amr.c revision 1.49 1 /* $NetBSD: amr.c,v 1.49 2008/06/08 12:43:52 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60 */
61
62 /*
63 * Driver for AMI RAID controllers.
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.49 2008/06/08 12:43:52 tsutsui Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80
81 #include <uvm/uvm_extern.h>
82
83 #include <machine/endian.h>
84 #include <sys/bus.h>
85
86 #include <dev/pci/pcidevs.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/amrreg.h>
89 #include <dev/pci/amrvar.h>
90 #include <dev/pci/amrio.h>
91
92 #include "locators.h"
93
94 static void amr_attach(struct device *, struct device *, void *);
95 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
96 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
97 void *);
98 static int amr_init(struct amr_softc *, const char *,
99 struct pci_attach_args *pa);
100 static int amr_intr(void *);
101 static int amr_match(struct device *, struct cfdata *, void *);
102 static int amr_print(void *, const char *);
103 static void amr_shutdown(void *);
104 static void amr_teardown(struct amr_softc *);
105 static void amr_thread(void *);
106
107 static int amr_quartz_get_work(struct amr_softc *,
108 struct amr_mailbox_resp *);
109 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
110 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
111 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
112
113 static dev_type_open(amropen);
114 static dev_type_close(amrclose);
115 static dev_type_ioctl(amrioctl);
116
117 CFATTACH_DECL(amr, sizeof(struct amr_softc),
118 amr_match, amr_attach, NULL, NULL);
119
120 const struct cdevsw amr_cdevsw = {
121 amropen, amrclose, noread, nowrite, amrioctl,
122 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
123 };
124
125 extern struct cfdriver amr_cd;
126
127 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
128 #define AT_SIG 0x02 /* Check for signature */
129
130 static struct amr_pci_type {
131 u_short apt_vendor;
132 u_short apt_product;
133 u_short apt_flags;
134 } const amr_pci_type[] = {
135 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
136 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
137 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
138 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
139 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
140 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
141 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
142 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
143 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
144 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
145 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
146 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
147 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
148 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
149 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
150 };
151
152 static struct amr_typestr {
153 const char *at_str;
154 int at_sig;
155 } const amr_typestr[] = {
156 { "Series 431", AMR_SIG_431 },
157 { "Series 438", AMR_SIG_438 },
158 { "Series 466", AMR_SIG_466 },
159 { "Series 467", AMR_SIG_467 },
160 { "Series 490", AMR_SIG_490 },
161 { "Series 762", AMR_SIG_762 },
162 { "HP NetRAID (T5)", AMR_SIG_T5 },
163 { "HP NetRAID (T7)", AMR_SIG_T7 },
164 };
165
166 static struct {
167 const char *ds_descr;
168 int ds_happy;
169 } const amr_dstate[] = {
170 { "offline", 0 },
171 { "degraded", 1 },
172 { "optimal", 1 },
173 { "online", 1 },
174 { "failed", 0 },
175 { "rebuilding", 1 },
176 { "hotspare", 0 },
177 };
178
179 static void *amr_sdh;
180
181 static int amr_max_segs;
182 int amr_max_xfer;
183
184 static inline u_int8_t
185 amr_inb(struct amr_softc *amr, int off)
186 {
187
188 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
189 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
190 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
191 }
192
193 static inline u_int32_t
194 amr_inl(struct amr_softc *amr, int off)
195 {
196
197 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
198 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
199 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
200 }
201
202 static inline void
203 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
204 {
205
206 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
207 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
208 BUS_SPACE_BARRIER_WRITE);
209 }
210
211 static inline void
212 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
213 {
214
215 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
216 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
217 BUS_SPACE_BARRIER_WRITE);
218 }
219
220 /*
221 * Match a supported device.
222 */
223 static int
224 amr_match(struct device *parent, struct cfdata *match,
225 void *aux)
226 {
227 struct pci_attach_args *pa;
228 pcireg_t s;
229 int i;
230
231 pa = (struct pci_attach_args *)aux;
232
233 /*
234 * Don't match the device if it's operating in I2O mode. In this
235 * case it should be handled by the `iop' driver.
236 */
237 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
238 return (0);
239
240 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
241 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
242 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
243 break;
244
245 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
246 return (0);
247
248 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
249 return (1);
250
251 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
252 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
253 }
254
255 /*
256 * Attach a supported device.
257 */
258 static void
259 amr_attach(struct device *parent, struct device *self, void *aux)
260 {
261 struct pci_attach_args *pa;
262 struct amr_attach_args amra;
263 const struct amr_pci_type *apt;
264 struct amr_softc *amr;
265 pci_chipset_tag_t pc;
266 pci_intr_handle_t ih;
267 const char *intrstr;
268 pcireg_t reg;
269 int rseg, i, j, size, rv, memreg, ioreg;
270 struct amr_ccb *ac;
271 int locs[AMRCF_NLOCS];
272
273 aprint_naive(": RAID controller\n");
274
275 amr = (struct amr_softc *)self;
276 pa = (struct pci_attach_args *)aux;
277 pc = pa->pa_pc;
278
279 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
280 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
281 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
282 break;
283 apt = amr_pci_type + i;
284
285 memreg = ioreg = 0;
286 for (i = 0x10; i <= 0x14; i += 4) {
287 reg = pci_conf_read(pc, pa->pa_tag, i);
288 switch (PCI_MAPREG_TYPE(reg)) {
289 case PCI_MAPREG_TYPE_MEM:
290 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
291 memreg = i;
292 break;
293 case PCI_MAPREG_TYPE_IO:
294 if (PCI_MAPREG_IO_SIZE(reg) != 0)
295 ioreg = i;
296 break;
297
298 }
299 }
300
301 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
302 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
303 ;
304 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
305 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
306 ;
307 else {
308 aprint_error("can't map control registers\n");
309 amr_teardown(amr);
310 return;
311 }
312
313 amr->amr_flags |= AMRF_PCI_REGS;
314 amr->amr_dmat = pa->pa_dmat;
315 amr->amr_pc = pa->pa_pc;
316
317 /* Enable the device. */
318 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
319 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
320 reg | PCI_COMMAND_MASTER_ENABLE);
321
322 /* Map and establish the interrupt. */
323 if (pci_intr_map(pa, &ih)) {
324 aprint_error("can't map interrupt\n");
325 amr_teardown(amr);
326 return;
327 }
328 intrstr = pci_intr_string(pc, ih);
329 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
330 if (amr->amr_ih == NULL) {
331 aprint_error("can't establish interrupt");
332 if (intrstr != NULL)
333 aprint_normal(" at %s", intrstr);
334 aprint_normal("\n");
335 amr_teardown(amr);
336 return;
337 }
338 amr->amr_flags |= AMRF_PCI_INTR;
339
340 /*
341 * Allocate space for the mailbox and S/G lists. Some controllers
342 * don't like S/G lists to be located below 0x2000, so we allocate
343 * enough slop to enable us to compensate.
344 *
345 * The standard mailbox structure needs to be aligned on a 16-byte
346 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
347 * size, which precedes the standard mailbox.
348 */
349 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
350 amr->amr_dmasize = size;
351
352 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
353 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
354 aprint_error_dev(&amr->amr_dv, "unable to allocate buffer, rv = %d\n",
355 rv);
356 amr_teardown(amr);
357 return;
358 }
359 amr->amr_flags |= AMRF_DMA_ALLOC;
360
361 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
362 (void **)&amr->amr_mbox,
363 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
364 aprint_error_dev(&amr->amr_dv, "unable to map buffer, rv = %d\n",
365 rv);
366 amr_teardown(amr);
367 return;
368 }
369 amr->amr_flags |= AMRF_DMA_MAP;
370
371 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
372 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
373 aprint_error_dev(&amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
374 rv);
375 amr_teardown(amr);
376 return;
377 }
378 amr->amr_flags |= AMRF_DMA_CREATE;
379
380 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
381 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
382 aprint_error_dev(&amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
383 rv);
384 amr_teardown(amr);
385 return;
386 }
387 amr->amr_flags |= AMRF_DMA_LOAD;
388
389 memset(amr->amr_mbox, 0, size);
390
391 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
392 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
393 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
394 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
395
396 /*
397 * Allocate and initalise the command control blocks.
398 */
399 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
400 amr->amr_ccbs = ac;
401 SLIST_INIT(&amr->amr_ccb_freelist);
402 TAILQ_INIT(&amr->amr_ccb_active);
403 amr->amr_flags |= AMRF_CCBS;
404
405 if (amr_max_xfer == 0) {
406 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
407 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
408 }
409
410 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
411 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
412 amr_max_segs, amr_max_xfer, 0,
413 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
414 if (rv != 0)
415 break;
416
417 ac->ac_ident = i;
418 amr_ccb_free(amr, ac);
419 }
420 if (i != AMR_MAX_CMDS) {
421 aprint_error_dev(&amr->amr_dv, "memory exhausted\n");
422 amr_teardown(amr);
423 return;
424 }
425
426 /*
427 * Take care of model-specific tasks.
428 */
429 if ((apt->apt_flags & AT_QUARTZ) != 0) {
430 amr->amr_submit = amr_quartz_submit;
431 amr->amr_get_work = amr_quartz_get_work;
432 } else {
433 amr->amr_submit = amr_std_submit;
434 amr->amr_get_work = amr_std_get_work;
435
436 /* Notify the controller of the mailbox location. */
437 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
438 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
439
440 /* Clear outstanding interrupts and enable interrupts. */
441 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
442 amr_outb(amr, AMR_SREG_TOGL,
443 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
444 }
445
446 /*
447 * Retrieve parameters, and tell the world about us.
448 */
449 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
450 amr->amr_flags |= AMRF_ENQBUF;
451 amr->amr_maxqueuecnt = i;
452 aprint_normal(": AMI RAID ");
453 if (amr_init(amr, intrstr, pa) != 0) {
454 amr_teardown(amr);
455 return;
456 }
457
458 /*
459 * Cap the maximum number of outstanding commands. AMI's Linux
460 * driver doesn't trust the controller's reported value, and lockups
461 * have been seen when we do.
462 */
463 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
464 if (amr->amr_maxqueuecnt > i)
465 amr->amr_maxqueuecnt = i;
466
467 /* Set our `shutdownhook' before we start any device activity. */
468 if (amr_sdh == NULL)
469 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
470
471 /* Attach sub-devices. */
472 for (j = 0; j < amr->amr_numdrives; j++) {
473 if (amr->amr_drive[j].al_size == 0)
474 continue;
475 amra.amra_unit = j;
476
477 locs[AMRCF_UNIT] = j;
478
479 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
480 "amr", locs, &amra, amr_print, config_stdsubmatch);
481 }
482
483 SIMPLEQ_INIT(&amr->amr_ccb_queue);
484
485 /* XXX This doesn't work for newer boards yet. */
486 if ((apt->apt_flags & AT_QUARTZ) == 0) {
487 rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
488 &amr->amr_thread, "%s", device_xname(&amr->amr_dv));
489 if (rv != 0)
490 aprint_error_dev(&amr->amr_dv, "unable to create thread (%d)",
491 rv);
492 else
493 amr->amr_flags |= AMRF_THREAD;
494 }
495 }
496
497 /*
498 * Free up resources.
499 */
500 static void
501 amr_teardown(struct amr_softc *amr)
502 {
503 struct amr_ccb *ac;
504 int fl;
505
506 fl = amr->amr_flags;
507
508 if ((fl & AMRF_THREAD) != 0) {
509 amr->amr_flags |= AMRF_THREAD_EXIT;
510 wakeup(amr_thread);
511 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
512 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
513 }
514 if ((fl & AMRF_CCBS) != 0) {
515 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
516 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
517 }
518 free(amr->amr_ccbs, M_DEVBUF);
519 }
520 if ((fl & AMRF_ENQBUF) != 0)
521 free(amr->amr_enqbuf, M_DEVBUF);
522 if ((fl & AMRF_DMA_LOAD) != 0)
523 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
524 if ((fl & AMRF_DMA_MAP) != 0)
525 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
526 amr->amr_dmasize);
527 if ((fl & AMRF_DMA_ALLOC) != 0)
528 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
529 if ((fl & AMRF_DMA_CREATE) != 0)
530 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
531 if ((fl & AMRF_PCI_INTR) != 0)
532 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
533 if ((fl & AMRF_PCI_REGS) != 0)
534 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
535 }
536
537 /*
538 * Print autoconfiguration message for a sub-device.
539 */
540 static int
541 amr_print(void *aux, const char *pnp)
542 {
543 struct amr_attach_args *amra;
544
545 amra = (struct amr_attach_args *)aux;
546
547 if (pnp != NULL)
548 aprint_normal("block device at %s", pnp);
549 aprint_normal(" unit %d", amra->amra_unit);
550 return (UNCONF);
551 }
552
553 /*
554 * Retrieve operational parameters and describe the controller.
555 */
556 static int
557 amr_init(struct amr_softc *amr, const char *intrstr,
558 struct pci_attach_args *pa)
559 {
560 struct amr_adapter_info *aa;
561 struct amr_prodinfo *ap;
562 struct amr_enquiry *ae;
563 struct amr_enquiry3 *aex;
564 const char *prodstr;
565 u_int i, sig, ishp;
566 char sbuf[64];
567
568 /*
569 * Try to get 40LD product info, which tells us what the card is
570 * labelled as.
571 */
572 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
573 amr->amr_enqbuf);
574 if (ap != NULL) {
575 aprint_normal("<%.80s>\n", ap->ap_product);
576 if (intrstr != NULL)
577 aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
578 intrstr);
579 aprint_normal_dev(&amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
580 ap->ap_firmware, ap->ap_bios,
581 le16toh(ap->ap_memsize));
582
583 amr->amr_maxqueuecnt = ap->ap_maxio;
584
585 /*
586 * Fetch and record state of logical drives.
587 */
588 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
589 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
590 if (aex == NULL) {
591 aprint_error_dev(&amr->amr_dv, "ENQUIRY3 failed\n");
592 return (-1);
593 }
594
595 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
596 aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
597 " than the array can handle (%zu)\n",
598 aex->ae_numldrives,
599 __arraycount(aex->ae_drivestate));
600 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
601 }
602 if (aex->ae_numldrives > AMR_MAX_UNITS) {
603 aprint_error_dev(&amr->amr_dv,
604 "adjust AMR_MAX_UNITS to %d (currently %d)"
605 "\n", AMR_MAX_UNITS,
606 amr->amr_numdrives);
607 amr->amr_numdrives = AMR_MAX_UNITS;
608 } else
609 amr->amr_numdrives = aex->ae_numldrives;
610
611 for (i = 0; i < amr->amr_numdrives; i++) {
612 amr->amr_drive[i].al_size =
613 le32toh(aex->ae_drivesize[i]);
614 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
615 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
616 }
617
618 return (0);
619 }
620
621 /*
622 * Try 8LD extended ENQUIRY to get the controller signature. Once
623 * found, search for a product description.
624 */
625 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
626 if (ae != NULL) {
627 i = 0;
628 sig = le32toh(ae->ae_signature);
629
630 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
631 if (amr_typestr[i].at_sig == sig)
632 break;
633 i++;
634 }
635 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
636 snprintf(sbuf, sizeof(sbuf),
637 "unknown ENQUIRY2 sig (0x%08x)", sig);
638 prodstr = sbuf;
639 } else
640 prodstr = amr_typestr[i].at_str;
641 } else {
642 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
643 if (ae == NULL) {
644 aprint_error_dev(&amr->amr_dv, "unsupported controller\n");
645 return (-1);
646 }
647
648 switch (PCI_PRODUCT(pa->pa_id)) {
649 case PCI_PRODUCT_AMI_MEGARAID:
650 prodstr = "Series 428";
651 break;
652 case PCI_PRODUCT_AMI_MEGARAID2:
653 prodstr = "Series 434";
654 break;
655 default:
656 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
657 PCI_PRODUCT(pa->pa_id));
658 prodstr = sbuf;
659 break;
660 }
661 }
662
663 /*
664 * HP NetRaid controllers have a special encoding of the firmware
665 * and BIOS versions. The AMI version seems to have it as strings
666 * whereas the HP version does it with a leading uppercase character
667 * and two binary numbers.
668 */
669 aa = &ae->ae_adapter;
670
671 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
672 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
673 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
674 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
675 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
676 /* The AMI 438 is a NetRaid 3si in HP-land. */
677 prodstr = "HP NetRaid 3si";
678 }
679 ishp = 1;
680 } else
681 ishp = 0;
682
683 aprint_normal("<%s>\n", prodstr);
684 if (intrstr != NULL)
685 aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
686 intrstr);
687
688 if (ishp)
689 aprint_normal_dev(&amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
690 ", %dMB RAM\n", aa->aa_firmware[2],
691 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
692 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
693 else
694 aprint_normal_dev(&amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
695 aa->aa_firmware, aa->aa_bios,
696 aa->aa_memorysize);
697
698 amr->amr_maxqueuecnt = aa->aa_maxio;
699
700 /*
701 * Record state of logical drives.
702 */
703 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
704 aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
705 " than the array can handle (%zu)\n",
706 ae->ae_ldrv.al_numdrives,
707 __arraycount(ae->ae_ldrv.al_size));
708 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
709 }
710 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
711 aprint_error_dev(&amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
712 ae->ae_ldrv.al_numdrives,
713 AMR_MAX_UNITS);
714 amr->amr_numdrives = AMR_MAX_UNITS;
715 } else
716 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
717
718 for (i = 0; i < amr->amr_numdrives; i++) {
719 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
720 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
721 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
722 }
723
724 return (0);
725 }
726
727 /*
728 * Flush the internal cache on each configured controller. Called at
729 * shutdown time.
730 */
731 static void
732 amr_shutdown(void *cookie)
733 {
734 extern struct cfdriver amr_cd;
735 struct amr_softc *amr;
736 struct amr_ccb *ac;
737 int i, rv, s;
738
739 for (i = 0; i < amr_cd.cd_ndevs; i++) {
740 if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
741 continue;
742
743 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
744 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
745 s = splbio();
746 rv = amr_ccb_poll(amr, ac, 30000);
747 splx(s);
748 amr_ccb_free(amr, ac);
749 }
750 if (rv != 0)
751 aprint_error_dev(&amr->amr_dv, "unable to flush cache (%d)\n", rv);
752 }
753 }
754
755 /*
756 * Interrupt service routine.
757 */
758 static int
759 amr_intr(void *cookie)
760 {
761 struct amr_softc *amr;
762 struct amr_ccb *ac;
763 struct amr_mailbox_resp mbox;
764 u_int i, forus, idx;
765
766 amr = cookie;
767 forus = 0;
768
769 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
770 /* Iterate over completed commands in this result. */
771 for (i = 0; i < mbox.mb_nstatus; i++) {
772 idx = mbox.mb_completed[i] - 1;
773 ac = amr->amr_ccbs + idx;
774
775 if (idx >= amr->amr_maxqueuecnt) {
776 printf("%s: bad status (bogus ID: %u=%u)\n",
777 device_xname(&amr->amr_dv), i, idx);
778 continue;
779 }
780
781 if ((ac->ac_flags & AC_ACTIVE) == 0) {
782 printf("%s: bad status (not active; 0x04%x)\n",
783 device_xname(&amr->amr_dv), ac->ac_flags);
784 continue;
785 }
786
787 ac->ac_status = mbox.mb_status;
788 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
789 AC_COMPLETE;
790 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
791
792 if ((ac->ac_flags & AC_MOAN) != 0)
793 printf("%s: ccb %d completed\n",
794 device_xname(&amr->amr_dv), ac->ac_ident);
795
796 /* Pass notification to upper layers. */
797 if (ac->ac_handler != NULL)
798 (*ac->ac_handler)(ac);
799 else
800 wakeup(ac);
801 }
802 forus = 1;
803 }
804
805 if (forus)
806 amr_ccb_enqueue(amr, NULL);
807
808 return (forus);
809 }
810
811 /*
812 * Watchdog thread.
813 */
814 static void
815 amr_thread(void *cookie)
816 {
817 struct amr_softc *amr;
818 struct amr_ccb *ac;
819 struct amr_logdrive *al;
820 struct amr_enquiry *ae;
821 int rv, i, s;
822
823 amr = cookie;
824 ae = amr->amr_enqbuf;
825
826 for (;;) {
827 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
828
829 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
830 amr->amr_flags ^= AMRF_THREAD_EXIT;
831 wakeup(&amr->amr_flags);
832 kthread_exit(0);
833 }
834
835 s = splbio();
836 amr_intr(cookie);
837 ac = TAILQ_FIRST(&amr->amr_ccb_active);
838 while (ac != NULL) {
839 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
840 break;
841 if ((ac->ac_flags & AC_MOAN) == 0) {
842 printf("%s: ccb %d timed out; mailbox:\n",
843 device_xname(&amr->amr_dv), ac->ac_ident);
844 amr_ccb_dump(amr, ac);
845 ac->ac_flags |= AC_MOAN;
846 }
847 ac = TAILQ_NEXT(ac, ac_chain.tailq);
848 }
849 splx(s);
850
851 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
852 printf("%s: ccb_alloc failed (%d)\n",
853 device_xname(&amr->amr_dv), rv);
854 continue;
855 }
856
857 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
858
859 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
860 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
861 if (rv != 0) {
862 aprint_error_dev(&amr->amr_dv, "ccb_map failed (%d)\n",
863 rv);
864 amr_ccb_free(amr, ac);
865 continue;
866 }
867
868 rv = amr_ccb_wait(amr, ac);
869 amr_ccb_unmap(amr, ac);
870 if (rv != 0) {
871 aprint_error_dev(&amr->amr_dv, "enquiry failed (st=%d)\n",
872 ac->ac_status);
873 continue;
874 }
875 amr_ccb_free(amr, ac);
876
877 al = amr->amr_drive;
878 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
879 if (al->al_dv == NULL)
880 continue;
881 if (al->al_state == ae->ae_ldrv.al_state[i])
882 continue;
883
884 printf("%s: state changed: %s -> %s\n",
885 device_xname(al->al_dv),
886 amr_drive_state(al->al_state, NULL),
887 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
888
889 al->al_state = ae->ae_ldrv.al_state[i];
890 }
891 }
892 }
893
894 /*
895 * Return a text description of a logical drive's current state.
896 */
897 const char *
898 amr_drive_state(int state, int *happy)
899 {
900 const char *str;
901
902 state = AMR_DRV_CURSTATE(state);
903 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
904 if (happy)
905 *happy = 1;
906 str = "status unknown";
907 } else {
908 if (happy)
909 *happy = amr_dstate[state].ds_happy;
910 str = amr_dstate[state].ds_descr;
911 }
912
913 return (str);
914 }
915
916 /*
917 * Run a generic enquiry-style command.
918 */
919 static void *
920 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
921 u_int8_t cmdqual, void *sbuf)
922 {
923 struct amr_ccb *ac;
924 u_int8_t *mb;
925 int rv;
926
927 if (amr_ccb_alloc(amr, &ac) != 0)
928 return (NULL);
929
930 /* Build the command proper. */
931 mb = (u_int8_t *)&ac->ac_cmd;
932 mb[0] = cmd;
933 mb[2] = cmdsub;
934 mb[3] = cmdqual;
935
936 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
937 if (rv == 0) {
938 rv = amr_ccb_poll(amr, ac, 2000);
939 amr_ccb_unmap(amr, ac);
940 }
941 amr_ccb_free(amr, ac);
942
943 return (rv ? NULL : sbuf);
944 }
945
946 /*
947 * Allocate and initialise a CCB.
948 */
949 int
950 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
951 {
952 int s;
953
954 s = splbio();
955 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
956 splx(s);
957 return (EAGAIN);
958 }
959 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
960 splx(s);
961
962 return (0);
963 }
964
965 /*
966 * Free a CCB.
967 */
968 void
969 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
970 {
971 int s;
972
973 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
974 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
975 ac->ac_cmd.mb_busy = 1;
976 ac->ac_handler = NULL;
977 ac->ac_flags = 0;
978
979 s = splbio();
980 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
981 splx(s);
982 }
983
984 /*
985 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
986 * the order that they were enqueued and try to submit their command blocks
987 * to the controller for execution.
988 */
989 void
990 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
991 {
992 int s;
993
994 s = splbio();
995
996 if (ac != NULL)
997 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
998
999 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1000 if ((*amr->amr_submit)(amr, ac) != 0)
1001 break;
1002 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1003 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1004 }
1005
1006 splx(s);
1007 }
1008
1009 /*
1010 * Map the specified CCB's data buffer onto the bus, and fill the
1011 * scatter-gather list.
1012 */
1013 int
1014 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1015 int tflag)
1016 {
1017 struct amr_sgentry *sge;
1018 struct amr_mailbox_cmd *mb;
1019 int nsegs, i, rv, sgloff;
1020 bus_dmamap_t xfer;
1021 int dmaflag = 0;
1022
1023 xfer = ac->ac_xfer_map;
1024
1025 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1026 BUS_DMA_NOWAIT);
1027 if (rv != 0)
1028 return (rv);
1029
1030 mb = &ac->ac_cmd;
1031 ac->ac_xfer_size = size;
1032 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1033 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1034
1035 if (tflag & AC_XFER_OUT)
1036 dmaflag |= BUS_DMASYNC_PREWRITE;
1037 if (tflag & AC_XFER_IN)
1038 dmaflag |= BUS_DMASYNC_PREREAD;
1039
1040 /* We don't need to use a scatter/gather list for just 1 segment. */
1041 nsegs = xfer->dm_nsegs;
1042 if (nsegs == 1) {
1043 mb->mb_nsgelem = 0;
1044 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1045 ac->ac_flags |= AC_NOSGL;
1046 } else {
1047 mb->mb_nsgelem = nsegs;
1048 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1049
1050 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1051 for (i = 0; i < nsegs; i++, sge++) {
1052 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1053 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1054 }
1055 }
1056
1057 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1058
1059 if ((ac->ac_flags & AC_NOSGL) == 0)
1060 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1061 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1062
1063 return (0);
1064 }
1065
1066 /*
1067 * Unmap the specified CCB's data buffer.
1068 */
1069 void
1070 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1071 {
1072 int dmaflag = 0;
1073
1074 if (ac->ac_flags & AC_XFER_IN)
1075 dmaflag |= BUS_DMASYNC_POSTREAD;
1076 if (ac->ac_flags & AC_XFER_OUT)
1077 dmaflag |= BUS_DMASYNC_POSTWRITE;
1078
1079 if ((ac->ac_flags & AC_NOSGL) == 0)
1080 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1081 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1082 BUS_DMASYNC_POSTWRITE);
1083 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1084 dmaflag);
1085 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1086 }
1087
1088 /*
1089 * Submit a command to the controller and poll on completion. Return
1090 * non-zero on timeout or error. Must be called with interrupts blocked.
1091 */
1092 int
1093 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1094 {
1095 int rv;
1096
1097 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1098 return (rv);
1099 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1100
1101 for (timo *= 10; timo != 0; timo--) {
1102 amr_intr(amr);
1103 if ((ac->ac_flags & AC_COMPLETE) != 0)
1104 break;
1105 DELAY(100);
1106 }
1107
1108 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1109 }
1110
1111 /*
1112 * Submit a command to the controller and sleep on completion. Return
1113 * non-zero on error.
1114 */
1115 int
1116 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1117 {
1118 int s;
1119
1120 s = splbio();
1121 amr_ccb_enqueue(amr, ac);
1122 tsleep(ac, PRIBIO, "amrcmd", 0);
1123 splx(s);
1124
1125 return (ac->ac_status != 0 ? EIO : 0);
1126 }
1127
1128 #if 0
1129 /*
1130 * Wait for the mailbox to become available.
1131 */
1132 static int
1133 amr_mbox_wait(struct amr_softc *amr)
1134 {
1135 int timo;
1136
1137 for (timo = 10000; timo != 0; timo--) {
1138 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1139 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1140 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1141 break;
1142 DELAY(100);
1143 }
1144
1145 if (timo == 0)
1146 printf("%s: controller wedged\n", device_xname(&amr->amr_dv));
1147
1148 return (timo != 0 ? 0 : EAGAIN);
1149 }
1150 #endif
1151
1152 /*
1153 * Tell the controller that the mailbox contains a valid command. Must be
1154 * called with interrupts blocked.
1155 */
1156 static int
1157 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1158 {
1159 u_int32_t v;
1160
1161 amr->amr_mbox->mb_poll = 0;
1162 amr->amr_mbox->mb_ack = 0;
1163 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1164 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1165 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1166 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1167 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1168 return (EAGAIN);
1169
1170 v = amr_inl(amr, AMR_QREG_IDB);
1171 if ((v & AMR_QIDB_SUBMIT) != 0) {
1172 amr->amr_mbox->mb_cmd.mb_busy = 0;
1173 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1174 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1175 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1176 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1177 return (EAGAIN);
1178 }
1179
1180 amr->amr_mbox->mb_segment = 0;
1181 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1182 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1183 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1184
1185 ac->ac_start_time = time_uptime;
1186 ac->ac_flags |= AC_ACTIVE;
1187 amr_outl(amr, AMR_QREG_IDB,
1188 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1189 return (0);
1190 }
1191
1192 static int
1193 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1194 {
1195
1196 amr->amr_mbox->mb_poll = 0;
1197 amr->amr_mbox->mb_ack = 0;
1198 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1199 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1200 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1201 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1202 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1203 return (EAGAIN);
1204
1205 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1206 amr->amr_mbox->mb_cmd.mb_busy = 0;
1207 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1208 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1209 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1210 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1211 return (EAGAIN);
1212 }
1213
1214 amr->amr_mbox->mb_segment = 0;
1215 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1216 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1217 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1218
1219 ac->ac_start_time = time_uptime;
1220 ac->ac_flags |= AC_ACTIVE;
1221 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1222 return (0);
1223 }
1224
1225 /*
1226 * Claim any work that the controller has completed; acknowledge completion,
1227 * save details of the completion in (mbsave). Must be called with
1228 * interrupts blocked.
1229 */
1230 static int
1231 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1232 {
1233
1234 /* Work waiting for us? */
1235 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1236 return (-1);
1237
1238 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1239 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1240
1241 /* Save the mailbox, which contains a list of completed commands. */
1242 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1243
1244 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1245 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1246
1247 /* Ack the interrupt and mailbox transfer. */
1248 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1249 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1250
1251 /*
1252 * This waits for the controller to notice that we've taken the
1253 * command from it. It's very inefficient, and we shouldn't do it,
1254 * but if we remove this code, we stop completing commands under
1255 * load.
1256 *
1257 * Peter J says we shouldn't do this. The documentation says we
1258 * should. Who is right?
1259 */
1260 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1261 DELAY(10);
1262
1263 return (0);
1264 }
1265
1266 static int
1267 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1268 {
1269 u_int8_t istat;
1270
1271 /* Check for valid interrupt status. */
1272 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1273 return (-1);
1274
1275 /* Ack the interrupt. */
1276 amr_outb(amr, AMR_SREG_INTR, istat);
1277
1278 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1279 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1280
1281 /* Save mailbox, which contains a list of completed commands. */
1282 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1283
1284 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1285 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1286
1287 /* Ack mailbox transfer. */
1288 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1289
1290 return (0);
1291 }
1292
1293 static void
1294 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1295 {
1296 int i;
1297
1298 printf("%s: ", device_xname(&amr->amr_dv));
1299 for (i = 0; i < 4; i++)
1300 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1301 printf("\n");
1302 }
1303
1304 static int
1305 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1306 {
1307 struct amr_softc *amr;
1308
1309 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1310 return (ENXIO);
1311 if ((amr->amr_flags & AMRF_OPEN) != 0)
1312 return (EBUSY);
1313
1314 amr->amr_flags |= AMRF_OPEN;
1315 return (0);
1316 }
1317
1318 static int
1319 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1320 {
1321 struct amr_softc *amr;
1322
1323 amr = device_lookup_private(&amr_cd, minor(dev));
1324 amr->amr_flags &= ~AMRF_OPEN;
1325 return (0);
1326 }
1327
1328 static int
1329 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1330 struct lwp *l)
1331 {
1332 struct amr_softc *amr;
1333 struct amr_user_ioctl *au;
1334 struct amr_ccb *ac;
1335 struct amr_mailbox_ioctl *mbi;
1336 unsigned long au_length;
1337 uint8_t *au_cmd;
1338 int error;
1339 void *dp = NULL, *au_buffer;
1340
1341 amr = device_lookup_private(&amr_cd, minor(dev));
1342
1343 /* This should be compatible with the FreeBSD interface */
1344
1345 switch (cmd) {
1346 case AMR_IO_VERSION:
1347 *(int *)data = AMR_IO_VERSION_NUMBER;
1348 return 0;
1349 case AMR_IO_COMMAND:
1350 error = kauth_authorize_device_passthru(l->l_cred, dev,
1351 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1352 if (error)
1353 return (error);
1354
1355 au = (struct amr_user_ioctl *)data;
1356 au_cmd = au->au_cmd;
1357 au_buffer = au->au_buffer;
1358 au_length = au->au_length;
1359 break;
1360 default:
1361 return ENOTTY;
1362 }
1363
1364 if (au_cmd[0] == AMR_CMD_PASS) {
1365 /* not yet */
1366 return EOPNOTSUPP;
1367 }
1368
1369 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1370 return (EINVAL);
1371
1372 /*
1373 * allocate kernel memory for data, doing I/O directly to user
1374 * buffer isn't that easy.
1375 */
1376 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1377 if (dp == NULL)
1378 return ENOMEM;
1379 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1380 goto out;
1381
1382 /* direct command to controller */
1383 while (amr_ccb_alloc(amr, &ac) != 0) {
1384 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1385 if (error == EINTR)
1386 goto out;
1387 }
1388
1389 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1390 mbi->mb_command = au_cmd[0];
1391 mbi->mb_channel = au_cmd[1];
1392 mbi->mb_param = au_cmd[2];
1393 mbi->mb_pad[0] = au_cmd[3];
1394 mbi->mb_drive = au_cmd[4];
1395 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1396 AC_XFER_IN | AC_XFER_OUT);
1397 if (error == 0) {
1398 error = amr_ccb_wait(amr, ac);
1399 amr_ccb_unmap(amr, ac);
1400 if (error == 0)
1401 error = copyout(dp, au_buffer, au_length);
1402
1403 }
1404 amr_ccb_free(amr, ac);
1405 out:
1406 free(dp, M_DEVBUF);
1407 return (error);
1408 }
1409