1025 struct amr_mailbox_cmd *mb;
1026 int nsegs, i, rv, sgloff;
1027 bus_dmamap_t xfer;
1028 int dmaflag = 0;
1029
1030 xfer = ac->ac_xfer_map;
1031
1032 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1033 BUS_DMA_NOWAIT);
1034 if (rv != 0)
1035 return (rv);
1036
1037 mb = &ac->ac_cmd;
1038 ac->ac_xfer_size = size;
1039 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1040 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1041
1042 if (tflag & AC_XFER_OUT)
1043 dmaflag |= BUS_DMASYNC_PREWRITE;
1044 if (tflag & AC_XFER_IN)
1045 dmaflag |= BUS_DMASYNC_PREREAD;
1046
1047 /* We don't need to use a scatter/gather list for just 1 segment. */
1048 nsegs = xfer->dm_nsegs;
1049 if (nsegs == 1) {
1050 mb->mb_nsgelem = 0;
1051 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1052 ac->ac_flags |= AC_NOSGL;
1053 } else {
1054 mb->mb_nsgelem = nsegs;
1055 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1056
1057 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1058 for (i = 0; i < nsegs; i++, sge++) {
1059 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1060 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1061 }
1062 }
1063
1064 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1065
1066 if ((ac->ac_flags & AC_NOSGL) == 0)
1067 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1068 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1069
1070 return (0);
1071 }
1072
1073 /*
1074 * Unmap the specified CCB's data buffer.
1075 */
1076 void
1077 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1078 {
1079 int dmaflag = 0;
1080
1081 if (ac->ac_flags & AC_XFER_IN)
1082 dmaflag |= BUS_DMASYNC_POSTREAD;
1083 if (ac->ac_flags & AC_XFER_OUT)
1084 dmaflag |= BUS_DMASYNC_POSTWRITE;
1085
1086 if ((ac->ac_flags & AC_NOSGL) == 0)
1087 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1088 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1089 BUS_DMASYNC_POSTWRITE);
1090 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1091 dmaflag);
1092 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1093 }
1094
1095 /*
1096 * Submit a command to the controller and poll on completion. Return
1097 * non-zero on timeout or error. Must be called with interrupts blocked.
1098 */
1099 int
1100 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1101 {
1102 int rv;
1103
1104 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1105 return (rv);
1106 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1107
1108 for (timo *= 10; timo != 0; timo--) {
1109 amr_intr(amr);
1110 if ((ac->ac_flags & AC_COMPLETE) != 0)
1111 break;
1112 DELAY(100);
1113 }
1114
1115 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1116 }
1117
1118 /*
1119 * Submit a command to the controller and sleep on completion. Return
1120 * non-zero on error.
1121 */
1122 int
1123 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1124 {
1125 int s;
1126
1127 s = splbio();
1128 amr_ccb_enqueue(amr, ac);
1129 tsleep(ac, PRIBIO, "amrcmd", 0);
1130 splx(s);
1131
1132 return (ac->ac_status != 0 ? EIO : 0);
1133 }
1134
1135 #if 0
1136 /*
1137 * Wait for the mailbox to become available.
1138 */
1139 static int
1140 amr_mbox_wait(struct amr_softc *amr)
1141 {
1142 int timo;
1143
1144 for (timo = 10000; timo != 0; timo--) {
1145 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1146 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1147 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1148 break;
1149 DELAY(100);
1150 }
1151
1152 if (timo == 0)
1153 printf("%s: controller wedged\n", device_xname(&amr->amr_dv));
1154
1155 return (timo != 0 ? 0 : EAGAIN);
1156 }
1157 #endif
1158
1159 /*
1160 * Tell the controller that the mailbox contains a valid command. Must be
1161 * called with interrupts blocked.
1162 */
1163 static int
1164 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1165 {
1166 u_int32_t v;
1167
1168 amr->amr_mbox->mb_poll = 0;
1169 amr->amr_mbox->mb_ack = 0;
1170 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1171 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1172 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1173 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1174 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1175 return (EAGAIN);
1176
1177 v = amr_inl(amr, AMR_QREG_IDB);
1178 if ((v & AMR_QIDB_SUBMIT) != 0) {
1179 amr->amr_mbox->mb_cmd.mb_busy = 0;
1180 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1181 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1182 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1183 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1184 return (EAGAIN);
1185 }
1186
1187 amr->amr_mbox->mb_segment = 0;
1188 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1189 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1190 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1191
1192 ac->ac_start_time = time_uptime;
1193 ac->ac_flags |= AC_ACTIVE;
1194 amr_outl(amr, AMR_QREG_IDB,
1195 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1196 return (0);
1197 }
1198
1199 static int
1200 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1201 {
1202
1203 amr->amr_mbox->mb_poll = 0;
1204 amr->amr_mbox->mb_ack = 0;
1205 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1206 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1207 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1208 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1209 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1210 return (EAGAIN);
1211
1212 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1213 amr->amr_mbox->mb_cmd.mb_busy = 0;
1214 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1215 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1216 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1217 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1218 return (EAGAIN);
1219 }
1220
1221 amr->amr_mbox->mb_segment = 0;
1222 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1223 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1224 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1225
1226 ac->ac_start_time = time_uptime;
1227 ac->ac_flags |= AC_ACTIVE;
1228 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1229 return (0);
1230 }
1231
1232 /*
1233 * Claim any work that the controller has completed; acknowledge completion,
1234 * save details of the completion in (mbsave). Must be called with
1235 * interrupts blocked.
1236 */
1237 static int
1238 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1239 {
1240
1241 /* Work waiting for us? */
1242 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1243 return (-1);
1244
1245 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1246 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1247
1248 /* Save the mailbox, which contains a list of completed commands. */
1249 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1250
1251 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1252 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1253
1254 /* Ack the interrupt and mailbox transfer. */
1255 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1256 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1257
1258 /*
1259 * This waits for the controller to notice that we've taken the
1260 * command from it. It's very inefficient, and we shouldn't do it,
1261 * but if we remove this code, we stop completing commands under
1262 * load.
1263 *
1264 * Peter J says we shouldn't do this. The documentation says we
1265 * should. Who is right?
1266 */
1267 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1268 DELAY(10);
1269
1270 return (0);
1271 }
1272
1273 static int
1274 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1275 {
1276 u_int8_t istat;
1277
1278 /* Check for valid interrupt status. */
1279 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1280 return (-1);
1281
1282 /* Ack the interrupt. */
1283 amr_outb(amr, AMR_SREG_INTR, istat);
1284
1285 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1286 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1287
1288 /* Save mailbox, which contains a list of completed commands. */
1289 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1290
1291 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1292 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1293
1294 /* Ack mailbox transfer. */
1295 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1296
1297 return (0);
1298 }
1299
1300 static void
1301 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1302 {
1303 int i;
1304
1305 printf("%s: ", device_xname(&amr->amr_dv));
1306 for (i = 0; i < 4; i++)
1307 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1308 printf("\n");
1309 }
1310
1311 static int
1312 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1313 {
1314 struct amr_softc *amr;
1315
1316 if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL)
1317 return (ENXIO);
1318 if ((amr->amr_flags & AMRF_OPEN) != 0)
1319 return (EBUSY);
1320
1321 amr->amr_flags |= AMRF_OPEN;
1322 return (0);
1323 }
1324
1325 static int
1326 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1327 {
1328 struct amr_softc *amr;
1329
1330 amr = device_lookup(&amr_cd, minor(dev));
1331 amr->amr_flags &= ~AMRF_OPEN;
1332 return (0);
1333 }
1334
1335 static int
1336 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1337 struct lwp *l)
1338 {
1339 struct amr_softc *amr;
1340 struct amr_user_ioctl *au;
1341 struct amr_ccb *ac;
1342 struct amr_mailbox_ioctl *mbi;
1343 unsigned long au_length;
1344 uint8_t *au_cmd;
1345 int error;
1346 void *dp = NULL, *au_buffer;
1347
1348 amr = device_lookup(&amr_cd, minor(dev));
1349
1350 /* This should be compatible with the FreeBSD interface */
1351
1352 switch (cmd) {
1353 case AMR_IO_VERSION:
1354 *(int *)data = AMR_IO_VERSION_NUMBER;
1355 return 0;
1356 case AMR_IO_COMMAND:
1357 error = kauth_authorize_device_passthru(l->l_cred, dev,
1358 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1359 if (error)
1360 return (error);
1361
1362 au = (struct amr_user_ioctl *)data;
1363 au_cmd = au->au_cmd;
1364 au_buffer = au->au_buffer;
1365 au_length = au->au_length;
1366 break;
1367 default:
1368 return ENOTTY;
1369 }
1370
1371 if (au_cmd[0] == AMR_CMD_PASS) {
1372 /* not yet */
1373 return EOPNOTSUPP;
1374 }
1375
1376 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1377 return (EINVAL);
1378
1379 /*
1380 * allocate kernel memory for data, doing I/O directly to user
1381 * buffer isn't that easy.
1382 */
1383 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1384 if (dp == NULL)
1385 return ENOMEM;
1386 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1387 goto out;
1388
1389 /* direct command to controller */
1390 while (amr_ccb_alloc(amr, &ac) != 0) {
1391 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1392 if (error == EINTR)
1393 goto out;
1394 }
1395
1396 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1397 mbi->mb_command = au_cmd[0];
1398 mbi->mb_channel = au_cmd[1];
1399 mbi->mb_param = au_cmd[2];
1400 mbi->mb_pad[0] = au_cmd[3];
1401 mbi->mb_drive = au_cmd[4];
1402 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1403 AC_XFER_IN | AC_XFER_OUT);
1404 if (error == 0) {
1405 error = amr_ccb_wait(amr, ac);
1406 amr_ccb_unmap(amr, ac);
1407 if (error == 0)
1408 error = copyout(dp, au_buffer, au_length);
1409
1410 }
1411 amr_ccb_free(amr, ac);
1412 out:
1413 free(dp, M_DEVBUF);
1414 return (error);
1415 }
1416