amr.c revision 1.55 1 /* $NetBSD: amr.c,v 1.55 2012/07/27 16:25:11 jakllsch Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60 */
61
62 /*
63 * Driver for AMI RAID controllers.
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.55 2012/07/27 16:25:11 jakllsch Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80
81 #include <machine/endian.h>
82 #include <sys/bus.h>
83
84 #include <dev/pci/pcidevs.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/amrreg.h>
87 #include <dev/pci/amrvar.h>
88 #include <dev/pci/amrio.h>
89
90 #include "locators.h"
91
92 static void amr_attach(device_t, device_t, void *);
93 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
94 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
95 void *);
96 static int amr_init(struct amr_softc *, const char *,
97 struct pci_attach_args *pa);
98 static int amr_intr(void *);
99 static int amr_match(device_t, cfdata_t, void *);
100 static int amr_print(void *, const char *);
101 static void amr_shutdown(void *);
102 static void amr_teardown(struct amr_softc *);
103 static void amr_thread(void *);
104
105 static int amr_quartz_get_work(struct amr_softc *,
106 struct amr_mailbox_resp *);
107 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
108 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
109 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
110
111 static dev_type_open(amropen);
112 static dev_type_close(amrclose);
113 static dev_type_ioctl(amrioctl);
114
115 CFATTACH_DECL_NEW(amr, sizeof(struct amr_softc),
116 amr_match, amr_attach, NULL, NULL);
117
118 const struct cdevsw amr_cdevsw = {
119 amropen, amrclose, noread, nowrite, amrioctl,
120 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
121 };
122
123 extern struct cfdriver amr_cd;
124
125 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
126 #define AT_SIG 0x02 /* Check for signature */
127
128 static struct amr_pci_type {
129 u_short apt_vendor;
130 u_short apt_product;
131 u_short apt_flags;
132 } const amr_pci_type[] = {
133 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
134 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
135 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
136 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
137 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
138 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
139 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
140 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
141 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
142 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
143 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
144 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
145 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
146 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
147 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
148 };
149
150 static struct amr_typestr {
151 const char *at_str;
152 int at_sig;
153 } const amr_typestr[] = {
154 { "Series 431", AMR_SIG_431 },
155 { "Series 438", AMR_SIG_438 },
156 { "Series 466", AMR_SIG_466 },
157 { "Series 467", AMR_SIG_467 },
158 { "Series 490", AMR_SIG_490 },
159 { "Series 762", AMR_SIG_762 },
160 { "HP NetRAID (T5)", AMR_SIG_T5 },
161 { "HP NetRAID (T7)", AMR_SIG_T7 },
162 };
163
164 static struct {
165 const char *ds_descr;
166 int ds_happy;
167 } const amr_dstate[] = {
168 { "offline", 0 },
169 { "degraded", 1 },
170 { "optimal", 1 },
171 { "online", 1 },
172 { "failed", 0 },
173 { "rebuilding", 1 },
174 { "hotspare", 0 },
175 };
176
177 static void *amr_sdh;
178
179 static int amr_max_segs;
180 int amr_max_xfer;
181
182 static inline u_int8_t
183 amr_inb(struct amr_softc *amr, int off)
184 {
185
186 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
187 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
188 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
189 }
190
191 static inline u_int32_t
192 amr_inl(struct amr_softc *amr, int off)
193 {
194
195 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
196 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
197 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
198 }
199
200 static inline void
201 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
202 {
203
204 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
205 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
206 BUS_SPACE_BARRIER_WRITE);
207 }
208
209 static inline void
210 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
211 {
212
213 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
214 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
215 BUS_SPACE_BARRIER_WRITE);
216 }
217
218 /*
219 * Match a supported device.
220 */
221 static int
222 amr_match(device_t parent, cfdata_t match, void *aux)
223 {
224 struct pci_attach_args *pa;
225 pcireg_t s;
226 int i;
227
228 pa = (struct pci_attach_args *)aux;
229
230 /*
231 * Don't match the device if it's operating in I2O mode. In this
232 * case it should be handled by the `iop' driver.
233 */
234 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
235 return (0);
236
237 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
238 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
239 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
240 break;
241
242 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
243 return (0);
244
245 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
246 return (1);
247
248 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
249 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
250 }
251
252 /*
253 * Attach a supported device.
254 */
255 static void
256 amr_attach(device_t parent, device_t self, void *aux)
257 {
258 struct pci_attach_args *pa;
259 struct amr_attach_args amra;
260 const struct amr_pci_type *apt;
261 struct amr_softc *amr;
262 pci_chipset_tag_t pc;
263 pci_intr_handle_t ih;
264 const char *intrstr;
265 pcireg_t reg;
266 int rseg, i, j, size, rv, memreg, ioreg;
267 struct amr_ccb *ac;
268 int locs[AMRCF_NLOCS];
269
270 aprint_naive(": RAID controller\n");
271
272 amr = device_private(self);
273 amr->amr_dv = self;
274 pa = (struct pci_attach_args *)aux;
275 pc = pa->pa_pc;
276
277 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
278 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
279 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
280 break;
281 apt = amr_pci_type + i;
282
283 memreg = ioreg = 0;
284 for (i = 0x10; i <= 0x14; i += 4) {
285 reg = pci_conf_read(pc, pa->pa_tag, i);
286 switch (PCI_MAPREG_TYPE(reg)) {
287 case PCI_MAPREG_TYPE_MEM:
288 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
289 memreg = i;
290 break;
291 case PCI_MAPREG_TYPE_IO:
292 if (PCI_MAPREG_IO_SIZE(reg) != 0)
293 ioreg = i;
294 break;
295
296 }
297 }
298
299 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
300 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
301 ;
302 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
303 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
304 ;
305 else {
306 aprint_error("can't map control registers\n");
307 amr_teardown(amr);
308 return;
309 }
310
311 amr->amr_flags |= AMRF_PCI_REGS;
312 amr->amr_dmat = pa->pa_dmat;
313 amr->amr_pc = pa->pa_pc;
314
315 /* Enable the device. */
316 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
317 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
318 reg | PCI_COMMAND_MASTER_ENABLE);
319
320 /* Map and establish the interrupt. */
321 if (pci_intr_map(pa, &ih)) {
322 aprint_error("can't map interrupt\n");
323 amr_teardown(amr);
324 return;
325 }
326 intrstr = pci_intr_string(pc, ih);
327 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
328 if (amr->amr_ih == NULL) {
329 aprint_error("can't establish interrupt");
330 if (intrstr != NULL)
331 aprint_error(" at %s", intrstr);
332 aprint_error("\n");
333 amr_teardown(amr);
334 return;
335 }
336 amr->amr_flags |= AMRF_PCI_INTR;
337
338 /*
339 * Allocate space for the mailbox and S/G lists. Some controllers
340 * don't like S/G lists to be located below 0x2000, so we allocate
341 * enough slop to enable us to compensate.
342 *
343 * The standard mailbox structure needs to be aligned on a 16-byte
344 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
345 * size, which precedes the standard mailbox.
346 */
347 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
348 amr->amr_dmasize = size;
349
350 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
351 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
352 aprint_error_dev(amr->amr_dv, "unable to allocate buffer, rv = %d\n",
353 rv);
354 amr_teardown(amr);
355 return;
356 }
357 amr->amr_flags |= AMRF_DMA_ALLOC;
358
359 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
360 (void **)&amr->amr_mbox,
361 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
362 aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
363 rv);
364 amr_teardown(amr);
365 return;
366 }
367 amr->amr_flags |= AMRF_DMA_MAP;
368
369 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
370 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
371 aprint_error_dev(amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
372 rv);
373 amr_teardown(amr);
374 return;
375 }
376 amr->amr_flags |= AMRF_DMA_CREATE;
377
378 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
379 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
380 aprint_error_dev(amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
381 rv);
382 amr_teardown(amr);
383 return;
384 }
385 amr->amr_flags |= AMRF_DMA_LOAD;
386
387 memset(amr->amr_mbox, 0, size);
388
389 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
390 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
391 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
392 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
393
394 /*
395 * Allocate and initalise the command control blocks.
396 */
397 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
398 amr->amr_ccbs = ac;
399 SLIST_INIT(&amr->amr_ccb_freelist);
400 TAILQ_INIT(&amr->amr_ccb_active);
401 amr->amr_flags |= AMRF_CCBS;
402
403 if (amr_max_xfer == 0) {
404 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
405 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
406 }
407
408 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
409 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
410 amr_max_segs, amr_max_xfer, 0,
411 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
412 if (rv != 0)
413 break;
414
415 ac->ac_ident = i;
416 amr_ccb_free(amr, ac);
417 }
418 if (i != AMR_MAX_CMDS) {
419 aprint_error_dev(amr->amr_dv, "memory exhausted\n");
420 amr_teardown(amr);
421 return;
422 }
423
424 /*
425 * Take care of model-specific tasks.
426 */
427 if ((apt->apt_flags & AT_QUARTZ) != 0) {
428 amr->amr_submit = amr_quartz_submit;
429 amr->amr_get_work = amr_quartz_get_work;
430 } else {
431 amr->amr_submit = amr_std_submit;
432 amr->amr_get_work = amr_std_get_work;
433
434 /* Notify the controller of the mailbox location. */
435 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
436 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
437
438 /* Clear outstanding interrupts and enable interrupts. */
439 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
440 amr_outb(amr, AMR_SREG_TOGL,
441 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
442 }
443
444 /*
445 * Retrieve parameters, and tell the world about us.
446 */
447 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
448 amr->amr_flags |= AMRF_ENQBUF;
449 amr->amr_maxqueuecnt = i;
450 aprint_normal(": AMI RAID ");
451 if (amr_init(amr, intrstr, pa) != 0) {
452 amr_teardown(amr);
453 return;
454 }
455
456 /*
457 * Cap the maximum number of outstanding commands. AMI's Linux
458 * driver doesn't trust the controller's reported value, and lockups
459 * have been seen when we do.
460 */
461 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
462 if (amr->amr_maxqueuecnt > i)
463 amr->amr_maxqueuecnt = i;
464
465 /* Set our `shutdownhook' before we start any device activity. */
466 if (amr_sdh == NULL)
467 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
468
469 /* Attach sub-devices. */
470 for (j = 0; j < amr->amr_numdrives; j++) {
471 if (amr->amr_drive[j].al_size == 0)
472 continue;
473 amra.amra_unit = j;
474
475 locs[AMRCF_UNIT] = j;
476
477 amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv,
478 "amr", locs, &amra, amr_print, config_stdsubmatch);
479 }
480
481 SIMPLEQ_INIT(&amr->amr_ccb_queue);
482
483 /* XXX This doesn't work for newer boards yet. */
484 if ((apt->apt_flags & AT_QUARTZ) == 0) {
485 rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
486 &amr->amr_thread, "%s", device_xname(amr->amr_dv));
487 if (rv != 0)
488 aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
489 rv);
490 else
491 amr->amr_flags |= AMRF_THREAD;
492 }
493 }
494
495 /*
496 * Free up resources.
497 */
498 static void
499 amr_teardown(struct amr_softc *amr)
500 {
501 struct amr_ccb *ac;
502 int fl;
503
504 fl = amr->amr_flags;
505
506 if ((fl & AMRF_THREAD) != 0) {
507 amr->amr_flags |= AMRF_THREAD_EXIT;
508 wakeup(amr_thread);
509 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
510 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
511 }
512 if ((fl & AMRF_CCBS) != 0) {
513 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
514 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
515 }
516 free(amr->amr_ccbs, M_DEVBUF);
517 }
518 if ((fl & AMRF_ENQBUF) != 0)
519 free(amr->amr_enqbuf, M_DEVBUF);
520 if ((fl & AMRF_DMA_LOAD) != 0)
521 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
522 if ((fl & AMRF_DMA_MAP) != 0)
523 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
524 amr->amr_dmasize);
525 if ((fl & AMRF_DMA_ALLOC) != 0)
526 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
527 if ((fl & AMRF_DMA_CREATE) != 0)
528 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
529 if ((fl & AMRF_PCI_INTR) != 0)
530 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
531 if ((fl & AMRF_PCI_REGS) != 0)
532 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
533 }
534
535 /*
536 * Print autoconfiguration message for a sub-device.
537 */
538 static int
539 amr_print(void *aux, const char *pnp)
540 {
541 struct amr_attach_args *amra;
542
543 amra = (struct amr_attach_args *)aux;
544
545 if (pnp != NULL)
546 aprint_normal("block device at %s", pnp);
547 aprint_normal(" unit %d", amra->amra_unit);
548 return (UNCONF);
549 }
550
551 /*
552 * Retrieve operational parameters and describe the controller.
553 */
554 static int
555 amr_init(struct amr_softc *amr, const char *intrstr,
556 struct pci_attach_args *pa)
557 {
558 struct amr_adapter_info *aa;
559 struct amr_prodinfo *ap;
560 struct amr_enquiry *ae;
561 struct amr_enquiry3 *aex;
562 const char *prodstr;
563 u_int i, sig, ishp;
564 char sbuf[64];
565
566 /*
567 * Try to get 40LD product info, which tells us what the card is
568 * labelled as.
569 */
570 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
571 amr->amr_enqbuf);
572 if (ap != NULL) {
573 aprint_normal("<%.80s>\n", ap->ap_product);
574 if (intrstr != NULL)
575 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
576 intrstr);
577 aprint_normal_dev(amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
578 ap->ap_firmware, ap->ap_bios,
579 le16toh(ap->ap_memsize));
580
581 amr->amr_maxqueuecnt = ap->ap_maxio;
582
583 /*
584 * Fetch and record state of logical drives.
585 */
586 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
587 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
588 if (aex == NULL) {
589 aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
590 return (-1);
591 }
592
593 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
594 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
595 " than the array can handle (%zu)\n",
596 aex->ae_numldrives,
597 __arraycount(aex->ae_drivestate));
598 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
599 }
600 if (aex->ae_numldrives > AMR_MAX_UNITS) {
601 aprint_error_dev(amr->amr_dv,
602 "adjust AMR_MAX_UNITS to %d (currently %d)"
603 "\n", AMR_MAX_UNITS,
604 amr->amr_numdrives);
605 amr->amr_numdrives = AMR_MAX_UNITS;
606 } else
607 amr->amr_numdrives = aex->ae_numldrives;
608
609 for (i = 0; i < amr->amr_numdrives; i++) {
610 amr->amr_drive[i].al_size =
611 le32toh(aex->ae_drivesize[i]);
612 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
613 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
614 }
615
616 return (0);
617 }
618
619 /*
620 * Try 8LD extended ENQUIRY to get the controller signature. Once
621 * found, search for a product description.
622 */
623 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
624 if (ae != NULL) {
625 i = 0;
626 sig = le32toh(ae->ae_signature);
627
628 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
629 if (amr_typestr[i].at_sig == sig)
630 break;
631 i++;
632 }
633 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
634 snprintf(sbuf, sizeof(sbuf),
635 "unknown ENQUIRY2 sig (0x%08x)", sig);
636 prodstr = sbuf;
637 } else
638 prodstr = amr_typestr[i].at_str;
639 } else {
640 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
641 if (ae == NULL) {
642 aprint_error_dev(amr->amr_dv, "unsupported controller\n");
643 return (-1);
644 }
645
646 switch (PCI_PRODUCT(pa->pa_id)) {
647 case PCI_PRODUCT_AMI_MEGARAID:
648 prodstr = "Series 428";
649 break;
650 case PCI_PRODUCT_AMI_MEGARAID2:
651 prodstr = "Series 434";
652 break;
653 default:
654 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
655 PCI_PRODUCT(pa->pa_id));
656 prodstr = sbuf;
657 break;
658 }
659 }
660
661 /*
662 * HP NetRaid controllers have a special encoding of the firmware
663 * and BIOS versions. The AMI version seems to have it as strings
664 * whereas the HP version does it with a leading uppercase character
665 * and two binary numbers.
666 */
667 aa = &ae->ae_adapter;
668
669 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
670 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
671 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
672 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
673 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
674 /* The AMI 438 is a NetRaid 3si in HP-land. */
675 prodstr = "HP NetRaid 3si";
676 }
677 ishp = 1;
678 } else
679 ishp = 0;
680
681 aprint_normal("<%s>\n", prodstr);
682 if (intrstr != NULL)
683 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
684 intrstr);
685
686 if (ishp)
687 aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
688 ", %dMB RAM\n", aa->aa_firmware[2],
689 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
690 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
691 else
692 aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
693 aa->aa_firmware, aa->aa_bios,
694 aa->aa_memorysize);
695
696 amr->amr_maxqueuecnt = aa->aa_maxio;
697
698 /*
699 * Record state of logical drives.
700 */
701 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
702 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
703 " than the array can handle (%zu)\n",
704 ae->ae_ldrv.al_numdrives,
705 __arraycount(ae->ae_ldrv.al_size));
706 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
707 }
708 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
709 aprint_error_dev(amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
710 ae->ae_ldrv.al_numdrives,
711 AMR_MAX_UNITS);
712 amr->amr_numdrives = AMR_MAX_UNITS;
713 } else
714 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
715
716 for (i = 0; i < amr->amr_numdrives; i++) {
717 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
718 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
719 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
720 }
721
722 return (0);
723 }
724
725 /*
726 * Flush the internal cache on each configured controller. Called at
727 * shutdown time.
728 */
729 static void
730 amr_shutdown(void *cookie)
731 {
732 extern struct cfdriver amr_cd;
733 struct amr_softc *amr;
734 struct amr_ccb *ac;
735 int i, rv, s;
736
737 for (i = 0; i < amr_cd.cd_ndevs; i++) {
738 if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
739 continue;
740
741 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
742 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
743 s = splbio();
744 rv = amr_ccb_poll(amr, ac, 30000);
745 splx(s);
746 amr_ccb_free(amr, ac);
747 }
748 if (rv != 0)
749 aprint_error_dev(amr->amr_dv, "unable to flush cache (%d)\n", rv);
750 }
751 }
752
753 /*
754 * Interrupt service routine.
755 */
756 static int
757 amr_intr(void *cookie)
758 {
759 struct amr_softc *amr;
760 struct amr_ccb *ac;
761 struct amr_mailbox_resp mbox;
762 u_int i, forus, idx;
763
764 amr = cookie;
765 forus = 0;
766
767 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
768 /* Iterate over completed commands in this result. */
769 for (i = 0; i < mbox.mb_nstatus; i++) {
770 idx = mbox.mb_completed[i] - 1;
771 ac = amr->amr_ccbs + idx;
772
773 if (idx >= amr->amr_maxqueuecnt) {
774 printf("%s: bad status (bogus ID: %u=%u)\n",
775 device_xname(amr->amr_dv), i, idx);
776 continue;
777 }
778
779 if ((ac->ac_flags & AC_ACTIVE) == 0) {
780 printf("%s: bad status (not active; 0x04%x)\n",
781 device_xname(amr->amr_dv), ac->ac_flags);
782 continue;
783 }
784
785 ac->ac_status = mbox.mb_status;
786 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
787 AC_COMPLETE;
788 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
789
790 if ((ac->ac_flags & AC_MOAN) != 0)
791 printf("%s: ccb %d completed\n",
792 device_xname(amr->amr_dv), ac->ac_ident);
793
794 /* Pass notification to upper layers. */
795 if (ac->ac_handler != NULL)
796 (*ac->ac_handler)(ac);
797 else
798 wakeup(ac);
799 }
800 forus = 1;
801 }
802
803 if (forus)
804 amr_ccb_enqueue(amr, NULL);
805
806 return (forus);
807 }
808
809 /*
810 * Watchdog thread.
811 */
812 static void
813 amr_thread(void *cookie)
814 {
815 struct amr_softc *amr;
816 struct amr_ccb *ac;
817 struct amr_logdrive *al;
818 struct amr_enquiry *ae;
819 int rv, i, s;
820
821 amr = cookie;
822 ae = amr->amr_enqbuf;
823
824 for (;;) {
825 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
826
827 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
828 amr->amr_flags ^= AMRF_THREAD_EXIT;
829 wakeup(&amr->amr_flags);
830 kthread_exit(0);
831 }
832
833 s = splbio();
834 amr_intr(cookie);
835 ac = TAILQ_FIRST(&amr->amr_ccb_active);
836 while (ac != NULL) {
837 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
838 break;
839 if ((ac->ac_flags & AC_MOAN) == 0) {
840 printf("%s: ccb %d timed out; mailbox:\n",
841 device_xname(amr->amr_dv), ac->ac_ident);
842 amr_ccb_dump(amr, ac);
843 ac->ac_flags |= AC_MOAN;
844 }
845 ac = TAILQ_NEXT(ac, ac_chain.tailq);
846 }
847 splx(s);
848
849 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
850 printf("%s: ccb_alloc failed (%d)\n",
851 device_xname(amr->amr_dv), rv);
852 continue;
853 }
854
855 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
856
857 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
858 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
859 if (rv != 0) {
860 aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
861 rv);
862 amr_ccb_free(amr, ac);
863 continue;
864 }
865
866 rv = amr_ccb_wait(amr, ac);
867 amr_ccb_unmap(amr, ac);
868 if (rv != 0) {
869 aprint_error_dev(amr->amr_dv, "enquiry failed (st=%d)\n",
870 ac->ac_status);
871 continue;
872 }
873 amr_ccb_free(amr, ac);
874
875 al = amr->amr_drive;
876 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
877 if (al->al_dv == NULL)
878 continue;
879 if (al->al_state == ae->ae_ldrv.al_state[i])
880 continue;
881
882 printf("%s: state changed: %s -> %s\n",
883 device_xname(al->al_dv),
884 amr_drive_state(al->al_state, NULL),
885 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
886
887 al->al_state = ae->ae_ldrv.al_state[i];
888 }
889 }
890 }
891
892 /*
893 * Return a text description of a logical drive's current state.
894 */
895 const char *
896 amr_drive_state(int state, int *happy)
897 {
898 const char *str;
899
900 state = AMR_DRV_CURSTATE(state);
901 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
902 if (happy)
903 *happy = 1;
904 str = "status unknown";
905 } else {
906 if (happy)
907 *happy = amr_dstate[state].ds_happy;
908 str = amr_dstate[state].ds_descr;
909 }
910
911 return (str);
912 }
913
914 /*
915 * Run a generic enquiry-style command.
916 */
917 static void *
918 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
919 u_int8_t cmdqual, void *sbuf)
920 {
921 struct amr_ccb *ac;
922 u_int8_t *mb;
923 int rv;
924
925 if (amr_ccb_alloc(amr, &ac) != 0)
926 return (NULL);
927
928 /* Build the command proper. */
929 mb = (u_int8_t *)&ac->ac_cmd;
930 mb[0] = cmd;
931 mb[2] = cmdsub;
932 mb[3] = cmdqual;
933
934 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
935 if (rv == 0) {
936 rv = amr_ccb_poll(amr, ac, 2000);
937 amr_ccb_unmap(amr, ac);
938 }
939 amr_ccb_free(amr, ac);
940
941 return (rv ? NULL : sbuf);
942 }
943
944 /*
945 * Allocate and initialise a CCB.
946 */
947 int
948 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
949 {
950 int s;
951
952 s = splbio();
953 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
954 splx(s);
955 return (EAGAIN);
956 }
957 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
958 splx(s);
959
960 return (0);
961 }
962
963 /*
964 * Free a CCB.
965 */
966 void
967 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
968 {
969 int s;
970
971 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
972 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
973 ac->ac_cmd.mb_busy = 1;
974 ac->ac_handler = NULL;
975 ac->ac_flags = 0;
976
977 s = splbio();
978 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
979 splx(s);
980 }
981
982 /*
983 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
984 * the order that they were enqueued and try to submit their command blocks
985 * to the controller for execution.
986 */
987 void
988 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
989 {
990 int s;
991
992 s = splbio();
993
994 if (ac != NULL)
995 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
996
997 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
998 if ((*amr->amr_submit)(amr, ac) != 0)
999 break;
1000 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1001 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1002 }
1003
1004 splx(s);
1005 }
1006
1007 /*
1008 * Map the specified CCB's data buffer onto the bus, and fill the
1009 * scatter-gather list.
1010 */
1011 int
1012 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1013 int tflag)
1014 {
1015 struct amr_sgentry *sge;
1016 struct amr_mailbox_cmd *mb;
1017 int nsegs, i, rv, sgloff;
1018 bus_dmamap_t xfer;
1019 int dmaflag = 0;
1020
1021 xfer = ac->ac_xfer_map;
1022
1023 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1024 BUS_DMA_NOWAIT);
1025 if (rv != 0)
1026 return (rv);
1027
1028 mb = &ac->ac_cmd;
1029 ac->ac_xfer_size = size;
1030 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1031 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1032
1033 if (tflag & AC_XFER_OUT)
1034 dmaflag |= BUS_DMASYNC_PREWRITE;
1035 if (tflag & AC_XFER_IN)
1036 dmaflag |= BUS_DMASYNC_PREREAD;
1037
1038 /* We don't need to use a scatter/gather list for just 1 segment. */
1039 nsegs = xfer->dm_nsegs;
1040 if (nsegs == 1) {
1041 mb->mb_nsgelem = 0;
1042 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1043 ac->ac_flags |= AC_NOSGL;
1044 } else {
1045 mb->mb_nsgelem = nsegs;
1046 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1047
1048 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1049 for (i = 0; i < nsegs; i++, sge++) {
1050 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1051 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1052 }
1053 }
1054
1055 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1056
1057 if ((ac->ac_flags & AC_NOSGL) == 0)
1058 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1059 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1060
1061 return (0);
1062 }
1063
1064 /*
1065 * Unmap the specified CCB's data buffer.
1066 */
1067 void
1068 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1069 {
1070 int dmaflag = 0;
1071
1072 if (ac->ac_flags & AC_XFER_IN)
1073 dmaflag |= BUS_DMASYNC_POSTREAD;
1074 if (ac->ac_flags & AC_XFER_OUT)
1075 dmaflag |= BUS_DMASYNC_POSTWRITE;
1076
1077 if ((ac->ac_flags & AC_NOSGL) == 0)
1078 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1079 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1080 BUS_DMASYNC_POSTWRITE);
1081 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1082 dmaflag);
1083 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1084 }
1085
1086 /*
1087 * Submit a command to the controller and poll on completion. Return
1088 * non-zero on timeout or error. Must be called with interrupts blocked.
1089 */
1090 int
1091 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1092 {
1093 int rv;
1094
1095 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1096 return (rv);
1097 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1098
1099 for (timo *= 10; timo != 0; timo--) {
1100 amr_intr(amr);
1101 if ((ac->ac_flags & AC_COMPLETE) != 0)
1102 break;
1103 DELAY(100);
1104 }
1105
1106 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1107 }
1108
1109 /*
1110 * Submit a command to the controller and sleep on completion. Return
1111 * non-zero on error.
1112 */
1113 int
1114 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1115 {
1116 int s;
1117
1118 s = splbio();
1119 amr_ccb_enqueue(amr, ac);
1120 tsleep(ac, PRIBIO, "amrcmd", 0);
1121 splx(s);
1122
1123 return (ac->ac_status != 0 ? EIO : 0);
1124 }
1125
1126 #if 0
1127 /*
1128 * Wait for the mailbox to become available.
1129 */
1130 static int
1131 amr_mbox_wait(struct amr_softc *amr)
1132 {
1133 int timo;
1134
1135 for (timo = 10000; timo != 0; timo--) {
1136 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1137 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1138 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1139 break;
1140 DELAY(100);
1141 }
1142
1143 if (timo == 0)
1144 printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1145
1146 return (timo != 0 ? 0 : EAGAIN);
1147 }
1148 #endif
1149
1150 /*
1151 * Tell the controller that the mailbox contains a valid command. Must be
1152 * called with interrupts blocked.
1153 */
1154 static int
1155 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1156 {
1157 u_int32_t v;
1158
1159 amr->amr_mbox->mb_poll = 0;
1160 amr->amr_mbox->mb_ack = 0;
1161 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1162 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1163 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1164 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1165 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1166 return (EAGAIN);
1167
1168 v = amr_inl(amr, AMR_QREG_IDB);
1169 if ((v & AMR_QIDB_SUBMIT) != 0) {
1170 amr->amr_mbox->mb_cmd.mb_busy = 0;
1171 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1172 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1173 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1174 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1175 return (EAGAIN);
1176 }
1177
1178 amr->amr_mbox->mb_segment = 0;
1179 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1180 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1181 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1182
1183 ac->ac_start_time = time_uptime;
1184 ac->ac_flags |= AC_ACTIVE;
1185 amr_outl(amr, AMR_QREG_IDB,
1186 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1187 return (0);
1188 }
1189
1190 static int
1191 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1192 {
1193
1194 amr->amr_mbox->mb_poll = 0;
1195 amr->amr_mbox->mb_ack = 0;
1196 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1197 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1198 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1199 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1200 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1201 return (EAGAIN);
1202
1203 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1204 amr->amr_mbox->mb_cmd.mb_busy = 0;
1205 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1206 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1207 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1208 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1209 return (EAGAIN);
1210 }
1211
1212 amr->amr_mbox->mb_segment = 0;
1213 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1214 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1215 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1216
1217 ac->ac_start_time = time_uptime;
1218 ac->ac_flags |= AC_ACTIVE;
1219 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1220 return (0);
1221 }
1222
1223 /*
1224 * Claim any work that the controller has completed; acknowledge completion,
1225 * save details of the completion in (mbsave). Must be called with
1226 * interrupts blocked.
1227 */
1228 static int
1229 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1230 {
1231
1232 /* Work waiting for us? */
1233 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1234 return (-1);
1235
1236 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1237 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1238
1239 /* Save the mailbox, which contains a list of completed commands. */
1240 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1241
1242 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1243 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1244
1245 /* Ack the interrupt and mailbox transfer. */
1246 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1247 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1248
1249 /*
1250 * This waits for the controller to notice that we've taken the
1251 * command from it. It's very inefficient, and we shouldn't do it,
1252 * but if we remove this code, we stop completing commands under
1253 * load.
1254 *
1255 * Peter J says we shouldn't do this. The documentation says we
1256 * should. Who is right?
1257 */
1258 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1259 DELAY(10);
1260
1261 return (0);
1262 }
1263
1264 static int
1265 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1266 {
1267 u_int8_t istat;
1268
1269 /* Check for valid interrupt status. */
1270 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1271 return (-1);
1272
1273 /* Ack the interrupt. */
1274 amr_outb(amr, AMR_SREG_INTR, istat);
1275
1276 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1277 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1278
1279 /* Save mailbox, which contains a list of completed commands. */
1280 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1281
1282 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1283 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1284
1285 /* Ack mailbox transfer. */
1286 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1287
1288 return (0);
1289 }
1290
1291 static void
1292 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1293 {
1294 int i;
1295
1296 printf("%s: ", device_xname(amr->amr_dv));
1297 for (i = 0; i < 4; i++)
1298 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1299 printf("\n");
1300 }
1301
1302 static int
1303 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1304 {
1305 struct amr_softc *amr;
1306
1307 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1308 return (ENXIO);
1309 if ((amr->amr_flags & AMRF_OPEN) != 0)
1310 return (EBUSY);
1311
1312 amr->amr_flags |= AMRF_OPEN;
1313 return (0);
1314 }
1315
1316 static int
1317 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1318 {
1319 struct amr_softc *amr;
1320
1321 amr = device_lookup_private(&amr_cd, minor(dev));
1322 amr->amr_flags &= ~AMRF_OPEN;
1323 return (0);
1324 }
1325
1326 static int
1327 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1328 struct lwp *l)
1329 {
1330 struct amr_softc *amr;
1331 struct amr_user_ioctl *au;
1332 struct amr_ccb *ac;
1333 struct amr_mailbox_ioctl *mbi;
1334 unsigned long au_length;
1335 uint8_t *au_cmd;
1336 int error;
1337 void *dp = NULL, *au_buffer;
1338
1339 amr = device_lookup_private(&amr_cd, minor(dev));
1340
1341 /* This should be compatible with the FreeBSD interface */
1342
1343 switch (cmd) {
1344 case AMR_IO_VERSION:
1345 *(int *)data = AMR_IO_VERSION_NUMBER;
1346 return 0;
1347 case AMR_IO_COMMAND:
1348 error = kauth_authorize_device_passthru(l->l_cred, dev,
1349 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1350 if (error)
1351 return (error);
1352
1353 au = (struct amr_user_ioctl *)data;
1354 au_cmd = au->au_cmd;
1355 au_buffer = au->au_buffer;
1356 au_length = au->au_length;
1357 break;
1358 default:
1359 return ENOTTY;
1360 }
1361
1362 if (au_cmd[0] == AMR_CMD_PASS) {
1363 /* not yet */
1364 return EOPNOTSUPP;
1365 }
1366
1367 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1368 return (EINVAL);
1369
1370 /*
1371 * allocate kernel memory for data, doing I/O directly to user
1372 * buffer isn't that easy.
1373 */
1374 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1375 if (dp == NULL)
1376 return ENOMEM;
1377 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1378 goto out;
1379
1380 /* direct command to controller */
1381 while (amr_ccb_alloc(amr, &ac) != 0) {
1382 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1383 if (error == EINTR)
1384 goto out;
1385 }
1386
1387 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1388 mbi->mb_command = au_cmd[0];
1389 mbi->mb_channel = au_cmd[1];
1390 mbi->mb_param = au_cmd[2];
1391 mbi->mb_pad[0] = au_cmd[3];
1392 mbi->mb_drive = au_cmd[4];
1393 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1394 AC_XFER_IN | AC_XFER_OUT);
1395 if (error == 0) {
1396 error = amr_ccb_wait(amr, ac);
1397 amr_ccb_unmap(amr, ac);
1398 if (error == 0)
1399 error = copyout(dp, au_buffer, au_length);
1400
1401 }
1402 amr_ccb_free(amr, ac);
1403 out:
1404 free(dp, M_DEVBUF);
1405 return (error);
1406 }
1407