Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.49.12.1
      1 /*	$NetBSD: amr.c,v 1.49.12.1 2009/05/13 17:20:23 jym Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999,2000 Michael Smith
     34  * Copyright (c) 2000 BSDi
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  *
     46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56  * SUCH DAMAGE.
     57  *
     58  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     59  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     60  */
     61 
     62 /*
     63  * Driver for AMI RAID controllers.
     64  */
     65 
     66 #include <sys/cdefs.h>
     67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.49.12.1 2009/05/13 17:20:23 jym Exp $");
     68 
     69 #include <sys/param.h>
     70 #include <sys/systm.h>
     71 #include <sys/kernel.h>
     72 #include <sys/device.h>
     73 #include <sys/queue.h>
     74 #include <sys/proc.h>
     75 #include <sys/buf.h>
     76 #include <sys/malloc.h>
     77 #include <sys/conf.h>
     78 #include <sys/kthread.h>
     79 #include <sys/kauth.h>
     80 
     81 #include <uvm/uvm_extern.h>
     82 
     83 #include <machine/endian.h>
     84 #include <sys/bus.h>
     85 
     86 #include <dev/pci/pcidevs.h>
     87 #include <dev/pci/pcivar.h>
     88 #include <dev/pci/amrreg.h>
     89 #include <dev/pci/amrvar.h>
     90 #include <dev/pci/amrio.h>
     91 
     92 #include "locators.h"
     93 
     94 static void	amr_attach(device_t, device_t, void *);
     95 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
     96 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
     97 			     void *);
     98 static int	amr_init(struct amr_softc *, const char *,
     99 			 struct pci_attach_args *pa);
    100 static int	amr_intr(void *);
    101 static int	amr_match(device_t, cfdata_t, void *);
    102 static int	amr_print(void *, const char *);
    103 static void	amr_shutdown(void *);
    104 static void	amr_teardown(struct amr_softc *);
    105 static void	amr_thread(void *);
    106 
    107 static int	amr_quartz_get_work(struct amr_softc *,
    108 				    struct amr_mailbox_resp *);
    109 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    110 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    111 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    112 
    113 static dev_type_open(amropen);
    114 static dev_type_close(amrclose);
    115 static dev_type_ioctl(amrioctl);
    116 
    117 CFATTACH_DECL(amr, sizeof(struct amr_softc),
    118     amr_match, amr_attach, NULL, NULL);
    119 
    120 const struct cdevsw amr_cdevsw = {
    121 	amropen, amrclose, noread, nowrite, amrioctl,
    122 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
    123 };
    124 
    125 extern struct   cfdriver amr_cd;
    126 
    127 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    128 #define	AT_SIG		0x02	/* Check for signature */
    129 
    130 static struct amr_pci_type {
    131 	u_short	apt_vendor;
    132 	u_short	apt_product;
    133 	u_short	apt_flags;
    134 } const amr_pci_type[] = {
    135 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    136 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    137 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    138 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    139 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    140 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    141 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    142 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    143 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    144 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    145 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
    146 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
    147 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    148 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    149 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    150 };
    151 
    152 static struct amr_typestr {
    153 	const char	*at_str;
    154 	int		at_sig;
    155 } const amr_typestr[] = {
    156 	{ "Series 431",			AMR_SIG_431 },
    157 	{ "Series 438",			AMR_SIG_438 },
    158 	{ "Series 466",			AMR_SIG_466 },
    159 	{ "Series 467",			AMR_SIG_467 },
    160 	{ "Series 490",			AMR_SIG_490 },
    161 	{ "Series 762",			AMR_SIG_762 },
    162 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    163 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    164 };
    165 
    166 static struct {
    167 	const char	*ds_descr;
    168 	int	ds_happy;
    169 } const amr_dstate[] = {
    170 	{ "offline",	0 },
    171 	{ "degraded",	1 },
    172 	{ "optimal",	1 },
    173 	{ "online",	1 },
    174 	{ "failed",	0 },
    175 	{ "rebuilding",	1 },
    176 	{ "hotspare",	0 },
    177 };
    178 
    179 static void	*amr_sdh;
    180 
    181 static int	amr_max_segs;
    182 int		amr_max_xfer;
    183 
    184 static inline u_int8_t
    185 amr_inb(struct amr_softc *amr, int off)
    186 {
    187 
    188 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    189 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    190 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    191 }
    192 
    193 static inline u_int32_t
    194 amr_inl(struct amr_softc *amr, int off)
    195 {
    196 
    197 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    198 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    199 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    200 }
    201 
    202 static inline void
    203 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    204 {
    205 
    206 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    207 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    208 	    BUS_SPACE_BARRIER_WRITE);
    209 }
    210 
    211 static inline void
    212 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    213 {
    214 
    215 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    216 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    217 	    BUS_SPACE_BARRIER_WRITE);
    218 }
    219 
    220 /*
    221  * Match a supported device.
    222  */
    223 static int
    224 amr_match(device_t parent, cfdata_t match, void *aux)
    225 {
    226 	struct pci_attach_args *pa;
    227 	pcireg_t s;
    228 	int i;
    229 
    230 	pa = (struct pci_attach_args *)aux;
    231 
    232 	/*
    233 	 * Don't match the device if it's operating in I2O mode.  In this
    234 	 * case it should be handled by the `iop' driver.
    235 	 */
    236 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    237 		return (0);
    238 
    239 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    240 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    241 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    242 		    	break;
    243 
    244 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    245 		return (0);
    246 
    247 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    248 		return (1);
    249 
    250 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    251 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    252 }
    253 
    254 /*
    255  * Attach a supported device.
    256  */
    257 static void
    258 amr_attach(device_t parent, device_t self, void *aux)
    259 {
    260 	struct pci_attach_args *pa;
    261 	struct amr_attach_args amra;
    262 	const struct amr_pci_type *apt;
    263 	struct amr_softc *amr;
    264 	pci_chipset_tag_t pc;
    265 	pci_intr_handle_t ih;
    266 	const char *intrstr;
    267 	pcireg_t reg;
    268 	int rseg, i, j, size, rv, memreg, ioreg;
    269 	struct amr_ccb *ac;
    270 	int locs[AMRCF_NLOCS];
    271 
    272 	aprint_naive(": RAID controller\n");
    273 
    274 	amr = device_private(self);
    275 	pa = (struct pci_attach_args *)aux;
    276 	pc = pa->pa_pc;
    277 
    278 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    279 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    280 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    281 			break;
    282 	apt = amr_pci_type + i;
    283 
    284 	memreg = ioreg = 0;
    285 	for (i = 0x10; i <= 0x14; i += 4) {
    286 		reg = pci_conf_read(pc, pa->pa_tag, i);
    287 		switch (PCI_MAPREG_TYPE(reg)) {
    288 		case PCI_MAPREG_TYPE_MEM:
    289 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
    290 				memreg = i;
    291 			break;
    292 		case PCI_MAPREG_TYPE_IO:
    293 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
    294 				ioreg = i;
    295 			break;
    296 
    297 		}
    298 	}
    299 
    300 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    301 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    302 		;
    303 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    304 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    305 		;
    306 	else {
    307 		aprint_error("can't map control registers\n");
    308 		amr_teardown(amr);
    309 		return;
    310 	}
    311 
    312 	amr->amr_flags |= AMRF_PCI_REGS;
    313 	amr->amr_dmat = pa->pa_dmat;
    314 	amr->amr_pc = pa->pa_pc;
    315 
    316 	/* Enable the device. */
    317 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    318 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    319 	    reg | PCI_COMMAND_MASTER_ENABLE);
    320 
    321 	/* Map and establish the interrupt. */
    322 	if (pci_intr_map(pa, &ih)) {
    323 		aprint_error("can't map interrupt\n");
    324 		amr_teardown(amr);
    325 		return;
    326 	}
    327 	intrstr = pci_intr_string(pc, ih);
    328 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    329 	if (amr->amr_ih == NULL) {
    330 		aprint_error("can't establish interrupt");
    331 		if (intrstr != NULL)
    332 			aprint_normal(" at %s", intrstr);
    333 		aprint_normal("\n");
    334 		amr_teardown(amr);
    335 		return;
    336 	}
    337 	amr->amr_flags |= AMRF_PCI_INTR;
    338 
    339 	/*
    340 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    341 	 * don't like S/G lists to be located below 0x2000, so we allocate
    342 	 * enough slop to enable us to compensate.
    343 	 *
    344 	 * The standard mailbox structure needs to be aligned on a 16-byte
    345 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    346 	 * size, which precedes the standard mailbox.
    347 	 */
    348 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    349 	amr->amr_dmasize = size;
    350 
    351 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
    352 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    353 		aprint_error_dev(&amr->amr_dv, "unable to allocate buffer, rv = %d\n",
    354 		    rv);
    355 		amr_teardown(amr);
    356 		return;
    357 	}
    358 	amr->amr_flags |= AMRF_DMA_ALLOC;
    359 
    360 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    361 	    (void **)&amr->amr_mbox,
    362 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    363 		aprint_error_dev(&amr->amr_dv, "unable to map buffer, rv = %d\n",
    364 		    rv);
    365 		amr_teardown(amr);
    366 		return;
    367 	}
    368 	amr->amr_flags |= AMRF_DMA_MAP;
    369 
    370 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    371 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    372 		aprint_error_dev(&amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
    373 		    rv);
    374 		amr_teardown(amr);
    375 		return;
    376 	}
    377 	amr->amr_flags |= AMRF_DMA_CREATE;
    378 
    379 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    380 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    381 		aprint_error_dev(&amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
    382 		    rv);
    383 		amr_teardown(amr);
    384 		return;
    385 	}
    386 	amr->amr_flags |= AMRF_DMA_LOAD;
    387 
    388 	memset(amr->amr_mbox, 0, size);
    389 
    390 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    391 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    392 	amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
    393 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    394 
    395 	/*
    396 	 * Allocate and initalise the command control blocks.
    397 	 */
    398 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    399 	amr->amr_ccbs = ac;
    400 	SLIST_INIT(&amr->amr_ccb_freelist);
    401 	TAILQ_INIT(&amr->amr_ccb_active);
    402 	amr->amr_flags |= AMRF_CCBS;
    403 
    404 	if (amr_max_xfer == 0) {
    405 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    406 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    407 	}
    408 
    409 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    410 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    411 		    amr_max_segs, amr_max_xfer, 0,
    412 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    413 		if (rv != 0)
    414 			break;
    415 
    416 		ac->ac_ident = i;
    417 		amr_ccb_free(amr, ac);
    418 	}
    419 	if (i != AMR_MAX_CMDS) {
    420 		aprint_error_dev(&amr->amr_dv, "memory exhausted\n");
    421 		amr_teardown(amr);
    422 		return;
    423 	}
    424 
    425 	/*
    426 	 * Take care of model-specific tasks.
    427 	 */
    428 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    429 		amr->amr_submit = amr_quartz_submit;
    430 		amr->amr_get_work = amr_quartz_get_work;
    431 	} else {
    432 		amr->amr_submit = amr_std_submit;
    433 		amr->amr_get_work = amr_std_get_work;
    434 
    435 		/* Notify the controller of the mailbox location. */
    436 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    437 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    438 
    439 		/* Clear outstanding interrupts and enable interrupts. */
    440 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    441 		amr_outb(amr, AMR_SREG_TOGL,
    442 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    443 	}
    444 
    445 	/*
    446 	 * Retrieve parameters, and tell the world about us.
    447 	 */
    448 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    449 	amr->amr_flags |= AMRF_ENQBUF;
    450 	amr->amr_maxqueuecnt = i;
    451 	aprint_normal(": AMI RAID ");
    452 	if (amr_init(amr, intrstr, pa) != 0) {
    453 		amr_teardown(amr);
    454 		return;
    455 	}
    456 
    457 	/*
    458 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    459 	 * driver doesn't trust the controller's reported value, and lockups
    460 	 * have been seen when we do.
    461 	 */
    462 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    463 	if (amr->amr_maxqueuecnt > i)
    464 		amr->amr_maxqueuecnt = i;
    465 
    466 	/* Set our `shutdownhook' before we start any device activity. */
    467 	if (amr_sdh == NULL)
    468 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    469 
    470 	/* Attach sub-devices. */
    471 	for (j = 0; j < amr->amr_numdrives; j++) {
    472 		if (amr->amr_drive[j].al_size == 0)
    473 			continue;
    474 		amra.amra_unit = j;
    475 
    476 		locs[AMRCF_UNIT] = j;
    477 
    478 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
    479 			"amr", locs, &amra, amr_print, config_stdsubmatch);
    480 	}
    481 
    482 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    483 
    484 	/* XXX This doesn't work for newer boards yet. */
    485 	if ((apt->apt_flags & AT_QUARTZ) == 0) {
    486 		rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
    487 		    &amr->amr_thread, "%s", device_xname(&amr->amr_dv));
    488  		if (rv != 0)
    489 			aprint_error_dev(&amr->amr_dv, "unable to create thread (%d)",
    490  			    rv);
    491  		else
    492  			amr->amr_flags |= AMRF_THREAD;
    493 	}
    494 }
    495 
    496 /*
    497  * Free up resources.
    498  */
    499 static void
    500 amr_teardown(struct amr_softc *amr)
    501 {
    502 	struct amr_ccb *ac;
    503 	int fl;
    504 
    505 	fl = amr->amr_flags;
    506 
    507 	if ((fl & AMRF_THREAD) != 0) {
    508 		amr->amr_flags |= AMRF_THREAD_EXIT;
    509 		wakeup(amr_thread);
    510 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    511 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    512 	}
    513 	if ((fl & AMRF_CCBS) != 0) {
    514 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    515 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    516 		}
    517 		free(amr->amr_ccbs, M_DEVBUF);
    518 	}
    519 	if ((fl & AMRF_ENQBUF) != 0)
    520 		free(amr->amr_enqbuf, M_DEVBUF);
    521 	if ((fl & AMRF_DMA_LOAD) != 0)
    522 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    523 	if ((fl & AMRF_DMA_MAP) != 0)
    524 		bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
    525 		    amr->amr_dmasize);
    526 	if ((fl & AMRF_DMA_ALLOC) != 0)
    527 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    528 	if ((fl & AMRF_DMA_CREATE) != 0)
    529 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    530 	if ((fl & AMRF_PCI_INTR) != 0)
    531 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    532 	if ((fl & AMRF_PCI_REGS) != 0)
    533 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    534 }
    535 
    536 /*
    537  * Print autoconfiguration message for a sub-device.
    538  */
    539 static int
    540 amr_print(void *aux, const char *pnp)
    541 {
    542 	struct amr_attach_args *amra;
    543 
    544 	amra = (struct amr_attach_args *)aux;
    545 
    546 	if (pnp != NULL)
    547 		aprint_normal("block device at %s", pnp);
    548 	aprint_normal(" unit %d", amra->amra_unit);
    549 	return (UNCONF);
    550 }
    551 
    552 /*
    553  * Retrieve operational parameters and describe the controller.
    554  */
    555 static int
    556 amr_init(struct amr_softc *amr, const char *intrstr,
    557 	 struct pci_attach_args *pa)
    558 {
    559 	struct amr_adapter_info *aa;
    560 	struct amr_prodinfo *ap;
    561 	struct amr_enquiry *ae;
    562 	struct amr_enquiry3 *aex;
    563 	const char *prodstr;
    564 	u_int i, sig, ishp;
    565 	char sbuf[64];
    566 
    567 	/*
    568 	 * Try to get 40LD product info, which tells us what the card is
    569 	 * labelled as.
    570 	 */
    571 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    572 	    amr->amr_enqbuf);
    573 	if (ap != NULL) {
    574 		aprint_normal("<%.80s>\n", ap->ap_product);
    575 		if (intrstr != NULL)
    576 			aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
    577 			    intrstr);
    578 		aprint_normal_dev(&amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
    579 		    ap->ap_firmware, ap->ap_bios,
    580 		    le16toh(ap->ap_memsize));
    581 
    582 		amr->amr_maxqueuecnt = ap->ap_maxio;
    583 
    584 		/*
    585 		 * Fetch and record state of logical drives.
    586 		 */
    587 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    588 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    589 		if (aex == NULL) {
    590 			aprint_error_dev(&amr->amr_dv, "ENQUIRY3 failed\n");
    591 			return (-1);
    592 		}
    593 
    594 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
    595 			aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
    596 			   " than the array can handle (%zu)\n",
    597 			   aex->ae_numldrives,
    598 			   __arraycount(aex->ae_drivestate));
    599 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
    600 		}
    601 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    602 			aprint_error_dev(&amr->amr_dv,
    603 			    "adjust AMR_MAX_UNITS to %d (currently %d)"
    604 			    "\n", AMR_MAX_UNITS,
    605 			    amr->amr_numdrives);
    606 			amr->amr_numdrives = AMR_MAX_UNITS;
    607 		} else
    608 			amr->amr_numdrives = aex->ae_numldrives;
    609 
    610 		for (i = 0; i < amr->amr_numdrives; i++) {
    611 			amr->amr_drive[i].al_size =
    612 			    le32toh(aex->ae_drivesize[i]);
    613 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    614 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    615 		}
    616 
    617 		return (0);
    618 	}
    619 
    620 	/*
    621 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    622 	 * found, search for a product description.
    623 	 */
    624 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    625 	if (ae != NULL) {
    626 		i = 0;
    627 		sig = le32toh(ae->ae_signature);
    628 
    629 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    630 			if (amr_typestr[i].at_sig == sig)
    631 				break;
    632 			i++;
    633 		}
    634 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    635 			snprintf(sbuf, sizeof(sbuf),
    636 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
    637 			prodstr = sbuf;
    638 		} else
    639 			prodstr = amr_typestr[i].at_str;
    640 	} else {
    641 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    642 		if (ae == NULL) {
    643 			aprint_error_dev(&amr->amr_dv, "unsupported controller\n");
    644 			return (-1);
    645 		}
    646 
    647 		switch (PCI_PRODUCT(pa->pa_id)) {
    648 		case PCI_PRODUCT_AMI_MEGARAID:
    649 			prodstr = "Series 428";
    650 			break;
    651 		case PCI_PRODUCT_AMI_MEGARAID2:
    652 			prodstr = "Series 434";
    653 			break;
    654 		default:
    655 			snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
    656 			    PCI_PRODUCT(pa->pa_id));
    657 			prodstr = sbuf;
    658 			break;
    659 		}
    660 	}
    661 
    662 	/*
    663 	 * HP NetRaid controllers have a special encoding of the firmware
    664 	 * and BIOS versions.  The AMI version seems to have it as strings
    665 	 * whereas the HP version does it with a leading uppercase character
    666 	 * and two binary numbers.
    667 	*/
    668 	aa = &ae->ae_adapter;
    669 
    670 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    671 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    672 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    673 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    674 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    675 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    676 			prodstr = "HP NetRaid 3si";
    677 		}
    678 		ishp = 1;
    679 	} else
    680 		ishp = 0;
    681 
    682 	aprint_normal("<%s>\n", prodstr);
    683 	if (intrstr != NULL)
    684 		aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
    685 		    intrstr);
    686 
    687 	if (ishp)
    688 		aprint_normal_dev(&amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    689 		    ", %dMB RAM\n", aa->aa_firmware[2],
    690 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    691 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    692 	else
    693 		aprint_normal_dev(&amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    694 		    aa->aa_firmware, aa->aa_bios,
    695 		    aa->aa_memorysize);
    696 
    697 	amr->amr_maxqueuecnt = aa->aa_maxio;
    698 
    699 	/*
    700 	 * Record state of logical drives.
    701 	 */
    702 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
    703 		aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
    704 		   " than the array can handle (%zu)\n",
    705 		   ae->ae_ldrv.al_numdrives,
    706 		   __arraycount(ae->ae_ldrv.al_size));
    707 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
    708 	}
    709 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    710 		aprint_error_dev(&amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
    711 		    ae->ae_ldrv.al_numdrives,
    712 		    AMR_MAX_UNITS);
    713 		amr->amr_numdrives = AMR_MAX_UNITS;
    714 	} else
    715 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    716 
    717 	for (i = 0; i < amr->amr_numdrives; i++) {
    718 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    719 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    720 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    721 	}
    722 
    723 	return (0);
    724 }
    725 
    726 /*
    727  * Flush the internal cache on each configured controller.  Called at
    728  * shutdown time.
    729  */
    730 static void
    731 amr_shutdown(void *cookie)
    732 {
    733 	extern struct cfdriver amr_cd;
    734 	struct amr_softc *amr;
    735 	struct amr_ccb *ac;
    736 	int i, rv, s;
    737 
    738 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    739 		if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
    740 			continue;
    741 
    742 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    743 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    744 			s = splbio();
    745 			rv = amr_ccb_poll(amr, ac, 30000);
    746 			splx(s);
    747 			amr_ccb_free(amr, ac);
    748 		}
    749 		if (rv != 0)
    750 			aprint_error_dev(&amr->amr_dv, "unable to flush cache (%d)\n", rv);
    751 	}
    752 }
    753 
    754 /*
    755  * Interrupt service routine.
    756  */
    757 static int
    758 amr_intr(void *cookie)
    759 {
    760 	struct amr_softc *amr;
    761 	struct amr_ccb *ac;
    762 	struct amr_mailbox_resp mbox;
    763 	u_int i, forus, idx;
    764 
    765 	amr = cookie;
    766 	forus = 0;
    767 
    768 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    769 		/* Iterate over completed commands in this result. */
    770 		for (i = 0; i < mbox.mb_nstatus; i++) {
    771 			idx = mbox.mb_completed[i] - 1;
    772 			ac = amr->amr_ccbs + idx;
    773 
    774 			if (idx >= amr->amr_maxqueuecnt) {
    775 				printf("%s: bad status (bogus ID: %u=%u)\n",
    776 				    device_xname(&amr->amr_dv), i, idx);
    777 				continue;
    778 			}
    779 
    780 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    781 				printf("%s: bad status (not active; 0x04%x)\n",
    782 				    device_xname(&amr->amr_dv), ac->ac_flags);
    783 				continue;
    784 			}
    785 
    786 			ac->ac_status = mbox.mb_status;
    787 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    788 			    AC_COMPLETE;
    789 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    790 
    791 			if ((ac->ac_flags & AC_MOAN) != 0)
    792 				printf("%s: ccb %d completed\n",
    793 				    device_xname(&amr->amr_dv), ac->ac_ident);
    794 
    795 			/* Pass notification to upper layers. */
    796 			if (ac->ac_handler != NULL)
    797 				(*ac->ac_handler)(ac);
    798 			else
    799 				wakeup(ac);
    800 		}
    801 		forus = 1;
    802 	}
    803 
    804 	if (forus)
    805 		amr_ccb_enqueue(amr, NULL);
    806 
    807 	return (forus);
    808 }
    809 
    810 /*
    811  * Watchdog thread.
    812  */
    813 static void
    814 amr_thread(void *cookie)
    815 {
    816 	struct amr_softc *amr;
    817 	struct amr_ccb *ac;
    818 	struct amr_logdrive *al;
    819 	struct amr_enquiry *ae;
    820 	int rv, i, s;
    821 
    822 	amr = cookie;
    823 	ae = amr->amr_enqbuf;
    824 
    825 	for (;;) {
    826 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    827 
    828 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    829 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    830 			wakeup(&amr->amr_flags);
    831 			kthread_exit(0);
    832 		}
    833 
    834 		s = splbio();
    835 		amr_intr(cookie);
    836 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    837 		while (ac != NULL) {
    838 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
    839 				break;
    840 			if ((ac->ac_flags & AC_MOAN) == 0) {
    841 				printf("%s: ccb %d timed out; mailbox:\n",
    842 				    device_xname(&amr->amr_dv), ac->ac_ident);
    843 				amr_ccb_dump(amr, ac);
    844 				ac->ac_flags |= AC_MOAN;
    845 			}
    846 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    847 		}
    848 		splx(s);
    849 
    850 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    851 			printf("%s: ccb_alloc failed (%d)\n",
    852  			    device_xname(&amr->amr_dv), rv);
    853 			continue;
    854 		}
    855 
    856 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    857 
    858 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    859 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    860 		if (rv != 0) {
    861 			aprint_error_dev(&amr->amr_dv, "ccb_map failed (%d)\n",
    862  			    rv);
    863 			amr_ccb_free(amr, ac);
    864 			continue;
    865 		}
    866 
    867 		rv = amr_ccb_wait(amr, ac);
    868 		amr_ccb_unmap(amr, ac);
    869 		if (rv != 0) {
    870 			aprint_error_dev(&amr->amr_dv, "enquiry failed (st=%d)\n",
    871  			    ac->ac_status);
    872 			continue;
    873 		}
    874 		amr_ccb_free(amr, ac);
    875 
    876 		al = amr->amr_drive;
    877 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
    878 			if (al->al_dv == NULL)
    879 				continue;
    880 			if (al->al_state == ae->ae_ldrv.al_state[i])
    881 				continue;
    882 
    883 			printf("%s: state changed: %s -> %s\n",
    884 			    device_xname(al->al_dv),
    885 			    amr_drive_state(al->al_state, NULL),
    886 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    887 
    888 			al->al_state = ae->ae_ldrv.al_state[i];
    889 		}
    890 	}
    891 }
    892 
    893 /*
    894  * Return a text description of a logical drive's current state.
    895  */
    896 const char *
    897 amr_drive_state(int state, int *happy)
    898 {
    899 	const char *str;
    900 
    901 	state = AMR_DRV_CURSTATE(state);
    902 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    903 		if (happy)
    904 			*happy = 1;
    905 		str = "status unknown";
    906 	} else {
    907 		if (happy)
    908 			*happy = amr_dstate[state].ds_happy;
    909 		str = amr_dstate[state].ds_descr;
    910 	}
    911 
    912 	return (str);
    913 }
    914 
    915 /*
    916  * Run a generic enquiry-style command.
    917  */
    918 static void *
    919 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    920 	    u_int8_t cmdqual, void *sbuf)
    921 {
    922 	struct amr_ccb *ac;
    923 	u_int8_t *mb;
    924 	int rv;
    925 
    926 	if (amr_ccb_alloc(amr, &ac) != 0)
    927 		return (NULL);
    928 
    929 	/* Build the command proper. */
    930 	mb = (u_int8_t *)&ac->ac_cmd;
    931 	mb[0] = cmd;
    932 	mb[2] = cmdsub;
    933 	mb[3] = cmdqual;
    934 
    935 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    936 	if (rv == 0) {
    937 		rv = amr_ccb_poll(amr, ac, 2000);
    938 		amr_ccb_unmap(amr, ac);
    939 	}
    940 	amr_ccb_free(amr, ac);
    941 
    942 	return (rv ? NULL : sbuf);
    943 }
    944 
    945 /*
    946  * Allocate and initialise a CCB.
    947  */
    948 int
    949 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    950 {
    951 	int s;
    952 
    953 	s = splbio();
    954 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    955 		splx(s);
    956 		return (EAGAIN);
    957 	}
    958 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    959 	splx(s);
    960 
    961 	return (0);
    962 }
    963 
    964 /*
    965  * Free a CCB.
    966  */
    967 void
    968 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    969 {
    970 	int s;
    971 
    972 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    973 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    974 	ac->ac_cmd.mb_busy = 1;
    975 	ac->ac_handler = NULL;
    976 	ac->ac_flags = 0;
    977 
    978 	s = splbio();
    979 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
    980 	splx(s);
    981 }
    982 
    983 /*
    984  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
    985  * the order that they were enqueued and try to submit their command blocks
    986  * to the controller for execution.
    987  */
    988 void
    989 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
    990 {
    991 	int s;
    992 
    993 	s = splbio();
    994 
    995 	if (ac != NULL)
    996 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
    997 
    998 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
    999 		if ((*amr->amr_submit)(amr, ac) != 0)
   1000 			break;
   1001 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1002 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1003 	}
   1004 
   1005 	splx(s);
   1006 }
   1007 
   1008 /*
   1009  * Map the specified CCB's data buffer onto the bus, and fill the
   1010  * scatter-gather list.
   1011  */
   1012 int
   1013 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1014 	    int tflag)
   1015 {
   1016 	struct amr_sgentry *sge;
   1017 	struct amr_mailbox_cmd *mb;
   1018 	int nsegs, i, rv, sgloff;
   1019 	bus_dmamap_t xfer;
   1020 	int dmaflag = 0;
   1021 
   1022 	xfer = ac->ac_xfer_map;
   1023 
   1024 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1025 	    BUS_DMA_NOWAIT);
   1026 	if (rv != 0)
   1027 		return (rv);
   1028 
   1029 	mb = &ac->ac_cmd;
   1030 	ac->ac_xfer_size = size;
   1031 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
   1032 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1033 
   1034 	if (tflag & AC_XFER_OUT)
   1035 		dmaflag |= BUS_DMASYNC_PREWRITE;
   1036 	if (tflag & AC_XFER_IN)
   1037 		dmaflag |= BUS_DMASYNC_PREREAD;
   1038 
   1039 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1040 	nsegs = xfer->dm_nsegs;
   1041 	if (nsegs == 1) {
   1042 		mb->mb_nsgelem = 0;
   1043 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1044 		ac->ac_flags |= AC_NOSGL;
   1045 	} else {
   1046 		mb->mb_nsgelem = nsegs;
   1047 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1048 
   1049 		sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
   1050 		for (i = 0; i < nsegs; i++, sge++) {
   1051 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1052 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1053 		}
   1054 	}
   1055 
   1056 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
   1057 
   1058 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1059 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1060 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1061 
   1062 	return (0);
   1063 }
   1064 
   1065 /*
   1066  * Unmap the specified CCB's data buffer.
   1067  */
   1068 void
   1069 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1070 {
   1071 	int dmaflag = 0;
   1072 
   1073 	if (ac->ac_flags & AC_XFER_IN)
   1074 		dmaflag |= BUS_DMASYNC_POSTREAD;
   1075 	if (ac->ac_flags & AC_XFER_OUT)
   1076 		dmaflag |= BUS_DMASYNC_POSTWRITE;
   1077 
   1078 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1079 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1080 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1081 		    BUS_DMASYNC_POSTWRITE);
   1082 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1083 	    dmaflag);
   1084 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1085 }
   1086 
   1087 /*
   1088  * Submit a command to the controller and poll on completion.  Return
   1089  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1090  */
   1091 int
   1092 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1093 {
   1094 	int rv;
   1095 
   1096 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1097 		return (rv);
   1098 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1099 
   1100 	for (timo *= 10; timo != 0; timo--) {
   1101 		amr_intr(amr);
   1102 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1103 			break;
   1104 		DELAY(100);
   1105 	}
   1106 
   1107 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1108 }
   1109 
   1110 /*
   1111  * Submit a command to the controller and sleep on completion.  Return
   1112  * non-zero on error.
   1113  */
   1114 int
   1115 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1116 {
   1117 	int s;
   1118 
   1119 	s = splbio();
   1120 	amr_ccb_enqueue(amr, ac);
   1121 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1122 	splx(s);
   1123 
   1124 	return (ac->ac_status != 0 ? EIO : 0);
   1125 }
   1126 
   1127 #if 0
   1128 /*
   1129  * Wait for the mailbox to become available.
   1130  */
   1131 static int
   1132 amr_mbox_wait(struct amr_softc *amr)
   1133 {
   1134 	int timo;
   1135 
   1136 	for (timo = 10000; timo != 0; timo--) {
   1137 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1138 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1139 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1140 			break;
   1141 		DELAY(100);
   1142 	}
   1143 
   1144 	if (timo == 0)
   1145 		printf("%s: controller wedged\n", device_xname(&amr->amr_dv));
   1146 
   1147 	return (timo != 0 ? 0 : EAGAIN);
   1148 }
   1149 #endif
   1150 
   1151 /*
   1152  * Tell the controller that the mailbox contains a valid command.  Must be
   1153  * called with interrupts blocked.
   1154  */
   1155 static int
   1156 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1157 {
   1158 	u_int32_t v;
   1159 
   1160 	amr->amr_mbox->mb_poll = 0;
   1161 	amr->amr_mbox->mb_ack = 0;
   1162 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1163 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1164 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1165 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1166 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1167 		return (EAGAIN);
   1168 
   1169 	v = amr_inl(amr, AMR_QREG_IDB);
   1170 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1171 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1172 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1173 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1174 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1175 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1176 		return (EAGAIN);
   1177 	}
   1178 
   1179 	amr->amr_mbox->mb_segment = 0;
   1180 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1181 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1182 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1183 
   1184 	ac->ac_start_time = time_uptime;
   1185 	ac->ac_flags |= AC_ACTIVE;
   1186 	amr_outl(amr, AMR_QREG_IDB,
   1187 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1188 	return (0);
   1189 }
   1190 
   1191 static int
   1192 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1193 {
   1194 
   1195 	amr->amr_mbox->mb_poll = 0;
   1196 	amr->amr_mbox->mb_ack = 0;
   1197 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1198 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1199 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1200 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1201 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1202 		return (EAGAIN);
   1203 
   1204 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1205 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1206 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1207 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1208 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1209 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1210 		return (EAGAIN);
   1211 	}
   1212 
   1213 	amr->amr_mbox->mb_segment = 0;
   1214 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1215 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1216 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1217 
   1218 	ac->ac_start_time = time_uptime;
   1219 	ac->ac_flags |= AC_ACTIVE;
   1220 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1221 	return (0);
   1222 }
   1223 
   1224 /*
   1225  * Claim any work that the controller has completed; acknowledge completion,
   1226  * save details of the completion in (mbsave).  Must be called with
   1227  * interrupts blocked.
   1228  */
   1229 static int
   1230 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1231 {
   1232 
   1233 	/* Work waiting for us? */
   1234 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1235 		return (-1);
   1236 
   1237 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1238 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1239 
   1240 	/* Save the mailbox, which contains a list of completed commands. */
   1241 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1242 
   1243 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1244 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1245 
   1246 	/* Ack the interrupt and mailbox transfer. */
   1247 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1248 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1249 
   1250 	/*
   1251 	 * This waits for the controller to notice that we've taken the
   1252 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1253 	 * but if we remove this code, we stop completing commands under
   1254 	 * load.
   1255 	 *
   1256 	 * Peter J says we shouldn't do this.  The documentation says we
   1257 	 * should.  Who is right?
   1258 	 */
   1259 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1260 		DELAY(10);
   1261 
   1262 	return (0);
   1263 }
   1264 
   1265 static int
   1266 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1267 {
   1268 	u_int8_t istat;
   1269 
   1270 	/* Check for valid interrupt status. */
   1271 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1272 		return (-1);
   1273 
   1274 	/* Ack the interrupt. */
   1275 	amr_outb(amr, AMR_SREG_INTR, istat);
   1276 
   1277 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1278 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1279 
   1280 	/* Save mailbox, which contains a list of completed commands. */
   1281 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1282 
   1283 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1284 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1285 
   1286 	/* Ack mailbox transfer. */
   1287 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1288 
   1289 	return (0);
   1290 }
   1291 
   1292 static void
   1293 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1294 {
   1295 	int i;
   1296 
   1297 	printf("%s: ", device_xname(&amr->amr_dv));
   1298 	for (i = 0; i < 4; i++)
   1299 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1300 	printf("\n");
   1301 }
   1302 
   1303 static int
   1304 amropen(dev_t dev, int flag, int mode, struct lwp *l)
   1305 {
   1306 	struct amr_softc *amr;
   1307 
   1308 	if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
   1309 		return (ENXIO);
   1310 	if ((amr->amr_flags & AMRF_OPEN) != 0)
   1311 		return (EBUSY);
   1312 
   1313 	amr->amr_flags |= AMRF_OPEN;
   1314 	return (0);
   1315 }
   1316 
   1317 static int
   1318 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
   1319 {
   1320 	struct amr_softc *amr;
   1321 
   1322 	amr = device_lookup_private(&amr_cd, minor(dev));
   1323 	amr->amr_flags &= ~AMRF_OPEN;
   1324 	return (0);
   1325 }
   1326 
   1327 static int
   1328 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
   1329     struct lwp *l)
   1330 {
   1331 	struct amr_softc *amr;
   1332 	struct amr_user_ioctl *au;
   1333 	struct amr_ccb *ac;
   1334 	struct amr_mailbox_ioctl *mbi;
   1335 	unsigned long au_length;
   1336 	uint8_t *au_cmd;
   1337 	int error;
   1338 	void *dp = NULL, *au_buffer;
   1339 
   1340 	amr = device_lookup_private(&amr_cd, minor(dev));
   1341 
   1342 	/* This should be compatible with the FreeBSD interface */
   1343 
   1344 	switch (cmd) {
   1345 	case AMR_IO_VERSION:
   1346 		*(int *)data = AMR_IO_VERSION_NUMBER;
   1347 		return 0;
   1348 	case AMR_IO_COMMAND:
   1349 		error = kauth_authorize_device_passthru(l->l_cred, dev,
   1350 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
   1351 		if (error)
   1352 			return (error);
   1353 
   1354 		au = (struct amr_user_ioctl *)data;
   1355 		au_cmd = au->au_cmd;
   1356 		au_buffer = au->au_buffer;
   1357 		au_length = au->au_length;
   1358 		break;
   1359 	default:
   1360 		return ENOTTY;
   1361 	}
   1362 
   1363 	if (au_cmd[0] == AMR_CMD_PASS) {
   1364 		/* not yet */
   1365 		return EOPNOTSUPP;
   1366 	}
   1367 
   1368 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
   1369 		return (EINVAL);
   1370 
   1371 	/*
   1372 	 * allocate kernel memory for data, doing I/O directly to user
   1373 	 * buffer isn't that easy.
   1374 	 */
   1375 	dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
   1376 	if (dp == NULL)
   1377 		return ENOMEM;
   1378 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
   1379 		goto out;
   1380 
   1381 	/* direct command to controller */
   1382 	while (amr_ccb_alloc(amr, &ac) != 0) {
   1383 		error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
   1384 		if (error == EINTR)
   1385 			goto out;
   1386 	}
   1387 
   1388 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
   1389 	mbi->mb_command = au_cmd[0];
   1390 	mbi->mb_channel = au_cmd[1];
   1391 	mbi->mb_param = au_cmd[2];
   1392 	mbi->mb_pad[0] = au_cmd[3];
   1393 	mbi->mb_drive = au_cmd[4];
   1394 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
   1395 	    AC_XFER_IN | AC_XFER_OUT);
   1396 	if (error == 0) {
   1397 		error = amr_ccb_wait(amr, ac);
   1398 		amr_ccb_unmap(amr, ac);
   1399 		if (error == 0)
   1400 			error = copyout(dp, au_buffer, au_length);
   1401 
   1402 	}
   1403 	amr_ccb_free(amr, ac);
   1404 out:
   1405 	free(dp, M_DEVBUF);
   1406 	return (error);
   1407 }
   1408