amr.c revision 1.58 1 /* $NetBSD: amr.c,v 1.58 2014/07/25 08:10:38 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60 */
61
62 /*
63 * Driver for AMI RAID controllers.
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.58 2014/07/25 08:10:38 dholland Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80
81 #include <machine/endian.h>
82 #include <sys/bus.h>
83
84 #include <dev/pci/pcidevs.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/amrreg.h>
87 #include <dev/pci/amrvar.h>
88 #include <dev/pci/amrio.h>
89
90 #include "locators.h"
91
92 static void amr_attach(device_t, device_t, void *);
93 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
94 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
95 void *);
96 static int amr_init(struct amr_softc *, const char *,
97 struct pci_attach_args *pa);
98 static int amr_intr(void *);
99 static int amr_match(device_t, cfdata_t, void *);
100 static int amr_print(void *, const char *);
101 static void amr_shutdown(void *);
102 static void amr_teardown(struct amr_softc *);
103 static void amr_thread(void *);
104
105 static int amr_quartz_get_work(struct amr_softc *,
106 struct amr_mailbox_resp *);
107 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
108 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
109 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
110
111 static dev_type_open(amropen);
112 static dev_type_close(amrclose);
113 static dev_type_ioctl(amrioctl);
114
115 CFATTACH_DECL_NEW(amr, sizeof(struct amr_softc),
116 amr_match, amr_attach, NULL, NULL);
117
118 const struct cdevsw amr_cdevsw = {
119 .d_open = amropen,
120 .d_close = amrclose,
121 .d_read = noread,
122 .d_write = nowrite,
123 .d_ioctl = amrioctl,
124 .d_stop = nostop,
125 .d_tty = notty,
126 .d_poll = nopoll,
127 .d_mmap = nommap,
128 .d_kqfilter = nokqfilter,
129 .d_discard = nodiscard,
130 .d_flag = D_OTHER
131 };
132
133 extern struct cfdriver amr_cd;
134
135 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
136 #define AT_SIG 0x02 /* Check for signature */
137
138 static struct amr_pci_type {
139 u_short apt_vendor;
140 u_short apt_product;
141 u_short apt_flags;
142 } const amr_pci_type[] = {
143 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
144 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
145 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
146 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
147 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
148 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
149 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
150 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
151 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
152 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
153 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
154 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
155 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
156 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
157 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
158 };
159
160 static struct amr_typestr {
161 const char *at_str;
162 int at_sig;
163 } const amr_typestr[] = {
164 { "Series 431", AMR_SIG_431 },
165 { "Series 438", AMR_SIG_438 },
166 { "Series 466", AMR_SIG_466 },
167 { "Series 467", AMR_SIG_467 },
168 { "Series 490", AMR_SIG_490 },
169 { "Series 762", AMR_SIG_762 },
170 { "HP NetRAID (T5)", AMR_SIG_T5 },
171 { "HP NetRAID (T7)", AMR_SIG_T7 },
172 };
173
174 static struct {
175 const char *ds_descr;
176 int ds_happy;
177 } const amr_dstate[] = {
178 { "offline", 0 },
179 { "degraded", 1 },
180 { "optimal", 1 },
181 { "online", 1 },
182 { "failed", 0 },
183 { "rebuilding", 1 },
184 { "hotspare", 0 },
185 };
186
187 static void *amr_sdh;
188
189 static int amr_max_segs;
190 int amr_max_xfer;
191
192 static inline u_int8_t
193 amr_inb(struct amr_softc *amr, int off)
194 {
195
196 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
197 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
198 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
199 }
200
201 static inline u_int32_t
202 amr_inl(struct amr_softc *amr, int off)
203 {
204
205 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
206 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
207 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
208 }
209
210 static inline void
211 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
212 {
213
214 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
215 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
216 BUS_SPACE_BARRIER_WRITE);
217 }
218
219 static inline void
220 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
221 {
222
223 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
224 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
225 BUS_SPACE_BARRIER_WRITE);
226 }
227
228 /*
229 * Match a supported device.
230 */
231 static int
232 amr_match(device_t parent, cfdata_t match, void *aux)
233 {
234 struct pci_attach_args *pa;
235 pcireg_t s;
236 int i;
237
238 pa = (struct pci_attach_args *)aux;
239
240 /*
241 * Don't match the device if it's operating in I2O mode. In this
242 * case it should be handled by the `iop' driver.
243 */
244 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
245 return (0);
246
247 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
248 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
249 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
250 break;
251
252 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
253 return (0);
254
255 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
256 return (1);
257
258 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
259 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
260 }
261
262 /*
263 * Attach a supported device.
264 */
265 static void
266 amr_attach(device_t parent, device_t self, void *aux)
267 {
268 struct pci_attach_args *pa;
269 struct amr_attach_args amra;
270 const struct amr_pci_type *apt;
271 struct amr_softc *amr;
272 pci_chipset_tag_t pc;
273 pci_intr_handle_t ih;
274 const char *intrstr;
275 pcireg_t reg;
276 int rseg, i, j, size, rv, memreg, ioreg;
277 struct amr_ccb *ac;
278 int locs[AMRCF_NLOCS];
279 char intrbuf[PCI_INTRSTR_LEN];
280
281 aprint_naive(": RAID controller\n");
282
283 amr = device_private(self);
284 amr->amr_dv = self;
285 pa = (struct pci_attach_args *)aux;
286 pc = pa->pa_pc;
287
288 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
289 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
290 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
291 break;
292 apt = amr_pci_type + i;
293
294 memreg = ioreg = 0;
295 for (i = 0x10; i <= 0x14; i += 4) {
296 reg = pci_conf_read(pc, pa->pa_tag, i);
297 switch (PCI_MAPREG_TYPE(reg)) {
298 case PCI_MAPREG_TYPE_MEM:
299 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
300 memreg = i;
301 break;
302 case PCI_MAPREG_TYPE_IO:
303 if (PCI_MAPREG_IO_SIZE(reg) != 0)
304 ioreg = i;
305 break;
306
307 }
308 }
309
310 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
311 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
312 ;
313 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
314 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
315 ;
316 else {
317 aprint_error("can't map control registers\n");
318 amr_teardown(amr);
319 return;
320 }
321
322 amr->amr_flags |= AMRF_PCI_REGS;
323 amr->amr_dmat = pa->pa_dmat;
324 amr->amr_pc = pa->pa_pc;
325
326 /* Enable the device. */
327 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
328 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
329 reg | PCI_COMMAND_MASTER_ENABLE);
330
331 /* Map and establish the interrupt. */
332 if (pci_intr_map(pa, &ih)) {
333 aprint_error("can't map interrupt\n");
334 amr_teardown(amr);
335 return;
336 }
337 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
338 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
339 if (amr->amr_ih == NULL) {
340 aprint_error("can't establish interrupt");
341 if (intrstr != NULL)
342 aprint_error(" at %s", intrstr);
343 aprint_error("\n");
344 amr_teardown(amr);
345 return;
346 }
347 amr->amr_flags |= AMRF_PCI_INTR;
348
349 /*
350 * Allocate space for the mailbox and S/G lists. Some controllers
351 * don't like S/G lists to be located below 0x2000, so we allocate
352 * enough slop to enable us to compensate.
353 *
354 * The standard mailbox structure needs to be aligned on a 16-byte
355 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
356 * size, which precedes the standard mailbox.
357 */
358 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
359 amr->amr_dmasize = size;
360
361 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
362 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
363 aprint_error_dev(amr->amr_dv, "unable to allocate buffer, rv = %d\n",
364 rv);
365 amr_teardown(amr);
366 return;
367 }
368 amr->amr_flags |= AMRF_DMA_ALLOC;
369
370 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
371 (void **)&amr->amr_mbox,
372 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
373 aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
374 rv);
375 amr_teardown(amr);
376 return;
377 }
378 amr->amr_flags |= AMRF_DMA_MAP;
379
380 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
381 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
382 aprint_error_dev(amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
383 rv);
384 amr_teardown(amr);
385 return;
386 }
387 amr->amr_flags |= AMRF_DMA_CREATE;
388
389 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
390 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
391 aprint_error_dev(amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
392 rv);
393 amr_teardown(amr);
394 return;
395 }
396 amr->amr_flags |= AMRF_DMA_LOAD;
397
398 memset(amr->amr_mbox, 0, size);
399
400 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
401 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
402 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
403 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
404
405 /*
406 * Allocate and initalise the command control blocks.
407 */
408 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
409 amr->amr_ccbs = ac;
410 SLIST_INIT(&amr->amr_ccb_freelist);
411 TAILQ_INIT(&amr->amr_ccb_active);
412 amr->amr_flags |= AMRF_CCBS;
413
414 if (amr_max_xfer == 0) {
415 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
416 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
417 }
418
419 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
420 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
421 amr_max_segs, amr_max_xfer, 0,
422 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
423 if (rv != 0)
424 break;
425
426 ac->ac_ident = i;
427 amr_ccb_free(amr, ac);
428 }
429 if (i != AMR_MAX_CMDS) {
430 aprint_error_dev(amr->amr_dv, "memory exhausted\n");
431 amr_teardown(amr);
432 return;
433 }
434
435 /*
436 * Take care of model-specific tasks.
437 */
438 if ((apt->apt_flags & AT_QUARTZ) != 0) {
439 amr->amr_submit = amr_quartz_submit;
440 amr->amr_get_work = amr_quartz_get_work;
441 } else {
442 amr->amr_submit = amr_std_submit;
443 amr->amr_get_work = amr_std_get_work;
444
445 /* Notify the controller of the mailbox location. */
446 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
447 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
448
449 /* Clear outstanding interrupts and enable interrupts. */
450 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
451 amr_outb(amr, AMR_SREG_TOGL,
452 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
453 }
454
455 /*
456 * Retrieve parameters, and tell the world about us.
457 */
458 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
459 amr->amr_flags |= AMRF_ENQBUF;
460 amr->amr_maxqueuecnt = i;
461 aprint_normal(": AMI RAID ");
462 if (amr_init(amr, intrstr, pa) != 0) {
463 amr_teardown(amr);
464 return;
465 }
466
467 /*
468 * Cap the maximum number of outstanding commands. AMI's Linux
469 * driver doesn't trust the controller's reported value, and lockups
470 * have been seen when we do.
471 */
472 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
473 if (amr->amr_maxqueuecnt > i)
474 amr->amr_maxqueuecnt = i;
475
476 /* Set our `shutdownhook' before we start any device activity. */
477 if (amr_sdh == NULL)
478 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
479
480 /* Attach sub-devices. */
481 for (j = 0; j < amr->amr_numdrives; j++) {
482 if (amr->amr_drive[j].al_size == 0)
483 continue;
484 amra.amra_unit = j;
485
486 locs[AMRCF_UNIT] = j;
487
488 amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv,
489 "amr", locs, &amra, amr_print, config_stdsubmatch);
490 }
491
492 SIMPLEQ_INIT(&amr->amr_ccb_queue);
493
494 /* XXX This doesn't work for newer boards yet. */
495 if ((apt->apt_flags & AT_QUARTZ) == 0) {
496 rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
497 &amr->amr_thread, "%s", device_xname(amr->amr_dv));
498 if (rv != 0)
499 aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
500 rv);
501 else
502 amr->amr_flags |= AMRF_THREAD;
503 }
504 }
505
506 /*
507 * Free up resources.
508 */
509 static void
510 amr_teardown(struct amr_softc *amr)
511 {
512 struct amr_ccb *ac;
513 int fl;
514
515 fl = amr->amr_flags;
516
517 if ((fl & AMRF_THREAD) != 0) {
518 amr->amr_flags |= AMRF_THREAD_EXIT;
519 wakeup(amr_thread);
520 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
521 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
522 }
523 if ((fl & AMRF_CCBS) != 0) {
524 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
525 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
526 }
527 free(amr->amr_ccbs, M_DEVBUF);
528 }
529 if ((fl & AMRF_ENQBUF) != 0)
530 free(amr->amr_enqbuf, M_DEVBUF);
531 if ((fl & AMRF_DMA_LOAD) != 0)
532 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
533 if ((fl & AMRF_DMA_MAP) != 0)
534 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
535 amr->amr_dmasize);
536 if ((fl & AMRF_DMA_ALLOC) != 0)
537 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
538 if ((fl & AMRF_DMA_CREATE) != 0)
539 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
540 if ((fl & AMRF_PCI_INTR) != 0)
541 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
542 if ((fl & AMRF_PCI_REGS) != 0)
543 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
544 }
545
546 /*
547 * Print autoconfiguration message for a sub-device.
548 */
549 static int
550 amr_print(void *aux, const char *pnp)
551 {
552 struct amr_attach_args *amra;
553
554 amra = (struct amr_attach_args *)aux;
555
556 if (pnp != NULL)
557 aprint_normal("block device at %s", pnp);
558 aprint_normal(" unit %d", amra->amra_unit);
559 return (UNCONF);
560 }
561
562 /*
563 * Retrieve operational parameters and describe the controller.
564 */
565 static int
566 amr_init(struct amr_softc *amr, const char *intrstr,
567 struct pci_attach_args *pa)
568 {
569 struct amr_adapter_info *aa;
570 struct amr_prodinfo *ap;
571 struct amr_enquiry *ae;
572 struct amr_enquiry3 *aex;
573 const char *prodstr;
574 u_int i, sig, ishp;
575 char sbuf[64];
576
577 /*
578 * Try to get 40LD product info, which tells us what the card is
579 * labelled as.
580 */
581 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
582 amr->amr_enqbuf);
583 if (ap != NULL) {
584 aprint_normal("<%.80s>\n", ap->ap_product);
585 if (intrstr != NULL)
586 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
587 intrstr);
588 aprint_normal_dev(amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
589 ap->ap_firmware, ap->ap_bios,
590 le16toh(ap->ap_memsize));
591
592 amr->amr_maxqueuecnt = ap->ap_maxio;
593
594 /*
595 * Fetch and record state of logical drives.
596 */
597 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
598 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
599 if (aex == NULL) {
600 aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
601 return (-1);
602 }
603
604 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
605 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
606 " than the array can handle (%zu)\n",
607 aex->ae_numldrives,
608 __arraycount(aex->ae_drivestate));
609 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
610 }
611 if (aex->ae_numldrives > AMR_MAX_UNITS) {
612 aprint_error_dev(amr->amr_dv,
613 "adjust AMR_MAX_UNITS to %d (currently %d)"
614 "\n", AMR_MAX_UNITS,
615 amr->amr_numdrives);
616 amr->amr_numdrives = AMR_MAX_UNITS;
617 } else
618 amr->amr_numdrives = aex->ae_numldrives;
619
620 for (i = 0; i < amr->amr_numdrives; i++) {
621 amr->amr_drive[i].al_size =
622 le32toh(aex->ae_drivesize[i]);
623 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
624 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
625 }
626
627 return (0);
628 }
629
630 /*
631 * Try 8LD extended ENQUIRY to get the controller signature. Once
632 * found, search for a product description.
633 */
634 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
635 if (ae != NULL) {
636 i = 0;
637 sig = le32toh(ae->ae_signature);
638
639 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
640 if (amr_typestr[i].at_sig == sig)
641 break;
642 i++;
643 }
644 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
645 snprintf(sbuf, sizeof(sbuf),
646 "unknown ENQUIRY2 sig (0x%08x)", sig);
647 prodstr = sbuf;
648 } else
649 prodstr = amr_typestr[i].at_str;
650 } else {
651 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
652 if (ae == NULL) {
653 aprint_error_dev(amr->amr_dv, "unsupported controller\n");
654 return (-1);
655 }
656
657 switch (PCI_PRODUCT(pa->pa_id)) {
658 case PCI_PRODUCT_AMI_MEGARAID:
659 prodstr = "Series 428";
660 break;
661 case PCI_PRODUCT_AMI_MEGARAID2:
662 prodstr = "Series 434";
663 break;
664 default:
665 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
666 PCI_PRODUCT(pa->pa_id));
667 prodstr = sbuf;
668 break;
669 }
670 }
671
672 /*
673 * HP NetRaid controllers have a special encoding of the firmware
674 * and BIOS versions. The AMI version seems to have it as strings
675 * whereas the HP version does it with a leading uppercase character
676 * and two binary numbers.
677 */
678 aa = &ae->ae_adapter;
679
680 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
681 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
682 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
683 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
684 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
685 /* The AMI 438 is a NetRaid 3si in HP-land. */
686 prodstr = "HP NetRaid 3si";
687 }
688 ishp = 1;
689 } else
690 ishp = 0;
691
692 aprint_normal("<%s>\n", prodstr);
693 if (intrstr != NULL)
694 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
695 intrstr);
696
697 if (ishp)
698 aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
699 ", %dMB RAM\n", aa->aa_firmware[2],
700 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
701 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
702 else
703 aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
704 aa->aa_firmware, aa->aa_bios,
705 aa->aa_memorysize);
706
707 amr->amr_maxqueuecnt = aa->aa_maxio;
708
709 /*
710 * Record state of logical drives.
711 */
712 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
713 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
714 " than the array can handle (%zu)\n",
715 ae->ae_ldrv.al_numdrives,
716 __arraycount(ae->ae_ldrv.al_size));
717 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
718 }
719 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
720 aprint_error_dev(amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
721 ae->ae_ldrv.al_numdrives,
722 AMR_MAX_UNITS);
723 amr->amr_numdrives = AMR_MAX_UNITS;
724 } else
725 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
726
727 for (i = 0; i < amr->amr_numdrives; i++) {
728 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
729 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
730 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
731 }
732
733 return (0);
734 }
735
736 /*
737 * Flush the internal cache on each configured controller. Called at
738 * shutdown time.
739 */
740 static void
741 amr_shutdown(void *cookie)
742 {
743 extern struct cfdriver amr_cd;
744 struct amr_softc *amr;
745 struct amr_ccb *ac;
746 int i, rv, s;
747
748 for (i = 0; i < amr_cd.cd_ndevs; i++) {
749 if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
750 continue;
751
752 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
753 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
754 s = splbio();
755 rv = amr_ccb_poll(amr, ac, 30000);
756 splx(s);
757 amr_ccb_free(amr, ac);
758 }
759 if (rv != 0)
760 aprint_error_dev(amr->amr_dv, "unable to flush cache (%d)\n", rv);
761 }
762 }
763
764 /*
765 * Interrupt service routine.
766 */
767 static int
768 amr_intr(void *cookie)
769 {
770 struct amr_softc *amr;
771 struct amr_ccb *ac;
772 struct amr_mailbox_resp mbox;
773 u_int i, forus, idx;
774
775 amr = cookie;
776 forus = 0;
777
778 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
779 /* Iterate over completed commands in this result. */
780 for (i = 0; i < mbox.mb_nstatus; i++) {
781 idx = mbox.mb_completed[i] - 1;
782 ac = amr->amr_ccbs + idx;
783
784 if (idx >= amr->amr_maxqueuecnt) {
785 printf("%s: bad status (bogus ID: %u=%u)\n",
786 device_xname(amr->amr_dv), i, idx);
787 continue;
788 }
789
790 if ((ac->ac_flags & AC_ACTIVE) == 0) {
791 printf("%s: bad status (not active; 0x04%x)\n",
792 device_xname(amr->amr_dv), ac->ac_flags);
793 continue;
794 }
795
796 ac->ac_status = mbox.mb_status;
797 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
798 AC_COMPLETE;
799 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
800
801 if ((ac->ac_flags & AC_MOAN) != 0)
802 printf("%s: ccb %d completed\n",
803 device_xname(amr->amr_dv), ac->ac_ident);
804
805 /* Pass notification to upper layers. */
806 if (ac->ac_handler != NULL)
807 (*ac->ac_handler)(ac);
808 else
809 wakeup(ac);
810 }
811 forus = 1;
812 }
813
814 if (forus)
815 amr_ccb_enqueue(amr, NULL);
816
817 return (forus);
818 }
819
820 /*
821 * Watchdog thread.
822 */
823 static void
824 amr_thread(void *cookie)
825 {
826 struct amr_softc *amr;
827 struct amr_ccb *ac;
828 struct amr_logdrive *al;
829 struct amr_enquiry *ae;
830 int rv, i, s;
831
832 amr = cookie;
833 ae = amr->amr_enqbuf;
834
835 for (;;) {
836 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
837
838 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
839 amr->amr_flags ^= AMRF_THREAD_EXIT;
840 wakeup(&amr->amr_flags);
841 kthread_exit(0);
842 }
843
844 s = splbio();
845 amr_intr(cookie);
846 ac = TAILQ_FIRST(&amr->amr_ccb_active);
847 while (ac != NULL) {
848 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
849 break;
850 if ((ac->ac_flags & AC_MOAN) == 0) {
851 printf("%s: ccb %d timed out; mailbox:\n",
852 device_xname(amr->amr_dv), ac->ac_ident);
853 amr_ccb_dump(amr, ac);
854 ac->ac_flags |= AC_MOAN;
855 }
856 ac = TAILQ_NEXT(ac, ac_chain.tailq);
857 }
858 splx(s);
859
860 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
861 printf("%s: ccb_alloc failed (%d)\n",
862 device_xname(amr->amr_dv), rv);
863 continue;
864 }
865
866 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
867
868 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
869 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
870 if (rv != 0) {
871 aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
872 rv);
873 amr_ccb_free(amr, ac);
874 continue;
875 }
876
877 rv = amr_ccb_wait(amr, ac);
878 amr_ccb_unmap(amr, ac);
879 if (rv != 0) {
880 aprint_error_dev(amr->amr_dv, "enquiry failed (st=%d)\n",
881 ac->ac_status);
882 continue;
883 }
884 amr_ccb_free(amr, ac);
885
886 al = amr->amr_drive;
887 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
888 if (al->al_dv == NULL)
889 continue;
890 if (al->al_state == ae->ae_ldrv.al_state[i])
891 continue;
892
893 printf("%s: state changed: %s -> %s\n",
894 device_xname(al->al_dv),
895 amr_drive_state(al->al_state, NULL),
896 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
897
898 al->al_state = ae->ae_ldrv.al_state[i];
899 }
900 }
901 }
902
903 /*
904 * Return a text description of a logical drive's current state.
905 */
906 const char *
907 amr_drive_state(int state, int *happy)
908 {
909 const char *str;
910
911 state = AMR_DRV_CURSTATE(state);
912 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
913 if (happy)
914 *happy = 1;
915 str = "status unknown";
916 } else {
917 if (happy)
918 *happy = amr_dstate[state].ds_happy;
919 str = amr_dstate[state].ds_descr;
920 }
921
922 return (str);
923 }
924
925 /*
926 * Run a generic enquiry-style command.
927 */
928 static void *
929 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
930 u_int8_t cmdqual, void *sbuf)
931 {
932 struct amr_ccb *ac;
933 u_int8_t *mb;
934 int rv;
935
936 if (amr_ccb_alloc(amr, &ac) != 0)
937 return (NULL);
938
939 /* Build the command proper. */
940 mb = (u_int8_t *)&ac->ac_cmd;
941 mb[0] = cmd;
942 mb[2] = cmdsub;
943 mb[3] = cmdqual;
944
945 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
946 if (rv == 0) {
947 rv = amr_ccb_poll(amr, ac, 2000);
948 amr_ccb_unmap(amr, ac);
949 }
950 amr_ccb_free(amr, ac);
951
952 return (rv ? NULL : sbuf);
953 }
954
955 /*
956 * Allocate and initialise a CCB.
957 */
958 int
959 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
960 {
961 int s;
962
963 s = splbio();
964 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
965 splx(s);
966 return (EAGAIN);
967 }
968 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
969 splx(s);
970
971 return (0);
972 }
973
974 /*
975 * Free a CCB.
976 */
977 void
978 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
979 {
980 int s;
981
982 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
983 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
984 ac->ac_cmd.mb_busy = 1;
985 ac->ac_handler = NULL;
986 ac->ac_flags = 0;
987
988 s = splbio();
989 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
990 splx(s);
991 }
992
993 /*
994 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
995 * the order that they were enqueued and try to submit their command blocks
996 * to the controller for execution.
997 */
998 void
999 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1000 {
1001 int s;
1002
1003 s = splbio();
1004
1005 if (ac != NULL)
1006 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1007
1008 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1009 if ((*amr->amr_submit)(amr, ac) != 0)
1010 break;
1011 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1012 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1013 }
1014
1015 splx(s);
1016 }
1017
1018 /*
1019 * Map the specified CCB's data buffer onto the bus, and fill the
1020 * scatter-gather list.
1021 */
1022 int
1023 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1024 int tflag)
1025 {
1026 struct amr_sgentry *sge;
1027 struct amr_mailbox_cmd *mb;
1028 int nsegs, i, rv, sgloff;
1029 bus_dmamap_t xfer;
1030 int dmaflag = 0;
1031
1032 xfer = ac->ac_xfer_map;
1033
1034 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1035 BUS_DMA_NOWAIT);
1036 if (rv != 0)
1037 return (rv);
1038
1039 mb = &ac->ac_cmd;
1040 ac->ac_xfer_size = size;
1041 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1042 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1043
1044 if (tflag & AC_XFER_OUT)
1045 dmaflag |= BUS_DMASYNC_PREWRITE;
1046 if (tflag & AC_XFER_IN)
1047 dmaflag |= BUS_DMASYNC_PREREAD;
1048
1049 /* We don't need to use a scatter/gather list for just 1 segment. */
1050 nsegs = xfer->dm_nsegs;
1051 if (nsegs == 1) {
1052 mb->mb_nsgelem = 0;
1053 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1054 ac->ac_flags |= AC_NOSGL;
1055 } else {
1056 mb->mb_nsgelem = nsegs;
1057 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1058
1059 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1060 for (i = 0; i < nsegs; i++, sge++) {
1061 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1062 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1063 }
1064 }
1065
1066 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1067
1068 if ((ac->ac_flags & AC_NOSGL) == 0)
1069 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1070 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1071
1072 return (0);
1073 }
1074
1075 /*
1076 * Unmap the specified CCB's data buffer.
1077 */
1078 void
1079 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1080 {
1081 int dmaflag = 0;
1082
1083 if (ac->ac_flags & AC_XFER_IN)
1084 dmaflag |= BUS_DMASYNC_POSTREAD;
1085 if (ac->ac_flags & AC_XFER_OUT)
1086 dmaflag |= BUS_DMASYNC_POSTWRITE;
1087
1088 if ((ac->ac_flags & AC_NOSGL) == 0)
1089 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1090 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1091 BUS_DMASYNC_POSTWRITE);
1092 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1093 dmaflag);
1094 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1095 }
1096
1097 /*
1098 * Submit a command to the controller and poll on completion. Return
1099 * non-zero on timeout or error. Must be called with interrupts blocked.
1100 */
1101 int
1102 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1103 {
1104 int rv;
1105
1106 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1107 return (rv);
1108 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1109
1110 for (timo *= 10; timo != 0; timo--) {
1111 amr_intr(amr);
1112 if ((ac->ac_flags & AC_COMPLETE) != 0)
1113 break;
1114 DELAY(100);
1115 }
1116
1117 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1118 }
1119
1120 /*
1121 * Submit a command to the controller and sleep on completion. Return
1122 * non-zero on error.
1123 */
1124 int
1125 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1126 {
1127 int s;
1128
1129 s = splbio();
1130 amr_ccb_enqueue(amr, ac);
1131 tsleep(ac, PRIBIO, "amrcmd", 0);
1132 splx(s);
1133
1134 return (ac->ac_status != 0 ? EIO : 0);
1135 }
1136
1137 #if 0
1138 /*
1139 * Wait for the mailbox to become available.
1140 */
1141 static int
1142 amr_mbox_wait(struct amr_softc *amr)
1143 {
1144 int timo;
1145
1146 for (timo = 10000; timo != 0; timo--) {
1147 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1148 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1149 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1150 break;
1151 DELAY(100);
1152 }
1153
1154 if (timo == 0)
1155 printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1156
1157 return (timo != 0 ? 0 : EAGAIN);
1158 }
1159 #endif
1160
1161 /*
1162 * Tell the controller that the mailbox contains a valid command. Must be
1163 * called with interrupts blocked.
1164 */
1165 static int
1166 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1167 {
1168 u_int32_t v;
1169
1170 amr->amr_mbox->mb_poll = 0;
1171 amr->amr_mbox->mb_ack = 0;
1172 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1173 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1174 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1175 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1176 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1177 return (EAGAIN);
1178
1179 v = amr_inl(amr, AMR_QREG_IDB);
1180 if ((v & AMR_QIDB_SUBMIT) != 0) {
1181 amr->amr_mbox->mb_cmd.mb_busy = 0;
1182 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1183 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1184 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1185 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1186 return (EAGAIN);
1187 }
1188
1189 amr->amr_mbox->mb_segment = 0;
1190 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1191 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1192 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1193
1194 ac->ac_start_time = time_uptime;
1195 ac->ac_flags |= AC_ACTIVE;
1196 amr_outl(amr, AMR_QREG_IDB,
1197 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1198 return (0);
1199 }
1200
1201 static int
1202 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1203 {
1204
1205 amr->amr_mbox->mb_poll = 0;
1206 amr->amr_mbox->mb_ack = 0;
1207 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1208 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1209 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1210 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1211 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1212 return (EAGAIN);
1213
1214 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1215 amr->amr_mbox->mb_cmd.mb_busy = 0;
1216 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1217 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1218 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1219 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1220 return (EAGAIN);
1221 }
1222
1223 amr->amr_mbox->mb_segment = 0;
1224 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1225 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1226 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1227
1228 ac->ac_start_time = time_uptime;
1229 ac->ac_flags |= AC_ACTIVE;
1230 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1231 return (0);
1232 }
1233
1234 /*
1235 * Claim any work that the controller has completed; acknowledge completion,
1236 * save details of the completion in (mbsave). Must be called with
1237 * interrupts blocked.
1238 */
1239 static int
1240 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1241 {
1242
1243 /* Work waiting for us? */
1244 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1245 return (-1);
1246
1247 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1248 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1249
1250 /* Save the mailbox, which contains a list of completed commands. */
1251 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1252
1253 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1254 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1255
1256 /* Ack the interrupt and mailbox transfer. */
1257 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1258 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1259
1260 /*
1261 * This waits for the controller to notice that we've taken the
1262 * command from it. It's very inefficient, and we shouldn't do it,
1263 * but if we remove this code, we stop completing commands under
1264 * load.
1265 *
1266 * Peter J says we shouldn't do this. The documentation says we
1267 * should. Who is right?
1268 */
1269 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1270 DELAY(10);
1271
1272 return (0);
1273 }
1274
1275 static int
1276 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1277 {
1278 u_int8_t istat;
1279
1280 /* Check for valid interrupt status. */
1281 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1282 return (-1);
1283
1284 /* Ack the interrupt. */
1285 amr_outb(amr, AMR_SREG_INTR, istat);
1286
1287 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1288 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1289
1290 /* Save mailbox, which contains a list of completed commands. */
1291 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1292
1293 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1294 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1295
1296 /* Ack mailbox transfer. */
1297 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1298
1299 return (0);
1300 }
1301
1302 static void
1303 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1304 {
1305 int i;
1306
1307 printf("%s: ", device_xname(amr->amr_dv));
1308 for (i = 0; i < 4; i++)
1309 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1310 printf("\n");
1311 }
1312
1313 static int
1314 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1315 {
1316 struct amr_softc *amr;
1317
1318 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1319 return (ENXIO);
1320 if ((amr->amr_flags & AMRF_OPEN) != 0)
1321 return (EBUSY);
1322
1323 amr->amr_flags |= AMRF_OPEN;
1324 return (0);
1325 }
1326
1327 static int
1328 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1329 {
1330 struct amr_softc *amr;
1331
1332 amr = device_lookup_private(&amr_cd, minor(dev));
1333 amr->amr_flags &= ~AMRF_OPEN;
1334 return (0);
1335 }
1336
1337 static int
1338 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1339 struct lwp *l)
1340 {
1341 struct amr_softc *amr;
1342 struct amr_user_ioctl *au;
1343 struct amr_ccb *ac;
1344 struct amr_mailbox_ioctl *mbi;
1345 unsigned long au_length;
1346 uint8_t *au_cmd;
1347 int error;
1348 void *dp = NULL, *au_buffer;
1349
1350 amr = device_lookup_private(&amr_cd, minor(dev));
1351
1352 /* This should be compatible with the FreeBSD interface */
1353
1354 switch (cmd) {
1355 case AMR_IO_VERSION:
1356 *(int *)data = AMR_IO_VERSION_NUMBER;
1357 return 0;
1358 case AMR_IO_COMMAND:
1359 error = kauth_authorize_device_passthru(l->l_cred, dev,
1360 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1361 if (error)
1362 return (error);
1363
1364 au = (struct amr_user_ioctl *)data;
1365 au_cmd = au->au_cmd;
1366 au_buffer = au->au_buffer;
1367 au_length = au->au_length;
1368 break;
1369 default:
1370 return ENOTTY;
1371 }
1372
1373 if (au_cmd[0] == AMR_CMD_PASS) {
1374 /* not yet */
1375 return EOPNOTSUPP;
1376 }
1377
1378 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1379 return (EINVAL);
1380
1381 /*
1382 * allocate kernel memory for data, doing I/O directly to user
1383 * buffer isn't that easy.
1384 */
1385 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1386 if (dp == NULL)
1387 return ENOMEM;
1388 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1389 goto out;
1390
1391 /* direct command to controller */
1392 while (amr_ccb_alloc(amr, &ac) != 0) {
1393 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1394 if (error == EINTR)
1395 goto out;
1396 }
1397
1398 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1399 mbi->mb_command = au_cmd[0];
1400 mbi->mb_channel = au_cmd[1];
1401 mbi->mb_param = au_cmd[2];
1402 mbi->mb_pad[0] = au_cmd[3];
1403 mbi->mb_drive = au_cmd[4];
1404 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1405 AC_XFER_IN | AC_XFER_OUT);
1406 if (error == 0) {
1407 error = amr_ccb_wait(amr, ac);
1408 amr_ccb_unmap(amr, ac);
1409 if (error == 0)
1410 error = copyout(dp, au_buffer, au_length);
1411
1412 }
1413 amr_ccb_free(amr, ac);
1414 out:
1415 free(dp, M_DEVBUF);
1416 return (error);
1417 }
1418