amr.c revision 1.54.8.2 1 /* $NetBSD: amr.c,v 1.54.8.2 2014/05/22 11:40:24 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60 */
61
62 /*
63 * Driver for AMI RAID controllers.
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.54.8.2 2014/05/22 11:40:24 yamt Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80
81 #include <machine/endian.h>
82 #include <sys/bus.h>
83
84 #include <dev/pci/pcidevs.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/amrreg.h>
87 #include <dev/pci/amrvar.h>
88 #include <dev/pci/amrio.h>
89
90 #include "locators.h"
91
92 static void amr_attach(device_t, device_t, void *);
93 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
94 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
95 void *);
96 static int amr_init(struct amr_softc *, const char *,
97 struct pci_attach_args *pa);
98 static int amr_intr(void *);
99 static int amr_match(device_t, cfdata_t, void *);
100 static int amr_print(void *, const char *);
101 static void amr_shutdown(void *);
102 static void amr_teardown(struct amr_softc *);
103 static void amr_thread(void *);
104
105 static int amr_quartz_get_work(struct amr_softc *,
106 struct amr_mailbox_resp *);
107 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
108 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
109 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
110
111 static dev_type_open(amropen);
112 static dev_type_close(amrclose);
113 static dev_type_ioctl(amrioctl);
114
115 CFATTACH_DECL_NEW(amr, sizeof(struct amr_softc),
116 amr_match, amr_attach, NULL, NULL);
117
118 const struct cdevsw amr_cdevsw = {
119 .d_open = amropen,
120 .d_close = amrclose,
121 .d_read = noread,
122 .d_write = nowrite,
123 .d_ioctl = amrioctl,
124 .d_stop = nostop,
125 .d_tty = notty,
126 .d_poll = nopoll,
127 .d_mmap = nommap,
128 .d_kqfilter = nokqfilter,
129 .d_flag = D_OTHER
130 };
131
132 extern struct cfdriver amr_cd;
133
134 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
135 #define AT_SIG 0x02 /* Check for signature */
136
137 static struct amr_pci_type {
138 u_short apt_vendor;
139 u_short apt_product;
140 u_short apt_flags;
141 } const amr_pci_type[] = {
142 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
143 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
144 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
145 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
146 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
149 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
150 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
151 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
152 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
153 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
154 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
155 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
156 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
157 };
158
159 static struct amr_typestr {
160 const char *at_str;
161 int at_sig;
162 } const amr_typestr[] = {
163 { "Series 431", AMR_SIG_431 },
164 { "Series 438", AMR_SIG_438 },
165 { "Series 466", AMR_SIG_466 },
166 { "Series 467", AMR_SIG_467 },
167 { "Series 490", AMR_SIG_490 },
168 { "Series 762", AMR_SIG_762 },
169 { "HP NetRAID (T5)", AMR_SIG_T5 },
170 { "HP NetRAID (T7)", AMR_SIG_T7 },
171 };
172
173 static struct {
174 const char *ds_descr;
175 int ds_happy;
176 } const amr_dstate[] = {
177 { "offline", 0 },
178 { "degraded", 1 },
179 { "optimal", 1 },
180 { "online", 1 },
181 { "failed", 0 },
182 { "rebuilding", 1 },
183 { "hotspare", 0 },
184 };
185
186 static void *amr_sdh;
187
188 static int amr_max_segs;
189 int amr_max_xfer;
190
191 static inline u_int8_t
192 amr_inb(struct amr_softc *amr, int off)
193 {
194
195 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
196 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
197 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
198 }
199
200 static inline u_int32_t
201 amr_inl(struct amr_softc *amr, int off)
202 {
203
204 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
205 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
206 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
207 }
208
209 static inline void
210 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
211 {
212
213 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
214 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
215 BUS_SPACE_BARRIER_WRITE);
216 }
217
218 static inline void
219 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
220 {
221
222 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
223 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
224 BUS_SPACE_BARRIER_WRITE);
225 }
226
227 /*
228 * Match a supported device.
229 */
230 static int
231 amr_match(device_t parent, cfdata_t match, void *aux)
232 {
233 struct pci_attach_args *pa;
234 pcireg_t s;
235 int i;
236
237 pa = (struct pci_attach_args *)aux;
238
239 /*
240 * Don't match the device if it's operating in I2O mode. In this
241 * case it should be handled by the `iop' driver.
242 */
243 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
244 return (0);
245
246 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
247 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
248 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
249 break;
250
251 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
252 return (0);
253
254 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
255 return (1);
256
257 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
258 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
259 }
260
261 /*
262 * Attach a supported device.
263 */
264 static void
265 amr_attach(device_t parent, device_t self, void *aux)
266 {
267 struct pci_attach_args *pa;
268 struct amr_attach_args amra;
269 const struct amr_pci_type *apt;
270 struct amr_softc *amr;
271 pci_chipset_tag_t pc;
272 pci_intr_handle_t ih;
273 const char *intrstr;
274 pcireg_t reg;
275 int rseg, i, j, size, rv, memreg, ioreg;
276 struct amr_ccb *ac;
277 int locs[AMRCF_NLOCS];
278 char intrbuf[PCI_INTRSTR_LEN];
279
280 aprint_naive(": RAID controller\n");
281
282 amr = device_private(self);
283 amr->amr_dv = self;
284 pa = (struct pci_attach_args *)aux;
285 pc = pa->pa_pc;
286
287 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
288 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
289 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
290 break;
291 apt = amr_pci_type + i;
292
293 memreg = ioreg = 0;
294 for (i = 0x10; i <= 0x14; i += 4) {
295 reg = pci_conf_read(pc, pa->pa_tag, i);
296 switch (PCI_MAPREG_TYPE(reg)) {
297 case PCI_MAPREG_TYPE_MEM:
298 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
299 memreg = i;
300 break;
301 case PCI_MAPREG_TYPE_IO:
302 if (PCI_MAPREG_IO_SIZE(reg) != 0)
303 ioreg = i;
304 break;
305
306 }
307 }
308
309 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
310 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
311 ;
312 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
313 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
314 ;
315 else {
316 aprint_error("can't map control registers\n");
317 amr_teardown(amr);
318 return;
319 }
320
321 amr->amr_flags |= AMRF_PCI_REGS;
322 amr->amr_dmat = pa->pa_dmat;
323 amr->amr_pc = pa->pa_pc;
324
325 /* Enable the device. */
326 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
327 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
328 reg | PCI_COMMAND_MASTER_ENABLE);
329
330 /* Map and establish the interrupt. */
331 if (pci_intr_map(pa, &ih)) {
332 aprint_error("can't map interrupt\n");
333 amr_teardown(amr);
334 return;
335 }
336 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
337 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
338 if (amr->amr_ih == NULL) {
339 aprint_error("can't establish interrupt");
340 if (intrstr != NULL)
341 aprint_error(" at %s", intrstr);
342 aprint_error("\n");
343 amr_teardown(amr);
344 return;
345 }
346 amr->amr_flags |= AMRF_PCI_INTR;
347
348 /*
349 * Allocate space for the mailbox and S/G lists. Some controllers
350 * don't like S/G lists to be located below 0x2000, so we allocate
351 * enough slop to enable us to compensate.
352 *
353 * The standard mailbox structure needs to be aligned on a 16-byte
354 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
355 * size, which precedes the standard mailbox.
356 */
357 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
358 amr->amr_dmasize = size;
359
360 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
361 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
362 aprint_error_dev(amr->amr_dv, "unable to allocate buffer, rv = %d\n",
363 rv);
364 amr_teardown(amr);
365 return;
366 }
367 amr->amr_flags |= AMRF_DMA_ALLOC;
368
369 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
370 (void **)&amr->amr_mbox,
371 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
372 aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
373 rv);
374 amr_teardown(amr);
375 return;
376 }
377 amr->amr_flags |= AMRF_DMA_MAP;
378
379 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
380 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
381 aprint_error_dev(amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
382 rv);
383 amr_teardown(amr);
384 return;
385 }
386 amr->amr_flags |= AMRF_DMA_CREATE;
387
388 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
389 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
390 aprint_error_dev(amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
391 rv);
392 amr_teardown(amr);
393 return;
394 }
395 amr->amr_flags |= AMRF_DMA_LOAD;
396
397 memset(amr->amr_mbox, 0, size);
398
399 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
400 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
401 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
402 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
403
404 /*
405 * Allocate and initalise the command control blocks.
406 */
407 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
408 amr->amr_ccbs = ac;
409 SLIST_INIT(&amr->amr_ccb_freelist);
410 TAILQ_INIT(&amr->amr_ccb_active);
411 amr->amr_flags |= AMRF_CCBS;
412
413 if (amr_max_xfer == 0) {
414 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
415 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
416 }
417
418 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
419 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
420 amr_max_segs, amr_max_xfer, 0,
421 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
422 if (rv != 0)
423 break;
424
425 ac->ac_ident = i;
426 amr_ccb_free(amr, ac);
427 }
428 if (i != AMR_MAX_CMDS) {
429 aprint_error_dev(amr->amr_dv, "memory exhausted\n");
430 amr_teardown(amr);
431 return;
432 }
433
434 /*
435 * Take care of model-specific tasks.
436 */
437 if ((apt->apt_flags & AT_QUARTZ) != 0) {
438 amr->amr_submit = amr_quartz_submit;
439 amr->amr_get_work = amr_quartz_get_work;
440 } else {
441 amr->amr_submit = amr_std_submit;
442 amr->amr_get_work = amr_std_get_work;
443
444 /* Notify the controller of the mailbox location. */
445 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
446 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
447
448 /* Clear outstanding interrupts and enable interrupts. */
449 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
450 amr_outb(amr, AMR_SREG_TOGL,
451 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
452 }
453
454 /*
455 * Retrieve parameters, and tell the world about us.
456 */
457 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
458 amr->amr_flags |= AMRF_ENQBUF;
459 amr->amr_maxqueuecnt = i;
460 aprint_normal(": AMI RAID ");
461 if (amr_init(amr, intrstr, pa) != 0) {
462 amr_teardown(amr);
463 return;
464 }
465
466 /*
467 * Cap the maximum number of outstanding commands. AMI's Linux
468 * driver doesn't trust the controller's reported value, and lockups
469 * have been seen when we do.
470 */
471 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
472 if (amr->amr_maxqueuecnt > i)
473 amr->amr_maxqueuecnt = i;
474
475 /* Set our `shutdownhook' before we start any device activity. */
476 if (amr_sdh == NULL)
477 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
478
479 /* Attach sub-devices. */
480 for (j = 0; j < amr->amr_numdrives; j++) {
481 if (amr->amr_drive[j].al_size == 0)
482 continue;
483 amra.amra_unit = j;
484
485 locs[AMRCF_UNIT] = j;
486
487 amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv,
488 "amr", locs, &amra, amr_print, config_stdsubmatch);
489 }
490
491 SIMPLEQ_INIT(&amr->amr_ccb_queue);
492
493 /* XXX This doesn't work for newer boards yet. */
494 if ((apt->apt_flags & AT_QUARTZ) == 0) {
495 rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
496 &amr->amr_thread, "%s", device_xname(amr->amr_dv));
497 if (rv != 0)
498 aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
499 rv);
500 else
501 amr->amr_flags |= AMRF_THREAD;
502 }
503 }
504
505 /*
506 * Free up resources.
507 */
508 static void
509 amr_teardown(struct amr_softc *amr)
510 {
511 struct amr_ccb *ac;
512 int fl;
513
514 fl = amr->amr_flags;
515
516 if ((fl & AMRF_THREAD) != 0) {
517 amr->amr_flags |= AMRF_THREAD_EXIT;
518 wakeup(amr_thread);
519 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
520 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
521 }
522 if ((fl & AMRF_CCBS) != 0) {
523 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
524 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
525 }
526 free(amr->amr_ccbs, M_DEVBUF);
527 }
528 if ((fl & AMRF_ENQBUF) != 0)
529 free(amr->amr_enqbuf, M_DEVBUF);
530 if ((fl & AMRF_DMA_LOAD) != 0)
531 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
532 if ((fl & AMRF_DMA_MAP) != 0)
533 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
534 amr->amr_dmasize);
535 if ((fl & AMRF_DMA_ALLOC) != 0)
536 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
537 if ((fl & AMRF_DMA_CREATE) != 0)
538 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
539 if ((fl & AMRF_PCI_INTR) != 0)
540 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
541 if ((fl & AMRF_PCI_REGS) != 0)
542 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
543 }
544
545 /*
546 * Print autoconfiguration message for a sub-device.
547 */
548 static int
549 amr_print(void *aux, const char *pnp)
550 {
551 struct amr_attach_args *amra;
552
553 amra = (struct amr_attach_args *)aux;
554
555 if (pnp != NULL)
556 aprint_normal("block device at %s", pnp);
557 aprint_normal(" unit %d", amra->amra_unit);
558 return (UNCONF);
559 }
560
561 /*
562 * Retrieve operational parameters and describe the controller.
563 */
564 static int
565 amr_init(struct amr_softc *amr, const char *intrstr,
566 struct pci_attach_args *pa)
567 {
568 struct amr_adapter_info *aa;
569 struct amr_prodinfo *ap;
570 struct amr_enquiry *ae;
571 struct amr_enquiry3 *aex;
572 const char *prodstr;
573 u_int i, sig, ishp;
574 char sbuf[64];
575
576 /*
577 * Try to get 40LD product info, which tells us what the card is
578 * labelled as.
579 */
580 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
581 amr->amr_enqbuf);
582 if (ap != NULL) {
583 aprint_normal("<%.80s>\n", ap->ap_product);
584 if (intrstr != NULL)
585 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
586 intrstr);
587 aprint_normal_dev(amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
588 ap->ap_firmware, ap->ap_bios,
589 le16toh(ap->ap_memsize));
590
591 amr->amr_maxqueuecnt = ap->ap_maxio;
592
593 /*
594 * Fetch and record state of logical drives.
595 */
596 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
597 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
598 if (aex == NULL) {
599 aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
600 return (-1);
601 }
602
603 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
604 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
605 " than the array can handle (%zu)\n",
606 aex->ae_numldrives,
607 __arraycount(aex->ae_drivestate));
608 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
609 }
610 if (aex->ae_numldrives > AMR_MAX_UNITS) {
611 aprint_error_dev(amr->amr_dv,
612 "adjust AMR_MAX_UNITS to %d (currently %d)"
613 "\n", AMR_MAX_UNITS,
614 amr->amr_numdrives);
615 amr->amr_numdrives = AMR_MAX_UNITS;
616 } else
617 amr->amr_numdrives = aex->ae_numldrives;
618
619 for (i = 0; i < amr->amr_numdrives; i++) {
620 amr->amr_drive[i].al_size =
621 le32toh(aex->ae_drivesize[i]);
622 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
623 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
624 }
625
626 return (0);
627 }
628
629 /*
630 * Try 8LD extended ENQUIRY to get the controller signature. Once
631 * found, search for a product description.
632 */
633 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
634 if (ae != NULL) {
635 i = 0;
636 sig = le32toh(ae->ae_signature);
637
638 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
639 if (amr_typestr[i].at_sig == sig)
640 break;
641 i++;
642 }
643 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
644 snprintf(sbuf, sizeof(sbuf),
645 "unknown ENQUIRY2 sig (0x%08x)", sig);
646 prodstr = sbuf;
647 } else
648 prodstr = amr_typestr[i].at_str;
649 } else {
650 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
651 if (ae == NULL) {
652 aprint_error_dev(amr->amr_dv, "unsupported controller\n");
653 return (-1);
654 }
655
656 switch (PCI_PRODUCT(pa->pa_id)) {
657 case PCI_PRODUCT_AMI_MEGARAID:
658 prodstr = "Series 428";
659 break;
660 case PCI_PRODUCT_AMI_MEGARAID2:
661 prodstr = "Series 434";
662 break;
663 default:
664 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
665 PCI_PRODUCT(pa->pa_id));
666 prodstr = sbuf;
667 break;
668 }
669 }
670
671 /*
672 * HP NetRaid controllers have a special encoding of the firmware
673 * and BIOS versions. The AMI version seems to have it as strings
674 * whereas the HP version does it with a leading uppercase character
675 * and two binary numbers.
676 */
677 aa = &ae->ae_adapter;
678
679 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
680 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
681 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
682 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
683 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
684 /* The AMI 438 is a NetRaid 3si in HP-land. */
685 prodstr = "HP NetRaid 3si";
686 }
687 ishp = 1;
688 } else
689 ishp = 0;
690
691 aprint_normal("<%s>\n", prodstr);
692 if (intrstr != NULL)
693 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
694 intrstr);
695
696 if (ishp)
697 aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
698 ", %dMB RAM\n", aa->aa_firmware[2],
699 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
700 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
701 else
702 aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
703 aa->aa_firmware, aa->aa_bios,
704 aa->aa_memorysize);
705
706 amr->amr_maxqueuecnt = aa->aa_maxio;
707
708 /*
709 * Record state of logical drives.
710 */
711 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
712 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
713 " than the array can handle (%zu)\n",
714 ae->ae_ldrv.al_numdrives,
715 __arraycount(ae->ae_ldrv.al_size));
716 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
717 }
718 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
719 aprint_error_dev(amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
720 ae->ae_ldrv.al_numdrives,
721 AMR_MAX_UNITS);
722 amr->amr_numdrives = AMR_MAX_UNITS;
723 } else
724 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
725
726 for (i = 0; i < amr->amr_numdrives; i++) {
727 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
728 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
729 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
730 }
731
732 return (0);
733 }
734
735 /*
736 * Flush the internal cache on each configured controller. Called at
737 * shutdown time.
738 */
739 static void
740 amr_shutdown(void *cookie)
741 {
742 extern struct cfdriver amr_cd;
743 struct amr_softc *amr;
744 struct amr_ccb *ac;
745 int i, rv, s;
746
747 for (i = 0; i < amr_cd.cd_ndevs; i++) {
748 if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
749 continue;
750
751 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
752 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
753 s = splbio();
754 rv = amr_ccb_poll(amr, ac, 30000);
755 splx(s);
756 amr_ccb_free(amr, ac);
757 }
758 if (rv != 0)
759 aprint_error_dev(amr->amr_dv, "unable to flush cache (%d)\n", rv);
760 }
761 }
762
763 /*
764 * Interrupt service routine.
765 */
766 static int
767 amr_intr(void *cookie)
768 {
769 struct amr_softc *amr;
770 struct amr_ccb *ac;
771 struct amr_mailbox_resp mbox;
772 u_int i, forus, idx;
773
774 amr = cookie;
775 forus = 0;
776
777 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
778 /* Iterate over completed commands in this result. */
779 for (i = 0; i < mbox.mb_nstatus; i++) {
780 idx = mbox.mb_completed[i] - 1;
781 ac = amr->amr_ccbs + idx;
782
783 if (idx >= amr->amr_maxqueuecnt) {
784 printf("%s: bad status (bogus ID: %u=%u)\n",
785 device_xname(amr->amr_dv), i, idx);
786 continue;
787 }
788
789 if ((ac->ac_flags & AC_ACTIVE) == 0) {
790 printf("%s: bad status (not active; 0x04%x)\n",
791 device_xname(amr->amr_dv), ac->ac_flags);
792 continue;
793 }
794
795 ac->ac_status = mbox.mb_status;
796 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
797 AC_COMPLETE;
798 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
799
800 if ((ac->ac_flags & AC_MOAN) != 0)
801 printf("%s: ccb %d completed\n",
802 device_xname(amr->amr_dv), ac->ac_ident);
803
804 /* Pass notification to upper layers. */
805 if (ac->ac_handler != NULL)
806 (*ac->ac_handler)(ac);
807 else
808 wakeup(ac);
809 }
810 forus = 1;
811 }
812
813 if (forus)
814 amr_ccb_enqueue(amr, NULL);
815
816 return (forus);
817 }
818
819 /*
820 * Watchdog thread.
821 */
822 static void
823 amr_thread(void *cookie)
824 {
825 struct amr_softc *amr;
826 struct amr_ccb *ac;
827 struct amr_logdrive *al;
828 struct amr_enquiry *ae;
829 int rv, i, s;
830
831 amr = cookie;
832 ae = amr->amr_enqbuf;
833
834 for (;;) {
835 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
836
837 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
838 amr->amr_flags ^= AMRF_THREAD_EXIT;
839 wakeup(&amr->amr_flags);
840 kthread_exit(0);
841 }
842
843 s = splbio();
844 amr_intr(cookie);
845 ac = TAILQ_FIRST(&amr->amr_ccb_active);
846 while (ac != NULL) {
847 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
848 break;
849 if ((ac->ac_flags & AC_MOAN) == 0) {
850 printf("%s: ccb %d timed out; mailbox:\n",
851 device_xname(amr->amr_dv), ac->ac_ident);
852 amr_ccb_dump(amr, ac);
853 ac->ac_flags |= AC_MOAN;
854 }
855 ac = TAILQ_NEXT(ac, ac_chain.tailq);
856 }
857 splx(s);
858
859 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
860 printf("%s: ccb_alloc failed (%d)\n",
861 device_xname(amr->amr_dv), rv);
862 continue;
863 }
864
865 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
866
867 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
868 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
869 if (rv != 0) {
870 aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
871 rv);
872 amr_ccb_free(amr, ac);
873 continue;
874 }
875
876 rv = amr_ccb_wait(amr, ac);
877 amr_ccb_unmap(amr, ac);
878 if (rv != 0) {
879 aprint_error_dev(amr->amr_dv, "enquiry failed (st=%d)\n",
880 ac->ac_status);
881 continue;
882 }
883 amr_ccb_free(amr, ac);
884
885 al = amr->amr_drive;
886 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
887 if (al->al_dv == NULL)
888 continue;
889 if (al->al_state == ae->ae_ldrv.al_state[i])
890 continue;
891
892 printf("%s: state changed: %s -> %s\n",
893 device_xname(al->al_dv),
894 amr_drive_state(al->al_state, NULL),
895 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
896
897 al->al_state = ae->ae_ldrv.al_state[i];
898 }
899 }
900 }
901
902 /*
903 * Return a text description of a logical drive's current state.
904 */
905 const char *
906 amr_drive_state(int state, int *happy)
907 {
908 const char *str;
909
910 state = AMR_DRV_CURSTATE(state);
911 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
912 if (happy)
913 *happy = 1;
914 str = "status unknown";
915 } else {
916 if (happy)
917 *happy = amr_dstate[state].ds_happy;
918 str = amr_dstate[state].ds_descr;
919 }
920
921 return (str);
922 }
923
924 /*
925 * Run a generic enquiry-style command.
926 */
927 static void *
928 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
929 u_int8_t cmdqual, void *sbuf)
930 {
931 struct amr_ccb *ac;
932 u_int8_t *mb;
933 int rv;
934
935 if (amr_ccb_alloc(amr, &ac) != 0)
936 return (NULL);
937
938 /* Build the command proper. */
939 mb = (u_int8_t *)&ac->ac_cmd;
940 mb[0] = cmd;
941 mb[2] = cmdsub;
942 mb[3] = cmdqual;
943
944 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
945 if (rv == 0) {
946 rv = amr_ccb_poll(amr, ac, 2000);
947 amr_ccb_unmap(amr, ac);
948 }
949 amr_ccb_free(amr, ac);
950
951 return (rv ? NULL : sbuf);
952 }
953
954 /*
955 * Allocate and initialise a CCB.
956 */
957 int
958 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
959 {
960 int s;
961
962 s = splbio();
963 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
964 splx(s);
965 return (EAGAIN);
966 }
967 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
968 splx(s);
969
970 return (0);
971 }
972
973 /*
974 * Free a CCB.
975 */
976 void
977 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
978 {
979 int s;
980
981 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
982 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
983 ac->ac_cmd.mb_busy = 1;
984 ac->ac_handler = NULL;
985 ac->ac_flags = 0;
986
987 s = splbio();
988 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
989 splx(s);
990 }
991
992 /*
993 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
994 * the order that they were enqueued and try to submit their command blocks
995 * to the controller for execution.
996 */
997 void
998 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
999 {
1000 int s;
1001
1002 s = splbio();
1003
1004 if (ac != NULL)
1005 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1006
1007 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1008 if ((*amr->amr_submit)(amr, ac) != 0)
1009 break;
1010 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1011 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1012 }
1013
1014 splx(s);
1015 }
1016
1017 /*
1018 * Map the specified CCB's data buffer onto the bus, and fill the
1019 * scatter-gather list.
1020 */
1021 int
1022 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1023 int tflag)
1024 {
1025 struct amr_sgentry *sge;
1026 struct amr_mailbox_cmd *mb;
1027 int nsegs, i, rv, sgloff;
1028 bus_dmamap_t xfer;
1029 int dmaflag = 0;
1030
1031 xfer = ac->ac_xfer_map;
1032
1033 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1034 BUS_DMA_NOWAIT);
1035 if (rv != 0)
1036 return (rv);
1037
1038 mb = &ac->ac_cmd;
1039 ac->ac_xfer_size = size;
1040 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1041 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1042
1043 if (tflag & AC_XFER_OUT)
1044 dmaflag |= BUS_DMASYNC_PREWRITE;
1045 if (tflag & AC_XFER_IN)
1046 dmaflag |= BUS_DMASYNC_PREREAD;
1047
1048 /* We don't need to use a scatter/gather list for just 1 segment. */
1049 nsegs = xfer->dm_nsegs;
1050 if (nsegs == 1) {
1051 mb->mb_nsgelem = 0;
1052 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1053 ac->ac_flags |= AC_NOSGL;
1054 } else {
1055 mb->mb_nsgelem = nsegs;
1056 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1057
1058 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1059 for (i = 0; i < nsegs; i++, sge++) {
1060 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1061 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1062 }
1063 }
1064
1065 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1066
1067 if ((ac->ac_flags & AC_NOSGL) == 0)
1068 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1069 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1070
1071 return (0);
1072 }
1073
1074 /*
1075 * Unmap the specified CCB's data buffer.
1076 */
1077 void
1078 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1079 {
1080 int dmaflag = 0;
1081
1082 if (ac->ac_flags & AC_XFER_IN)
1083 dmaflag |= BUS_DMASYNC_POSTREAD;
1084 if (ac->ac_flags & AC_XFER_OUT)
1085 dmaflag |= BUS_DMASYNC_POSTWRITE;
1086
1087 if ((ac->ac_flags & AC_NOSGL) == 0)
1088 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1089 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1090 BUS_DMASYNC_POSTWRITE);
1091 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1092 dmaflag);
1093 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1094 }
1095
1096 /*
1097 * Submit a command to the controller and poll on completion. Return
1098 * non-zero on timeout or error. Must be called with interrupts blocked.
1099 */
1100 int
1101 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1102 {
1103 int rv;
1104
1105 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1106 return (rv);
1107 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1108
1109 for (timo *= 10; timo != 0; timo--) {
1110 amr_intr(amr);
1111 if ((ac->ac_flags & AC_COMPLETE) != 0)
1112 break;
1113 DELAY(100);
1114 }
1115
1116 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1117 }
1118
1119 /*
1120 * Submit a command to the controller and sleep on completion. Return
1121 * non-zero on error.
1122 */
1123 int
1124 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1125 {
1126 int s;
1127
1128 s = splbio();
1129 amr_ccb_enqueue(amr, ac);
1130 tsleep(ac, PRIBIO, "amrcmd", 0);
1131 splx(s);
1132
1133 return (ac->ac_status != 0 ? EIO : 0);
1134 }
1135
1136 #if 0
1137 /*
1138 * Wait for the mailbox to become available.
1139 */
1140 static int
1141 amr_mbox_wait(struct amr_softc *amr)
1142 {
1143 int timo;
1144
1145 for (timo = 10000; timo != 0; timo--) {
1146 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1147 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1148 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1149 break;
1150 DELAY(100);
1151 }
1152
1153 if (timo == 0)
1154 printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1155
1156 return (timo != 0 ? 0 : EAGAIN);
1157 }
1158 #endif
1159
1160 /*
1161 * Tell the controller that the mailbox contains a valid command. Must be
1162 * called with interrupts blocked.
1163 */
1164 static int
1165 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1166 {
1167 u_int32_t v;
1168
1169 amr->amr_mbox->mb_poll = 0;
1170 amr->amr_mbox->mb_ack = 0;
1171 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1172 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1173 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1174 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1175 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1176 return (EAGAIN);
1177
1178 v = amr_inl(amr, AMR_QREG_IDB);
1179 if ((v & AMR_QIDB_SUBMIT) != 0) {
1180 amr->amr_mbox->mb_cmd.mb_busy = 0;
1181 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1182 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1183 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1184 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1185 return (EAGAIN);
1186 }
1187
1188 amr->amr_mbox->mb_segment = 0;
1189 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1190 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1191 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1192
1193 ac->ac_start_time = time_uptime;
1194 ac->ac_flags |= AC_ACTIVE;
1195 amr_outl(amr, AMR_QREG_IDB,
1196 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1197 return (0);
1198 }
1199
1200 static int
1201 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1202 {
1203
1204 amr->amr_mbox->mb_poll = 0;
1205 amr->amr_mbox->mb_ack = 0;
1206 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1207 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1208 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1209 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1210 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1211 return (EAGAIN);
1212
1213 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1214 amr->amr_mbox->mb_cmd.mb_busy = 0;
1215 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1216 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1217 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1218 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1219 return (EAGAIN);
1220 }
1221
1222 amr->amr_mbox->mb_segment = 0;
1223 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1224 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1225 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1226
1227 ac->ac_start_time = time_uptime;
1228 ac->ac_flags |= AC_ACTIVE;
1229 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1230 return (0);
1231 }
1232
1233 /*
1234 * Claim any work that the controller has completed; acknowledge completion,
1235 * save details of the completion in (mbsave). Must be called with
1236 * interrupts blocked.
1237 */
1238 static int
1239 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1240 {
1241
1242 /* Work waiting for us? */
1243 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1244 return (-1);
1245
1246 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1247 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1248
1249 /* Save the mailbox, which contains a list of completed commands. */
1250 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1251
1252 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1253 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1254
1255 /* Ack the interrupt and mailbox transfer. */
1256 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1257 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1258
1259 /*
1260 * This waits for the controller to notice that we've taken the
1261 * command from it. It's very inefficient, and we shouldn't do it,
1262 * but if we remove this code, we stop completing commands under
1263 * load.
1264 *
1265 * Peter J says we shouldn't do this. The documentation says we
1266 * should. Who is right?
1267 */
1268 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1269 DELAY(10);
1270
1271 return (0);
1272 }
1273
1274 static int
1275 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1276 {
1277 u_int8_t istat;
1278
1279 /* Check for valid interrupt status. */
1280 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1281 return (-1);
1282
1283 /* Ack the interrupt. */
1284 amr_outb(amr, AMR_SREG_INTR, istat);
1285
1286 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1287 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1288
1289 /* Save mailbox, which contains a list of completed commands. */
1290 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1291
1292 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1293 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1294
1295 /* Ack mailbox transfer. */
1296 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1297
1298 return (0);
1299 }
1300
1301 static void
1302 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1303 {
1304 int i;
1305
1306 printf("%s: ", device_xname(amr->amr_dv));
1307 for (i = 0; i < 4; i++)
1308 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1309 printf("\n");
1310 }
1311
1312 static int
1313 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1314 {
1315 struct amr_softc *amr;
1316
1317 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1318 return (ENXIO);
1319 if ((amr->amr_flags & AMRF_OPEN) != 0)
1320 return (EBUSY);
1321
1322 amr->amr_flags |= AMRF_OPEN;
1323 return (0);
1324 }
1325
1326 static int
1327 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1328 {
1329 struct amr_softc *amr;
1330
1331 amr = device_lookup_private(&amr_cd, minor(dev));
1332 amr->amr_flags &= ~AMRF_OPEN;
1333 return (0);
1334 }
1335
1336 static int
1337 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1338 struct lwp *l)
1339 {
1340 struct amr_softc *amr;
1341 struct amr_user_ioctl *au;
1342 struct amr_ccb *ac;
1343 struct amr_mailbox_ioctl *mbi;
1344 unsigned long au_length;
1345 uint8_t *au_cmd;
1346 int error;
1347 void *dp = NULL, *au_buffer;
1348
1349 amr = device_lookup_private(&amr_cd, minor(dev));
1350
1351 /* This should be compatible with the FreeBSD interface */
1352
1353 switch (cmd) {
1354 case AMR_IO_VERSION:
1355 *(int *)data = AMR_IO_VERSION_NUMBER;
1356 return 0;
1357 case AMR_IO_COMMAND:
1358 error = kauth_authorize_device_passthru(l->l_cred, dev,
1359 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1360 if (error)
1361 return (error);
1362
1363 au = (struct amr_user_ioctl *)data;
1364 au_cmd = au->au_cmd;
1365 au_buffer = au->au_buffer;
1366 au_length = au->au_length;
1367 break;
1368 default:
1369 return ENOTTY;
1370 }
1371
1372 if (au_cmd[0] == AMR_CMD_PASS) {
1373 /* not yet */
1374 return EOPNOTSUPP;
1375 }
1376
1377 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1378 return (EINVAL);
1379
1380 /*
1381 * allocate kernel memory for data, doing I/O directly to user
1382 * buffer isn't that easy.
1383 */
1384 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1385 if (dp == NULL)
1386 return ENOMEM;
1387 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1388 goto out;
1389
1390 /* direct command to controller */
1391 while (amr_ccb_alloc(amr, &ac) != 0) {
1392 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1393 if (error == EINTR)
1394 goto out;
1395 }
1396
1397 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1398 mbi->mb_command = au_cmd[0];
1399 mbi->mb_channel = au_cmd[1];
1400 mbi->mb_param = au_cmd[2];
1401 mbi->mb_pad[0] = au_cmd[3];
1402 mbi->mb_drive = au_cmd[4];
1403 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1404 AC_XFER_IN | AC_XFER_OUT);
1405 if (error == 0) {
1406 error = amr_ccb_wait(amr, ac);
1407 amr_ccb_unmap(amr, ac);
1408 if (error == 0)
1409 error = copyout(dp, au_buffer, au_length);
1410
1411 }
1412 amr_ccb_free(amr, ac);
1413 out:
1414 free(dp, M_DEVBUF);
1415 return (error);
1416 }
1417