Home | History | Annotate | Line # | Download | only in pci
amr.c revision 1.53.4.1
      1 /*	$NetBSD: amr.c,v 1.53.4.1 2011/03/05 20:53:35 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999,2000 Michael Smith
     34  * Copyright (c) 2000 BSDi
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  *
     46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56  * SUCH DAMAGE.
     57  *
     58  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
     59  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
     60  */
     61 
     62 /*
     63  * Driver for AMI RAID controllers.
     64  */
     65 
     66 #include <sys/cdefs.h>
     67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.53.4.1 2011/03/05 20:53:35 rmind Exp $");
     68 
     69 #include <sys/param.h>
     70 #include <sys/systm.h>
     71 #include <sys/kernel.h>
     72 #include <sys/device.h>
     73 #include <sys/queue.h>
     74 #include <sys/proc.h>
     75 #include <sys/buf.h>
     76 #include <sys/malloc.h>
     77 #include <sys/conf.h>
     78 #include <sys/kthread.h>
     79 #include <sys/kauth.h>
     80 
     81 #include <machine/endian.h>
     82 #include <sys/bus.h>
     83 
     84 #include <dev/pci/pcidevs.h>
     85 #include <dev/pci/pcivar.h>
     86 #include <dev/pci/amrreg.h>
     87 #include <dev/pci/amrvar.h>
     88 #include <dev/pci/amrio.h>
     89 
     90 #include "locators.h"
     91 
     92 static void	amr_attach(device_t, device_t, void *);
     93 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
     94 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
     95 			     void *);
     96 static int	amr_init(struct amr_softc *, const char *,
     97 			 struct pci_attach_args *pa);
     98 static int	amr_intr(void *);
     99 static int	amr_match(device_t, cfdata_t, void *);
    100 static int	amr_print(void *, const char *);
    101 static void	amr_shutdown(void *);
    102 static void	amr_teardown(struct amr_softc *);
    103 static void	amr_thread(void *);
    104 
    105 static int	amr_quartz_get_work(struct amr_softc *,
    106 				    struct amr_mailbox_resp *);
    107 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
    108 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
    109 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
    110 
    111 static dev_type_open(amropen);
    112 static dev_type_close(amrclose);
    113 static dev_type_ioctl(amrioctl);
    114 
    115 CFATTACH_DECL(amr, sizeof(struct amr_softc),
    116     amr_match, amr_attach, NULL, NULL);
    117 
    118 const struct cdevsw amr_cdevsw = {
    119 	amropen, amrclose, noread, nowrite, amrioctl,
    120 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
    121 };
    122 
    123 extern struct   cfdriver amr_cd;
    124 
    125 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
    126 #define	AT_SIG		0x02	/* Check for signature */
    127 
    128 static struct amr_pci_type {
    129 	u_short	apt_vendor;
    130 	u_short	apt_product;
    131 	u_short	apt_flags;
    132 } const amr_pci_type[] = {
    133 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
    134 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
    135 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    136 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
    137 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
    138 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    139 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    140 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    141 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
    142 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
    143 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
    144 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
    145 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
    146 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
    147 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
    148 };
    149 
    150 static struct amr_typestr {
    151 	const char	*at_str;
    152 	int		at_sig;
    153 } const amr_typestr[] = {
    154 	{ "Series 431",			AMR_SIG_431 },
    155 	{ "Series 438",			AMR_SIG_438 },
    156 	{ "Series 466",			AMR_SIG_466 },
    157 	{ "Series 467",			AMR_SIG_467 },
    158 	{ "Series 490",			AMR_SIG_490 },
    159 	{ "Series 762",			AMR_SIG_762 },
    160 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
    161 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
    162 };
    163 
    164 static struct {
    165 	const char	*ds_descr;
    166 	int	ds_happy;
    167 } const amr_dstate[] = {
    168 	{ "offline",	0 },
    169 	{ "degraded",	1 },
    170 	{ "optimal",	1 },
    171 	{ "online",	1 },
    172 	{ "failed",	0 },
    173 	{ "rebuilding",	1 },
    174 	{ "hotspare",	0 },
    175 };
    176 
    177 static void	*amr_sdh;
    178 
    179 static int	amr_max_segs;
    180 int		amr_max_xfer;
    181 
    182 static inline u_int8_t
    183 amr_inb(struct amr_softc *amr, int off)
    184 {
    185 
    186 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    187 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    188 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
    189 }
    190 
    191 static inline u_int32_t
    192 amr_inl(struct amr_softc *amr, int off)
    193 {
    194 
    195 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    196 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    197 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
    198 }
    199 
    200 static inline void
    201 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
    202 {
    203 
    204 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
    205 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
    206 	    BUS_SPACE_BARRIER_WRITE);
    207 }
    208 
    209 static inline void
    210 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
    211 {
    212 
    213 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
    214 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
    215 	    BUS_SPACE_BARRIER_WRITE);
    216 }
    217 
    218 /*
    219  * Match a supported device.
    220  */
    221 static int
    222 amr_match(device_t parent, cfdata_t match, void *aux)
    223 {
    224 	struct pci_attach_args *pa;
    225 	pcireg_t s;
    226 	int i;
    227 
    228 	pa = (struct pci_attach_args *)aux;
    229 
    230 	/*
    231 	 * Don't match the device if it's operating in I2O mode.  In this
    232 	 * case it should be handled by the `iop' driver.
    233 	 */
    234 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    235 		return (0);
    236 
    237 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    238 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    239 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    240 		    	break;
    241 
    242 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
    243 		return (0);
    244 
    245 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
    246 		return (1);
    247 
    248 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
    249 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
    250 }
    251 
    252 /*
    253  * Attach a supported device.
    254  */
    255 static void
    256 amr_attach(device_t parent, device_t self, void *aux)
    257 {
    258 	struct pci_attach_args *pa;
    259 	struct amr_attach_args amra;
    260 	const struct amr_pci_type *apt;
    261 	struct amr_softc *amr;
    262 	pci_chipset_tag_t pc;
    263 	pci_intr_handle_t ih;
    264 	const char *intrstr;
    265 	pcireg_t reg;
    266 	int rseg, i, j, size, rv, memreg, ioreg;
    267 	struct amr_ccb *ac;
    268 	int locs[AMRCF_NLOCS];
    269 
    270 	aprint_naive(": RAID controller\n");
    271 
    272 	amr = device_private(self);
    273 	pa = (struct pci_attach_args *)aux;
    274 	pc = pa->pa_pc;
    275 
    276 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
    277 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
    278 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
    279 			break;
    280 	apt = amr_pci_type + i;
    281 
    282 	memreg = ioreg = 0;
    283 	for (i = 0x10; i <= 0x14; i += 4) {
    284 		reg = pci_conf_read(pc, pa->pa_tag, i);
    285 		switch (PCI_MAPREG_TYPE(reg)) {
    286 		case PCI_MAPREG_TYPE_MEM:
    287 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
    288 				memreg = i;
    289 			break;
    290 		case PCI_MAPREG_TYPE_IO:
    291 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
    292 				ioreg = i;
    293 			break;
    294 
    295 		}
    296 	}
    297 
    298 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
    299 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    300 		;
    301 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
    302 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
    303 		;
    304 	else {
    305 		aprint_error("can't map control registers\n");
    306 		amr_teardown(amr);
    307 		return;
    308 	}
    309 
    310 	amr->amr_flags |= AMRF_PCI_REGS;
    311 	amr->amr_dmat = pa->pa_dmat;
    312 	amr->amr_pc = pa->pa_pc;
    313 
    314 	/* Enable the device. */
    315 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    316 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    317 	    reg | PCI_COMMAND_MASTER_ENABLE);
    318 
    319 	/* Map and establish the interrupt. */
    320 	if (pci_intr_map(pa, &ih)) {
    321 		aprint_error("can't map interrupt\n");
    322 		amr_teardown(amr);
    323 		return;
    324 	}
    325 	intrstr = pci_intr_string(pc, ih);
    326 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
    327 	if (amr->amr_ih == NULL) {
    328 		aprint_error("can't establish interrupt");
    329 		if (intrstr != NULL)
    330 			aprint_error(" at %s", intrstr);
    331 		aprint_error("\n");
    332 		amr_teardown(amr);
    333 		return;
    334 	}
    335 	amr->amr_flags |= AMRF_PCI_INTR;
    336 
    337 	/*
    338 	 * Allocate space for the mailbox and S/G lists.  Some controllers
    339 	 * don't like S/G lists to be located below 0x2000, so we allocate
    340 	 * enough slop to enable us to compensate.
    341 	 *
    342 	 * The standard mailbox structure needs to be aligned on a 16-byte
    343 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
    344 	 * size, which precedes the standard mailbox.
    345 	 */
    346 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
    347 	amr->amr_dmasize = size;
    348 
    349 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
    350 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    351 		aprint_error_dev(&amr->amr_dv, "unable to allocate buffer, rv = %d\n",
    352 		    rv);
    353 		amr_teardown(amr);
    354 		return;
    355 	}
    356 	amr->amr_flags |= AMRF_DMA_ALLOC;
    357 
    358 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
    359 	    (void **)&amr->amr_mbox,
    360 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    361 		aprint_error_dev(&amr->amr_dv, "unable to map buffer, rv = %d\n",
    362 		    rv);
    363 		amr_teardown(amr);
    364 		return;
    365 	}
    366 	amr->amr_flags |= AMRF_DMA_MAP;
    367 
    368 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
    369 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
    370 		aprint_error_dev(&amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
    371 		    rv);
    372 		amr_teardown(amr);
    373 		return;
    374 	}
    375 	amr->amr_flags |= AMRF_DMA_CREATE;
    376 
    377 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
    378 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
    379 		aprint_error_dev(&amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
    380 		    rv);
    381 		amr_teardown(amr);
    382 		return;
    383 	}
    384 	amr->amr_flags |= AMRF_DMA_LOAD;
    385 
    386 	memset(amr->amr_mbox, 0, size);
    387 
    388 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
    389 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
    390 	amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
    391 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
    392 
    393 	/*
    394 	 * Allocate and initalise the command control blocks.
    395 	 */
    396 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
    397 	amr->amr_ccbs = ac;
    398 	SLIST_INIT(&amr->amr_ccb_freelist);
    399 	TAILQ_INIT(&amr->amr_ccb_active);
    400 	amr->amr_flags |= AMRF_CCBS;
    401 
    402 	if (amr_max_xfer == 0) {
    403 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
    404 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
    405 	}
    406 
    407 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
    408 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
    409 		    amr_max_segs, amr_max_xfer, 0,
    410 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
    411 		if (rv != 0)
    412 			break;
    413 
    414 		ac->ac_ident = i;
    415 		amr_ccb_free(amr, ac);
    416 	}
    417 	if (i != AMR_MAX_CMDS) {
    418 		aprint_error_dev(&amr->amr_dv, "memory exhausted\n");
    419 		amr_teardown(amr);
    420 		return;
    421 	}
    422 
    423 	/*
    424 	 * Take care of model-specific tasks.
    425 	 */
    426 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
    427 		amr->amr_submit = amr_quartz_submit;
    428 		amr->amr_get_work = amr_quartz_get_work;
    429 	} else {
    430 		amr->amr_submit = amr_std_submit;
    431 		amr->amr_get_work = amr_std_get_work;
    432 
    433 		/* Notify the controller of the mailbox location. */
    434 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
    435 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
    436 
    437 		/* Clear outstanding interrupts and enable interrupts. */
    438 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
    439 		amr_outb(amr, AMR_SREG_TOGL,
    440 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
    441 	}
    442 
    443 	/*
    444 	 * Retrieve parameters, and tell the world about us.
    445 	 */
    446 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
    447 	amr->amr_flags |= AMRF_ENQBUF;
    448 	amr->amr_maxqueuecnt = i;
    449 	aprint_normal(": AMI RAID ");
    450 	if (amr_init(amr, intrstr, pa) != 0) {
    451 		amr_teardown(amr);
    452 		return;
    453 	}
    454 
    455 	/*
    456 	 * Cap the maximum number of outstanding commands.  AMI's Linux
    457 	 * driver doesn't trust the controller's reported value, and lockups
    458 	 * have been seen when we do.
    459 	 */
    460 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
    461 	if (amr->amr_maxqueuecnt > i)
    462 		amr->amr_maxqueuecnt = i;
    463 
    464 	/* Set our `shutdownhook' before we start any device activity. */
    465 	if (amr_sdh == NULL)
    466 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
    467 
    468 	/* Attach sub-devices. */
    469 	for (j = 0; j < amr->amr_numdrives; j++) {
    470 		if (amr->amr_drive[j].al_size == 0)
    471 			continue;
    472 		amra.amra_unit = j;
    473 
    474 		locs[AMRCF_UNIT] = j;
    475 
    476 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
    477 			"amr", locs, &amra, amr_print, config_stdsubmatch);
    478 	}
    479 
    480 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
    481 
    482 	/* XXX This doesn't work for newer boards yet. */
    483 	if ((apt->apt_flags & AT_QUARTZ) == 0) {
    484 		rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
    485 		    &amr->amr_thread, "%s", device_xname(&amr->amr_dv));
    486  		if (rv != 0)
    487 			aprint_error_dev(&amr->amr_dv, "unable to create thread (%d)",
    488  			    rv);
    489  		else
    490  			amr->amr_flags |= AMRF_THREAD;
    491 	}
    492 }
    493 
    494 /*
    495  * Free up resources.
    496  */
    497 static void
    498 amr_teardown(struct amr_softc *amr)
    499 {
    500 	struct amr_ccb *ac;
    501 	int fl;
    502 
    503 	fl = amr->amr_flags;
    504 
    505 	if ((fl & AMRF_THREAD) != 0) {
    506 		amr->amr_flags |= AMRF_THREAD_EXIT;
    507 		wakeup(amr_thread);
    508 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
    509 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
    510 	}
    511 	if ((fl & AMRF_CCBS) != 0) {
    512 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
    513 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
    514 		}
    515 		free(amr->amr_ccbs, M_DEVBUF);
    516 	}
    517 	if ((fl & AMRF_ENQBUF) != 0)
    518 		free(amr->amr_enqbuf, M_DEVBUF);
    519 	if ((fl & AMRF_DMA_LOAD) != 0)
    520 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
    521 	if ((fl & AMRF_DMA_MAP) != 0)
    522 		bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
    523 		    amr->amr_dmasize);
    524 	if ((fl & AMRF_DMA_ALLOC) != 0)
    525 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
    526 	if ((fl & AMRF_DMA_CREATE) != 0)
    527 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
    528 	if ((fl & AMRF_PCI_INTR) != 0)
    529 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
    530 	if ((fl & AMRF_PCI_REGS) != 0)
    531 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
    532 }
    533 
    534 /*
    535  * Print autoconfiguration message for a sub-device.
    536  */
    537 static int
    538 amr_print(void *aux, const char *pnp)
    539 {
    540 	struct amr_attach_args *amra;
    541 
    542 	amra = (struct amr_attach_args *)aux;
    543 
    544 	if (pnp != NULL)
    545 		aprint_normal("block device at %s", pnp);
    546 	aprint_normal(" unit %d", amra->amra_unit);
    547 	return (UNCONF);
    548 }
    549 
    550 /*
    551  * Retrieve operational parameters and describe the controller.
    552  */
    553 static int
    554 amr_init(struct amr_softc *amr, const char *intrstr,
    555 	 struct pci_attach_args *pa)
    556 {
    557 	struct amr_adapter_info *aa;
    558 	struct amr_prodinfo *ap;
    559 	struct amr_enquiry *ae;
    560 	struct amr_enquiry3 *aex;
    561 	const char *prodstr;
    562 	u_int i, sig, ishp;
    563 	char sbuf[64];
    564 
    565 	/*
    566 	 * Try to get 40LD product info, which tells us what the card is
    567 	 * labelled as.
    568 	 */
    569 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
    570 	    amr->amr_enqbuf);
    571 	if (ap != NULL) {
    572 		aprint_normal("<%.80s>\n", ap->ap_product);
    573 		if (intrstr != NULL)
    574 			aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
    575 			    intrstr);
    576 		aprint_normal_dev(&amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
    577 		    ap->ap_firmware, ap->ap_bios,
    578 		    le16toh(ap->ap_memsize));
    579 
    580 		amr->amr_maxqueuecnt = ap->ap_maxio;
    581 
    582 		/*
    583 		 * Fetch and record state of logical drives.
    584 		 */
    585 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
    586 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
    587 		if (aex == NULL) {
    588 			aprint_error_dev(&amr->amr_dv, "ENQUIRY3 failed\n");
    589 			return (-1);
    590 		}
    591 
    592 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
    593 			aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
    594 			   " than the array can handle (%zu)\n",
    595 			   aex->ae_numldrives,
    596 			   __arraycount(aex->ae_drivestate));
    597 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
    598 		}
    599 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
    600 			aprint_error_dev(&amr->amr_dv,
    601 			    "adjust AMR_MAX_UNITS to %d (currently %d)"
    602 			    "\n", AMR_MAX_UNITS,
    603 			    amr->amr_numdrives);
    604 			amr->amr_numdrives = AMR_MAX_UNITS;
    605 		} else
    606 			amr->amr_numdrives = aex->ae_numldrives;
    607 
    608 		for (i = 0; i < amr->amr_numdrives; i++) {
    609 			amr->amr_drive[i].al_size =
    610 			    le32toh(aex->ae_drivesize[i]);
    611 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
    612 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
    613 		}
    614 
    615 		return (0);
    616 	}
    617 
    618 	/*
    619 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
    620 	 * found, search for a product description.
    621 	 */
    622 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
    623 	if (ae != NULL) {
    624 		i = 0;
    625 		sig = le32toh(ae->ae_signature);
    626 
    627 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    628 			if (amr_typestr[i].at_sig == sig)
    629 				break;
    630 			i++;
    631 		}
    632 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
    633 			snprintf(sbuf, sizeof(sbuf),
    634 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
    635 			prodstr = sbuf;
    636 		} else
    637 			prodstr = amr_typestr[i].at_str;
    638 	} else {
    639 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
    640 		if (ae == NULL) {
    641 			aprint_error_dev(&amr->amr_dv, "unsupported controller\n");
    642 			return (-1);
    643 		}
    644 
    645 		switch (PCI_PRODUCT(pa->pa_id)) {
    646 		case PCI_PRODUCT_AMI_MEGARAID:
    647 			prodstr = "Series 428";
    648 			break;
    649 		case PCI_PRODUCT_AMI_MEGARAID2:
    650 			prodstr = "Series 434";
    651 			break;
    652 		default:
    653 			snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
    654 			    PCI_PRODUCT(pa->pa_id));
    655 			prodstr = sbuf;
    656 			break;
    657 		}
    658 	}
    659 
    660 	/*
    661 	 * HP NetRaid controllers have a special encoding of the firmware
    662 	 * and BIOS versions.  The AMI version seems to have it as strings
    663 	 * whereas the HP version does it with a leading uppercase character
    664 	 * and two binary numbers.
    665 	*/
    666 	aa = &ae->ae_adapter;
    667 
    668 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
    669 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
    670 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
    671 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
    672 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
    673 			/* The AMI 438 is a NetRaid 3si in HP-land. */
    674 			prodstr = "HP NetRaid 3si";
    675 		}
    676 		ishp = 1;
    677 	} else
    678 		ishp = 0;
    679 
    680 	aprint_normal("<%s>\n", prodstr);
    681 	if (intrstr != NULL)
    682 		aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
    683 		    intrstr);
    684 
    685 	if (ishp)
    686 		aprint_normal_dev(&amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
    687 		    ", %dMB RAM\n", aa->aa_firmware[2],
    688 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
    689 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
    690 	else
    691 		aprint_normal_dev(&amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
    692 		    aa->aa_firmware, aa->aa_bios,
    693 		    aa->aa_memorysize);
    694 
    695 	amr->amr_maxqueuecnt = aa->aa_maxio;
    696 
    697 	/*
    698 	 * Record state of logical drives.
    699 	 */
    700 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
    701 		aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
    702 		   " than the array can handle (%zu)\n",
    703 		   ae->ae_ldrv.al_numdrives,
    704 		   __arraycount(ae->ae_ldrv.al_size));
    705 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
    706 	}
    707 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
    708 		aprint_error_dev(&amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
    709 		    ae->ae_ldrv.al_numdrives,
    710 		    AMR_MAX_UNITS);
    711 		amr->amr_numdrives = AMR_MAX_UNITS;
    712 	} else
    713 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
    714 
    715 	for (i = 0; i < amr->amr_numdrives; i++) {
    716 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
    717 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
    718 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
    719 	}
    720 
    721 	return (0);
    722 }
    723 
    724 /*
    725  * Flush the internal cache on each configured controller.  Called at
    726  * shutdown time.
    727  */
    728 static void
    729 amr_shutdown(void *cookie)
    730 {
    731 	extern struct cfdriver amr_cd;
    732 	struct amr_softc *amr;
    733 	struct amr_ccb *ac;
    734 	int i, rv, s;
    735 
    736 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
    737 		if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
    738 			continue;
    739 
    740 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
    741 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
    742 			s = splbio();
    743 			rv = amr_ccb_poll(amr, ac, 30000);
    744 			splx(s);
    745 			amr_ccb_free(amr, ac);
    746 		}
    747 		if (rv != 0)
    748 			aprint_error_dev(&amr->amr_dv, "unable to flush cache (%d)\n", rv);
    749 	}
    750 }
    751 
    752 /*
    753  * Interrupt service routine.
    754  */
    755 static int
    756 amr_intr(void *cookie)
    757 {
    758 	struct amr_softc *amr;
    759 	struct amr_ccb *ac;
    760 	struct amr_mailbox_resp mbox;
    761 	u_int i, forus, idx;
    762 
    763 	amr = cookie;
    764 	forus = 0;
    765 
    766 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
    767 		/* Iterate over completed commands in this result. */
    768 		for (i = 0; i < mbox.mb_nstatus; i++) {
    769 			idx = mbox.mb_completed[i] - 1;
    770 			ac = amr->amr_ccbs + idx;
    771 
    772 			if (idx >= amr->amr_maxqueuecnt) {
    773 				printf("%s: bad status (bogus ID: %u=%u)\n",
    774 				    device_xname(&amr->amr_dv), i, idx);
    775 				continue;
    776 			}
    777 
    778 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
    779 				printf("%s: bad status (not active; 0x04%x)\n",
    780 				    device_xname(&amr->amr_dv), ac->ac_flags);
    781 				continue;
    782 			}
    783 
    784 			ac->ac_status = mbox.mb_status;
    785 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
    786 			    AC_COMPLETE;
    787 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
    788 
    789 			if ((ac->ac_flags & AC_MOAN) != 0)
    790 				printf("%s: ccb %d completed\n",
    791 				    device_xname(&amr->amr_dv), ac->ac_ident);
    792 
    793 			/* Pass notification to upper layers. */
    794 			if (ac->ac_handler != NULL)
    795 				(*ac->ac_handler)(ac);
    796 			else
    797 				wakeup(ac);
    798 		}
    799 		forus = 1;
    800 	}
    801 
    802 	if (forus)
    803 		amr_ccb_enqueue(amr, NULL);
    804 
    805 	return (forus);
    806 }
    807 
    808 /*
    809  * Watchdog thread.
    810  */
    811 static void
    812 amr_thread(void *cookie)
    813 {
    814 	struct amr_softc *amr;
    815 	struct amr_ccb *ac;
    816 	struct amr_logdrive *al;
    817 	struct amr_enquiry *ae;
    818 	int rv, i, s;
    819 
    820 	amr = cookie;
    821 	ae = amr->amr_enqbuf;
    822 
    823 	for (;;) {
    824 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
    825 
    826 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
    827 			amr->amr_flags ^= AMRF_THREAD_EXIT;
    828 			wakeup(&amr->amr_flags);
    829 			kthread_exit(0);
    830 		}
    831 
    832 		s = splbio();
    833 		amr_intr(cookie);
    834 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
    835 		while (ac != NULL) {
    836 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
    837 				break;
    838 			if ((ac->ac_flags & AC_MOAN) == 0) {
    839 				printf("%s: ccb %d timed out; mailbox:\n",
    840 				    device_xname(&amr->amr_dv), ac->ac_ident);
    841 				amr_ccb_dump(amr, ac);
    842 				ac->ac_flags |= AC_MOAN;
    843 			}
    844 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
    845 		}
    846 		splx(s);
    847 
    848 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
    849 			printf("%s: ccb_alloc failed (%d)\n",
    850  			    device_xname(&amr->amr_dv), rv);
    851 			continue;
    852 		}
    853 
    854 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
    855 
    856 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
    857 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    858 		if (rv != 0) {
    859 			aprint_error_dev(&amr->amr_dv, "ccb_map failed (%d)\n",
    860  			    rv);
    861 			amr_ccb_free(amr, ac);
    862 			continue;
    863 		}
    864 
    865 		rv = amr_ccb_wait(amr, ac);
    866 		amr_ccb_unmap(amr, ac);
    867 		if (rv != 0) {
    868 			aprint_error_dev(&amr->amr_dv, "enquiry failed (st=%d)\n",
    869  			    ac->ac_status);
    870 			continue;
    871 		}
    872 		amr_ccb_free(amr, ac);
    873 
    874 		al = amr->amr_drive;
    875 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
    876 			if (al->al_dv == NULL)
    877 				continue;
    878 			if (al->al_state == ae->ae_ldrv.al_state[i])
    879 				continue;
    880 
    881 			printf("%s: state changed: %s -> %s\n",
    882 			    device_xname(al->al_dv),
    883 			    amr_drive_state(al->al_state, NULL),
    884 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
    885 
    886 			al->al_state = ae->ae_ldrv.al_state[i];
    887 		}
    888 	}
    889 }
    890 
    891 /*
    892  * Return a text description of a logical drive's current state.
    893  */
    894 const char *
    895 amr_drive_state(int state, int *happy)
    896 {
    897 	const char *str;
    898 
    899 	state = AMR_DRV_CURSTATE(state);
    900 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
    901 		if (happy)
    902 			*happy = 1;
    903 		str = "status unknown";
    904 	} else {
    905 		if (happy)
    906 			*happy = amr_dstate[state].ds_happy;
    907 		str = amr_dstate[state].ds_descr;
    908 	}
    909 
    910 	return (str);
    911 }
    912 
    913 /*
    914  * Run a generic enquiry-style command.
    915  */
    916 static void *
    917 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
    918 	    u_int8_t cmdqual, void *sbuf)
    919 {
    920 	struct amr_ccb *ac;
    921 	u_int8_t *mb;
    922 	int rv;
    923 
    924 	if (amr_ccb_alloc(amr, &ac) != 0)
    925 		return (NULL);
    926 
    927 	/* Build the command proper. */
    928 	mb = (u_int8_t *)&ac->ac_cmd;
    929 	mb[0] = cmd;
    930 	mb[2] = cmdsub;
    931 	mb[3] = cmdqual;
    932 
    933 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
    934 	if (rv == 0) {
    935 		rv = amr_ccb_poll(amr, ac, 2000);
    936 		amr_ccb_unmap(amr, ac);
    937 	}
    938 	amr_ccb_free(amr, ac);
    939 
    940 	return (rv ? NULL : sbuf);
    941 }
    942 
    943 /*
    944  * Allocate and initialise a CCB.
    945  */
    946 int
    947 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
    948 {
    949 	int s;
    950 
    951 	s = splbio();
    952 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
    953 		splx(s);
    954 		return (EAGAIN);
    955 	}
    956 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
    957 	splx(s);
    958 
    959 	return (0);
    960 }
    961 
    962 /*
    963  * Free a CCB.
    964  */
    965 void
    966 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
    967 {
    968 	int s;
    969 
    970 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
    971 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
    972 	ac->ac_cmd.mb_busy = 1;
    973 	ac->ac_handler = NULL;
    974 	ac->ac_flags = 0;
    975 
    976 	s = splbio();
    977 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
    978 	splx(s);
    979 }
    980 
    981 /*
    982  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
    983  * the order that they were enqueued and try to submit their command blocks
    984  * to the controller for execution.
    985  */
    986 void
    987 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
    988 {
    989 	int s;
    990 
    991 	s = splbio();
    992 
    993 	if (ac != NULL)
    994 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
    995 
    996 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
    997 		if ((*amr->amr_submit)(amr, ac) != 0)
    998 			break;
    999 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
   1000 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1001 	}
   1002 
   1003 	splx(s);
   1004 }
   1005 
   1006 /*
   1007  * Map the specified CCB's data buffer onto the bus, and fill the
   1008  * scatter-gather list.
   1009  */
   1010 int
   1011 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
   1012 	    int tflag)
   1013 {
   1014 	struct amr_sgentry *sge;
   1015 	struct amr_mailbox_cmd *mb;
   1016 	int nsegs, i, rv, sgloff;
   1017 	bus_dmamap_t xfer;
   1018 	int dmaflag = 0;
   1019 
   1020 	xfer = ac->ac_xfer_map;
   1021 
   1022 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
   1023 	    BUS_DMA_NOWAIT);
   1024 	if (rv != 0)
   1025 		return (rv);
   1026 
   1027 	mb = &ac->ac_cmd;
   1028 	ac->ac_xfer_size = size;
   1029 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
   1030 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
   1031 
   1032 	if (tflag & AC_XFER_OUT)
   1033 		dmaflag |= BUS_DMASYNC_PREWRITE;
   1034 	if (tflag & AC_XFER_IN)
   1035 		dmaflag |= BUS_DMASYNC_PREREAD;
   1036 
   1037 	/* We don't need to use a scatter/gather list for just 1 segment. */
   1038 	nsegs = xfer->dm_nsegs;
   1039 	if (nsegs == 1) {
   1040 		mb->mb_nsgelem = 0;
   1041 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
   1042 		ac->ac_flags |= AC_NOSGL;
   1043 	} else {
   1044 		mb->mb_nsgelem = nsegs;
   1045 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
   1046 
   1047 		sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
   1048 		for (i = 0; i < nsegs; i++, sge++) {
   1049 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
   1050 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
   1051 		}
   1052 	}
   1053 
   1054 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
   1055 
   1056 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1057 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
   1058 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1059 
   1060 	return (0);
   1061 }
   1062 
   1063 /*
   1064  * Unmap the specified CCB's data buffer.
   1065  */
   1066 void
   1067 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
   1068 {
   1069 	int dmaflag = 0;
   1070 
   1071 	if (ac->ac_flags & AC_XFER_IN)
   1072 		dmaflag |= BUS_DMASYNC_POSTREAD;
   1073 	if (ac->ac_flags & AC_XFER_OUT)
   1074 		dmaflag |= BUS_DMASYNC_POSTWRITE;
   1075 
   1076 	if ((ac->ac_flags & AC_NOSGL) == 0)
   1077 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
   1078 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
   1079 		    BUS_DMASYNC_POSTWRITE);
   1080 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
   1081 	    dmaflag);
   1082 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
   1083 }
   1084 
   1085 /*
   1086  * Submit a command to the controller and poll on completion.  Return
   1087  * non-zero on timeout or error.  Must be called with interrupts blocked.
   1088  */
   1089 int
   1090 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
   1091 {
   1092 	int rv;
   1093 
   1094 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
   1095 		return (rv);
   1096 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
   1097 
   1098 	for (timo *= 10; timo != 0; timo--) {
   1099 		amr_intr(amr);
   1100 		if ((ac->ac_flags & AC_COMPLETE) != 0)
   1101 			break;
   1102 		DELAY(100);
   1103 	}
   1104 
   1105 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
   1106 }
   1107 
   1108 /*
   1109  * Submit a command to the controller and sleep on completion.  Return
   1110  * non-zero on error.
   1111  */
   1112 int
   1113 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
   1114 {
   1115 	int s;
   1116 
   1117 	s = splbio();
   1118 	amr_ccb_enqueue(amr, ac);
   1119 	tsleep(ac, PRIBIO, "amrcmd", 0);
   1120 	splx(s);
   1121 
   1122 	return (ac->ac_status != 0 ? EIO : 0);
   1123 }
   1124 
   1125 #if 0
   1126 /*
   1127  * Wait for the mailbox to become available.
   1128  */
   1129 static int
   1130 amr_mbox_wait(struct amr_softc *amr)
   1131 {
   1132 	int timo;
   1133 
   1134 	for (timo = 10000; timo != 0; timo--) {
   1135 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1136 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1137 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
   1138 			break;
   1139 		DELAY(100);
   1140 	}
   1141 
   1142 	if (timo == 0)
   1143 		printf("%s: controller wedged\n", device_xname(&amr->amr_dv));
   1144 
   1145 	return (timo != 0 ? 0 : EAGAIN);
   1146 }
   1147 #endif
   1148 
   1149 /*
   1150  * Tell the controller that the mailbox contains a valid command.  Must be
   1151  * called with interrupts blocked.
   1152  */
   1153 static int
   1154 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1155 {
   1156 	u_int32_t v;
   1157 
   1158 	amr->amr_mbox->mb_poll = 0;
   1159 	amr->amr_mbox->mb_ack = 0;
   1160 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1161 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1162 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1163 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1164 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1165 		return (EAGAIN);
   1166 
   1167 	v = amr_inl(amr, AMR_QREG_IDB);
   1168 	if ((v & AMR_QIDB_SUBMIT) != 0) {
   1169 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1170 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1171 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1172 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1173 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1174 		return (EAGAIN);
   1175 	}
   1176 
   1177 	amr->amr_mbox->mb_segment = 0;
   1178 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1179 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1180 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1181 
   1182 	ac->ac_start_time = time_uptime;
   1183 	ac->ac_flags |= AC_ACTIVE;
   1184 	amr_outl(amr, AMR_QREG_IDB,
   1185 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
   1186 	return (0);
   1187 }
   1188 
   1189 static int
   1190 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
   1191 {
   1192 
   1193 	amr->amr_mbox->mb_poll = 0;
   1194 	amr->amr_mbox->mb_ack = 0;
   1195 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1196 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1197 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1198 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1199 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
   1200 		return (EAGAIN);
   1201 
   1202 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
   1203 		amr->amr_mbox->mb_cmd.mb_busy = 0;
   1204 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1205 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1206 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1207 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1208 		return (EAGAIN);
   1209 	}
   1210 
   1211 	amr->amr_mbox->mb_segment = 0;
   1212 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
   1213 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1214 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
   1215 
   1216 	ac->ac_start_time = time_uptime;
   1217 	ac->ac_flags |= AC_ACTIVE;
   1218 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
   1219 	return (0);
   1220 }
   1221 
   1222 /*
   1223  * Claim any work that the controller has completed; acknowledge completion,
   1224  * save details of the completion in (mbsave).  Must be called with
   1225  * interrupts blocked.
   1226  */
   1227 static int
   1228 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1229 {
   1230 
   1231 	/* Work waiting for us? */
   1232 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
   1233 		return (-1);
   1234 
   1235 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1236 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1237 
   1238 	/* Save the mailbox, which contains a list of completed commands. */
   1239 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1240 
   1241 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1242 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1243 
   1244 	/* Ack the interrupt and mailbox transfer. */
   1245 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
   1246 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
   1247 
   1248 	/*
   1249 	 * This waits for the controller to notice that we've taken the
   1250 	 * command from it.  It's very inefficient, and we shouldn't do it,
   1251 	 * but if we remove this code, we stop completing commands under
   1252 	 * load.
   1253 	 *
   1254 	 * Peter J says we shouldn't do this.  The documentation says we
   1255 	 * should.  Who is right?
   1256 	 */
   1257 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
   1258 		DELAY(10);
   1259 
   1260 	return (0);
   1261 }
   1262 
   1263 static int
   1264 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
   1265 {
   1266 	u_int8_t istat;
   1267 
   1268 	/* Check for valid interrupt status. */
   1269 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
   1270 		return (-1);
   1271 
   1272 	/* Ack the interrupt. */
   1273 	amr_outb(amr, AMR_SREG_INTR, istat);
   1274 
   1275 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1276 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
   1277 
   1278 	/* Save mailbox, which contains a list of completed commands. */
   1279 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
   1280 
   1281 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
   1282 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
   1283 
   1284 	/* Ack mailbox transfer. */
   1285 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
   1286 
   1287 	return (0);
   1288 }
   1289 
   1290 static void
   1291 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
   1292 {
   1293 	int i;
   1294 
   1295 	printf("%s: ", device_xname(&amr->amr_dv));
   1296 	for (i = 0; i < 4; i++)
   1297 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
   1298 	printf("\n");
   1299 }
   1300 
   1301 static int
   1302 amropen(dev_t dev, int flag, int mode, struct lwp *l)
   1303 {
   1304 	struct amr_softc *amr;
   1305 
   1306 	if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
   1307 		return (ENXIO);
   1308 	if ((amr->amr_flags & AMRF_OPEN) != 0)
   1309 		return (EBUSY);
   1310 
   1311 	amr->amr_flags |= AMRF_OPEN;
   1312 	return (0);
   1313 }
   1314 
   1315 static int
   1316 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
   1317 {
   1318 	struct amr_softc *amr;
   1319 
   1320 	amr = device_lookup_private(&amr_cd, minor(dev));
   1321 	amr->amr_flags &= ~AMRF_OPEN;
   1322 	return (0);
   1323 }
   1324 
   1325 static int
   1326 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
   1327     struct lwp *l)
   1328 {
   1329 	struct amr_softc *amr;
   1330 	struct amr_user_ioctl *au;
   1331 	struct amr_ccb *ac;
   1332 	struct amr_mailbox_ioctl *mbi;
   1333 	unsigned long au_length;
   1334 	uint8_t *au_cmd;
   1335 	int error;
   1336 	void *dp = NULL, *au_buffer;
   1337 
   1338 	amr = device_lookup_private(&amr_cd, minor(dev));
   1339 
   1340 	/* This should be compatible with the FreeBSD interface */
   1341 
   1342 	switch (cmd) {
   1343 	case AMR_IO_VERSION:
   1344 		*(int *)data = AMR_IO_VERSION_NUMBER;
   1345 		return 0;
   1346 	case AMR_IO_COMMAND:
   1347 		error = kauth_authorize_device_passthru(l->l_cred, dev,
   1348 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
   1349 		if (error)
   1350 			return (error);
   1351 
   1352 		au = (struct amr_user_ioctl *)data;
   1353 		au_cmd = au->au_cmd;
   1354 		au_buffer = au->au_buffer;
   1355 		au_length = au->au_length;
   1356 		break;
   1357 	default:
   1358 		return ENOTTY;
   1359 	}
   1360 
   1361 	if (au_cmd[0] == AMR_CMD_PASS) {
   1362 		/* not yet */
   1363 		return EOPNOTSUPP;
   1364 	}
   1365 
   1366 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
   1367 		return (EINVAL);
   1368 
   1369 	/*
   1370 	 * allocate kernel memory for data, doing I/O directly to user
   1371 	 * buffer isn't that easy.
   1372 	 */
   1373 	dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
   1374 	if (dp == NULL)
   1375 		return ENOMEM;
   1376 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
   1377 		goto out;
   1378 
   1379 	/* direct command to controller */
   1380 	while (amr_ccb_alloc(amr, &ac) != 0) {
   1381 		error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
   1382 		if (error == EINTR)
   1383 			goto out;
   1384 	}
   1385 
   1386 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
   1387 	mbi->mb_command = au_cmd[0];
   1388 	mbi->mb_channel = au_cmd[1];
   1389 	mbi->mb_param = au_cmd[2];
   1390 	mbi->mb_pad[0] = au_cmd[3];
   1391 	mbi->mb_drive = au_cmd[4];
   1392 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
   1393 	    AC_XFER_IN | AC_XFER_OUT);
   1394 	if (error == 0) {
   1395 		error = amr_ccb_wait(amr, ac);
   1396 		amr_ccb_unmap(amr, ac);
   1397 		if (error == 0)
   1398 			error = copyout(dp, au_buffer, au_length);
   1399 
   1400 	}
   1401 	amr_ccb_free(amr, ac);
   1402 out:
   1403 	free(dp, M_DEVBUF);
   1404 	return (error);
   1405 }
   1406