amr.c revision 1.58.4.1 1 /* $NetBSD: amr.c,v 1.58.4.1 2015/04/06 15:18:10 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60 */
61
62 /*
63 * Driver for AMI RAID controllers.
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.58.4.1 2015/04/06 15:18:10 skrll Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80 #include <sys/mutex.h>
81 #include <sys/condvar.h>
82
83 #include <machine/endian.h>
84 #include <sys/bus.h>
85
86 #include <dev/pci/pcidevs.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/amrreg.h>
89 #include <dev/pci/amrvar.h>
90 #include <dev/pci/amrio.h>
91
92 #include "locators.h"
93
94 static void amr_attach(device_t, device_t, void *);
95 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
96 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
97 void *);
98 static int amr_init(struct amr_softc *, const char *,
99 struct pci_attach_args *pa);
100 static int amr_intr(void *);
101 static int amr_match(device_t, cfdata_t, void *);
102 static int amr_print(void *, const char *);
103 static void amr_shutdown(void *);
104 static void amr_teardown(struct amr_softc *);
105 static void amr_quartz_thread(void *);
106 static void amr_std_thread(void *);
107
108 static int amr_quartz_get_work(struct amr_softc *,
109 struct amr_mailbox_resp *);
110 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
111 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
112 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
113
114 static dev_type_open(amropen);
115 static dev_type_close(amrclose);
116 static dev_type_ioctl(amrioctl);
117
118 CFATTACH_DECL_NEW(amr, sizeof(struct amr_softc),
119 amr_match, amr_attach, NULL, NULL);
120
121 const struct cdevsw amr_cdevsw = {
122 .d_open = amropen,
123 .d_close = amrclose,
124 .d_read = noread,
125 .d_write = nowrite,
126 .d_ioctl = amrioctl,
127 .d_stop = nostop,
128 .d_tty = notty,
129 .d_poll = nopoll,
130 .d_mmap = nommap,
131 .d_kqfilter = nokqfilter,
132 .d_discard = nodiscard,
133 .d_flag = D_OTHER
134 };
135
136 extern struct cfdriver amr_cd;
137
138 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
139 #define AT_SIG 0x02 /* Check for signature */
140
141 static struct amr_pci_type {
142 u_short apt_vendor;
143 u_short apt_product;
144 u_short apt_flags;
145 } const amr_pci_type[] = {
146 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
147 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
148 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
149 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
150 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
151 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
152 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
153 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
154 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
155 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
156 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
157 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
158 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
159 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
160 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
161 };
162
163 static struct amr_typestr {
164 const char *at_str;
165 int at_sig;
166 } const amr_typestr[] = {
167 { "Series 431", AMR_SIG_431 },
168 { "Series 438", AMR_SIG_438 },
169 { "Series 466", AMR_SIG_466 },
170 { "Series 467", AMR_SIG_467 },
171 { "Series 490", AMR_SIG_490 },
172 { "Series 762", AMR_SIG_762 },
173 { "HP NetRAID (T5)", AMR_SIG_T5 },
174 { "HP NetRAID (T7)", AMR_SIG_T7 },
175 };
176
177 static struct {
178 const char *ds_descr;
179 int ds_happy;
180 } const amr_dstate[] = {
181 { "offline", 0 },
182 { "degraded", 1 },
183 { "optimal", 1 },
184 { "online", 1 },
185 { "failed", 0 },
186 { "rebuilding", 1 },
187 { "hotspare", 0 },
188 };
189
190 static void *amr_sdh;
191
192 static kcondvar_t thread_cv;
193 static kmutex_t thread_mutex;
194
195 static int amr_max_segs;
196 int amr_max_xfer;
197
198 static inline u_int8_t
199 amr_inb(struct amr_softc *amr, int off)
200 {
201 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
202 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
203 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
204 }
205
206 static inline u_int32_t
207 amr_inl(struct amr_softc *amr, int off)
208 {
209 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
210 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
211 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
212 }
213
214 static inline void
215 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
216 {
217 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
218 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
219 BUS_SPACE_BARRIER_WRITE);
220 }
221
222 static inline void
223 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
224 {
225 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
226 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
227 BUS_SPACE_BARRIER_WRITE);
228 }
229
230 /*
231 * Match a supported device.
232 */
233 static int
234 amr_match(device_t parent, cfdata_t match, void *aux)
235 {
236 struct pci_attach_args *pa;
237 pcireg_t s;
238 int i;
239
240 pa = (struct pci_attach_args *)aux;
241
242 /*
243 * Don't match the device if it's operating in I2O mode. In this
244 * case it should be handled by the `iop' driver.
245 */
246 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
247 return (0);
248
249 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
250 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
251 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
252 break;
253
254 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
255 return (0);
256
257 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
258 return (1);
259
260 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
261 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
262 }
263
264 /*
265 * Attach a supported device.
266 */
267 static void
268 amr_attach(device_t parent, device_t self, void *aux)
269 {
270 struct pci_attach_args *pa;
271 struct amr_attach_args amra;
272 const struct amr_pci_type *apt;
273 struct amr_softc *amr;
274 pci_chipset_tag_t pc;
275 pci_intr_handle_t ih;
276 const char *intrstr;
277 pcireg_t reg;
278 int rseg, i, j, size, rv, memreg, ioreg;
279 struct amr_ccb *ac;
280 int locs[AMRCF_NLOCS];
281 char intrbuf[PCI_INTRSTR_LEN];
282
283 aprint_naive(": RAID controller\n");
284
285 amr = device_private(self);
286 amr->amr_dv = self;
287
288 mutex_init(&amr->amr_mutex, MUTEX_DEFAULT, IPL_BIO);
289
290 pa = (struct pci_attach_args *)aux;
291 pc = pa->pa_pc;
292
293 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
294 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
295 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
296 break;
297 apt = amr_pci_type + i;
298
299 memreg = ioreg = 0;
300 for (i = 0x10; i <= 0x14; i += 4) {
301 reg = pci_conf_read(pc, pa->pa_tag, i);
302 switch (PCI_MAPREG_TYPE(reg)) {
303 case PCI_MAPREG_TYPE_MEM:
304 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
305 memreg = i;
306 break;
307 case PCI_MAPREG_TYPE_IO:
308 if (PCI_MAPREG_IO_SIZE(reg) != 0)
309 ioreg = i;
310 break;
311 }
312 }
313
314 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
315 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
316 ;
317 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
318 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
319 ;
320 else {
321 aprint_error("can't map control registers\n");
322 amr_teardown(amr);
323 return;
324 }
325
326 amr->amr_flags |= AMRF_PCI_REGS;
327 amr->amr_dmat = pa->pa_dmat;
328 amr->amr_pc = pa->pa_pc;
329
330 /* Enable the device. */
331 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
332 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
333 reg | PCI_COMMAND_MASTER_ENABLE);
334
335 /* Map and establish the interrupt. */
336 if (pci_intr_map(pa, &ih)) {
337 aprint_error("can't map interrupt\n");
338 amr_teardown(amr);
339 return;
340 }
341 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
342 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
343 if (amr->amr_ih == NULL) {
344 aprint_error("can't establish interrupt");
345 if (intrstr != NULL)
346 aprint_error(" at %s", intrstr);
347 aprint_error("\n");
348 amr_teardown(amr);
349 return;
350 }
351 amr->amr_flags |= AMRF_PCI_INTR;
352
353 /*
354 * Allocate space for the mailbox and S/G lists. Some controllers
355 * don't like S/G lists to be located below 0x2000, so we allocate
356 * enough slop to enable us to compensate.
357 *
358 * The standard mailbox structure needs to be aligned on a 16-byte
359 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
360 * size, which precedes the standard mailbox.
361 */
362 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
363 amr->amr_dmasize = size;
364
365 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
366 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
367 aprint_error_dev(amr->amr_dv, "unable to allocate buffer, rv = %d\n",
368 rv);
369 amr_teardown(amr);
370 return;
371 }
372 amr->amr_flags |= AMRF_DMA_ALLOC;
373
374 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
375 (void **)&amr->amr_mbox,
376 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
377 aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
378 rv);
379 amr_teardown(amr);
380 return;
381 }
382 amr->amr_flags |= AMRF_DMA_MAP;
383
384 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
385 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
386 aprint_error_dev(amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
387 rv);
388 amr_teardown(amr);
389 return;
390 }
391 amr->amr_flags |= AMRF_DMA_CREATE;
392
393 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
394 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
395 aprint_error_dev(amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
396 rv);
397 amr_teardown(amr);
398 return;
399 }
400 amr->amr_flags |= AMRF_DMA_LOAD;
401
402 memset(amr->amr_mbox, 0, size);
403
404 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
405 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
406 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
407 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
408
409 /*
410 * Allocate and initalise the command control blocks.
411 */
412 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
413 amr->amr_ccbs = ac;
414 SLIST_INIT(&amr->amr_ccb_freelist);
415 TAILQ_INIT(&amr->amr_ccb_active);
416 amr->amr_flags |= AMRF_CCBS;
417
418 if (amr_max_xfer == 0) {
419 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
420 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
421 }
422
423 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
424 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
425 amr_max_segs, amr_max_xfer, 0,
426 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
427 if (rv != 0)
428 break;
429
430 ac->ac_ident = i;
431 cv_init(&ac->ac_cv, "amr1ccb");
432 mutex_init(&ac->ac_mutex, MUTEX_DEFAULT, IPL_NONE);
433 amr_ccb_free(amr, ac);
434 }
435 if (i != AMR_MAX_CMDS) {
436 aprint_error_dev(amr->amr_dv, "memory exhausted\n");
437 amr_teardown(amr);
438 return;
439 }
440
441 /*
442 * Take care of model-specific tasks.
443 */
444 if ((apt->apt_flags & AT_QUARTZ) != 0) {
445 amr->amr_submit = amr_quartz_submit;
446 amr->amr_get_work = amr_quartz_get_work;
447 } else {
448 amr->amr_submit = amr_std_submit;
449 amr->amr_get_work = amr_std_get_work;
450
451 /* Notify the controller of the mailbox location. */
452 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
453 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
454
455 /* Clear outstanding interrupts and enable interrupts. */
456 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
457 amr_outb(amr, AMR_SREG_TOGL,
458 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
459 }
460
461 /*
462 * Retrieve parameters, and tell the world about us.
463 */
464 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
465 amr->amr_flags |= AMRF_ENQBUF;
466 amr->amr_maxqueuecnt = i;
467 aprint_normal(": AMI RAID ");
468 if (amr_init(amr, intrstr, pa) != 0) {
469 amr_teardown(amr);
470 return;
471 }
472
473 /*
474 * Cap the maximum number of outstanding commands. AMI's Linux
475 * driver doesn't trust the controller's reported value, and lockups
476 * have been seen when we do.
477 */
478 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
479 if (amr->amr_maxqueuecnt > i)
480 amr->amr_maxqueuecnt = i;
481
482 /* Set our `shutdownhook' before we start any device activity. */
483 if (amr_sdh == NULL)
484 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
485
486 /* Attach sub-devices. */
487 for (j = 0; j < amr->amr_numdrives; j++) {
488 if (amr->amr_drive[j].al_size == 0)
489 continue;
490 amra.amra_unit = j;
491
492 locs[AMRCF_UNIT] = j;
493
494 amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv,
495 "amr", locs, &amra, amr_print, config_stdsubmatch);
496 }
497
498 SIMPLEQ_INIT(&amr->amr_ccb_queue);
499
500 cv_init(&thread_cv, "amrwdog");
501 mutex_init(&thread_mutex, MUTEX_DEFAULT, IPL_NONE);
502
503 if ((apt->apt_flags & AT_QUARTZ) == 0) {
504 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
505 amr_std_thread, amr, &amr->amr_thread,
506 "%s", device_xname(amr->amr_dv));
507 } else {
508 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
509 amr_quartz_thread, amr, &amr->amr_thread,
510 "%s", device_xname(amr->amr_dv));
511 }
512 if (rv != 0)
513 aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
514 rv);
515 else
516 amr->amr_flags |= AMRF_THREAD;
517 }
518
519 /*
520 * Free up resources.
521 */
522 static void
523 amr_teardown(struct amr_softc *amr)
524 {
525 struct amr_ccb *ac;
526 int fl;
527
528 fl = amr->amr_flags;
529
530 if ((fl & AMRF_THREAD) != 0) {
531 amr->amr_flags |= AMRF_THREAD_EXIT;
532 mutex_enter(&thread_mutex);
533 cv_broadcast(&thread_cv);
534 mutex_exit(&thread_mutex);
535 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
536 mutex_enter(&thread_mutex);
537 cv_wait(&thread_cv, &thread_mutex);
538 mutex_exit(&thread_mutex);
539 }
540 }
541 if ((fl & AMRF_CCBS) != 0) {
542 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
543 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
544 }
545 free(amr->amr_ccbs, M_DEVBUF);
546 }
547 if ((fl & AMRF_ENQBUF) != 0)
548 free(amr->amr_enqbuf, M_DEVBUF);
549 if ((fl & AMRF_DMA_LOAD) != 0)
550 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
551 if ((fl & AMRF_DMA_MAP) != 0)
552 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
553 amr->amr_dmasize);
554 if ((fl & AMRF_DMA_ALLOC) != 0)
555 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
556 if ((fl & AMRF_DMA_CREATE) != 0)
557 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
558 if ((fl & AMRF_PCI_INTR) != 0)
559 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
560 if ((fl & AMRF_PCI_REGS) != 0)
561 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
562 }
563
564 /*
565 * Print autoconfiguration message for a sub-device.
566 */
567 static int
568 amr_print(void *aux, const char *pnp)
569 {
570 struct amr_attach_args *amra;
571
572 amra = (struct amr_attach_args *)aux;
573
574 if (pnp != NULL)
575 aprint_normal("block device at %s", pnp);
576 aprint_normal(" unit %d", amra->amra_unit);
577 return (UNCONF);
578 }
579
580 /*
581 * Retrieve operational parameters and describe the controller.
582 */
583 static int
584 amr_init(struct amr_softc *amr, const char *intrstr,
585 struct pci_attach_args *pa)
586 {
587 struct amr_adapter_info *aa;
588 struct amr_prodinfo *ap;
589 struct amr_enquiry *ae;
590 struct amr_enquiry3 *aex;
591 const char *prodstr;
592 u_int i, sig, ishp;
593 char sbuf[64];
594
595 /*
596 * Try to get 40LD product info, which tells us what the card is
597 * labelled as.
598 */
599 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
600 amr->amr_enqbuf);
601 if (ap != NULL) {
602 aprint_normal("<%.80s>\n", ap->ap_product);
603 if (intrstr != NULL)
604 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
605 intrstr);
606 aprint_normal_dev(amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
607 ap->ap_firmware, ap->ap_bios,
608 le16toh(ap->ap_memsize));
609
610 amr->amr_maxqueuecnt = ap->ap_maxio;
611
612 /*
613 * Fetch and record state of logical drives.
614 */
615 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
616 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
617 if (aex == NULL) {
618 aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
619 return (-1);
620 }
621
622 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
623 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
624 " than the array can handle (%zu)\n",
625 aex->ae_numldrives,
626 __arraycount(aex->ae_drivestate));
627 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
628 }
629 if (aex->ae_numldrives > AMR_MAX_UNITS) {
630 aprint_error_dev(amr->amr_dv,
631 "adjust AMR_MAX_UNITS to %d (currently %d)"
632 "\n", AMR_MAX_UNITS,
633 amr->amr_numdrives);
634 amr->amr_numdrives = AMR_MAX_UNITS;
635 } else
636 amr->amr_numdrives = aex->ae_numldrives;
637
638 for (i = 0; i < amr->amr_numdrives; i++) {
639 amr->amr_drive[i].al_size =
640 le32toh(aex->ae_drivesize[i]);
641 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
642 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
643 }
644
645 return (0);
646 }
647
648 /*
649 * Try 8LD extended ENQUIRY to get the controller signature. Once
650 * found, search for a product description.
651 */
652 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
653 if (ae != NULL) {
654 i = 0;
655 sig = le32toh(ae->ae_signature);
656
657 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
658 if (amr_typestr[i].at_sig == sig)
659 break;
660 i++;
661 }
662 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
663 snprintf(sbuf, sizeof(sbuf),
664 "unknown ENQUIRY2 sig (0x%08x)", sig);
665 prodstr = sbuf;
666 } else
667 prodstr = amr_typestr[i].at_str;
668 } else {
669 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
670 if (ae == NULL) {
671 aprint_error_dev(amr->amr_dv, "unsupported controller\n");
672 return (-1);
673 }
674
675 switch (PCI_PRODUCT(pa->pa_id)) {
676 case PCI_PRODUCT_AMI_MEGARAID:
677 prodstr = "Series 428";
678 break;
679 case PCI_PRODUCT_AMI_MEGARAID2:
680 prodstr = "Series 434";
681 break;
682 default:
683 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
684 PCI_PRODUCT(pa->pa_id));
685 prodstr = sbuf;
686 break;
687 }
688 }
689
690 /*
691 * HP NetRaid controllers have a special encoding of the firmware
692 * and BIOS versions. The AMI version seems to have it as strings
693 * whereas the HP version does it with a leading uppercase character
694 * and two binary numbers.
695 */
696 aa = &ae->ae_adapter;
697
698 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
699 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
700 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
701 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
702 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
703 /* The AMI 438 is a NetRaid 3si in HP-land. */
704 prodstr = "HP NetRaid 3si";
705 }
706 ishp = 1;
707 } else
708 ishp = 0;
709
710 aprint_normal("<%s>\n", prodstr);
711 if (intrstr != NULL)
712 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
713 intrstr);
714
715 if (ishp)
716 aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
717 ", %dMB RAM\n", aa->aa_firmware[2],
718 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
719 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
720 else
721 aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
722 aa->aa_firmware, aa->aa_bios,
723 aa->aa_memorysize);
724
725 amr->amr_maxqueuecnt = aa->aa_maxio;
726
727 /*
728 * Record state of logical drives.
729 */
730 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
731 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
732 " than the array can handle (%zu)\n",
733 ae->ae_ldrv.al_numdrives,
734 __arraycount(ae->ae_ldrv.al_size));
735 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
736 }
737 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
738 aprint_error_dev(amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
739 ae->ae_ldrv.al_numdrives,
740 AMR_MAX_UNITS);
741 amr->amr_numdrives = AMR_MAX_UNITS;
742 } else
743 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
744
745 for (i = 0; i < amr->amr_numdrives; i++) {
746 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
747 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
748 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
749 }
750
751 return (0);
752 }
753
754 /*
755 * Flush the internal cache on each configured controller. Called at
756 * shutdown time.
757 */
758 static void
759 amr_shutdown(void *cookie)
760 {
761 extern struct cfdriver amr_cd;
762 struct amr_softc *amr;
763 struct amr_ccb *ac;
764 int i, rv;
765
766 for (i = 0; i < amr_cd.cd_ndevs; i++) {
767 if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
768 continue;
769
770 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
771 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
772 rv = amr_ccb_poll(amr, ac, 30000);
773 amr_ccb_free(amr, ac);
774 }
775 if (rv != 0)
776 aprint_error_dev(amr->amr_dv, "unable to flush cache (%d)\n", rv);
777 }
778 }
779
780 /*
781 * Interrupt service routine.
782 */
783 static int
784 amr_intr(void *cookie)
785 {
786 struct amr_softc *amr;
787 struct amr_ccb *ac;
788 struct amr_mailbox_resp mbox;
789 u_int i, forus, idx;
790
791 amr = cookie;
792 forus = 0;
793
794 mutex_spin_enter(&amr->amr_mutex);
795
796 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
797 /* Iterate over completed commands in this result. */
798 for (i = 0; i < mbox.mb_nstatus; i++) {
799 idx = mbox.mb_completed[i] - 1;
800 ac = amr->amr_ccbs + idx;
801
802 if (idx >= amr->amr_maxqueuecnt) {
803 printf("%s: bad status (bogus ID: %u=%u)\n",
804 device_xname(amr->amr_dv), i, idx);
805 continue;
806 }
807
808 if ((ac->ac_flags & AC_ACTIVE) == 0) {
809 printf("%s: bad status (not active; 0x04%x)\n",
810 device_xname(amr->amr_dv), ac->ac_flags);
811 continue;
812 }
813
814 ac->ac_status = mbox.mb_status;
815 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
816 AC_COMPLETE;
817 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
818
819 if ((ac->ac_flags & AC_MOAN) != 0)
820 printf("%s: ccb %d completed\n",
821 device_xname(amr->amr_dv), ac->ac_ident);
822
823 /* Pass notification to upper layers. */
824 mutex_spin_exit(&amr->amr_mutex);
825 if (ac->ac_handler != NULL) {
826 (*ac->ac_handler)(ac);
827 } else {
828 mutex_enter(&ac->ac_mutex);
829 cv_signal(&ac->ac_cv);
830 mutex_exit(&ac->ac_mutex);
831 }
832 mutex_spin_enter(&amr->amr_mutex);
833 }
834 forus = 1;
835 }
836
837 mutex_spin_exit(&amr->amr_mutex);
838
839 if (forus)
840 amr_ccb_enqueue(amr, NULL);
841
842 return (forus);
843 }
844
845 /*
846 * Watchdog thread.
847 */
848 static void
849 amr_quartz_thread(void *cookie)
850 {
851 struct amr_softc *amr;
852 struct amr_ccb *ac;
853
854 amr = cookie;
855
856 for (;;) {
857 mutex_enter(&thread_mutex);
858 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
859 mutex_exit(&thread_mutex);
860
861 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
862 amr->amr_flags ^= AMRF_THREAD_EXIT;
863 mutex_enter(&thread_mutex);
864 cv_signal(&thread_cv);
865 mutex_exit(&thread_mutex);
866 kthread_exit(0);
867 }
868
869 if (amr_intr(amr) == 0)
870 amr_ccb_enqueue(amr, NULL);
871
872 mutex_spin_enter(&amr->amr_mutex);
873 ac = TAILQ_FIRST(&amr->amr_ccb_active);
874 while (ac != NULL) {
875 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
876 break;
877 if ((ac->ac_flags & AC_MOAN) == 0) {
878 printf("%s: ccb %d timed out; mailbox:\n",
879 device_xname(amr->amr_dv), ac->ac_ident);
880 amr_ccb_dump(amr, ac);
881 ac->ac_flags |= AC_MOAN;
882 }
883 ac = TAILQ_NEXT(ac, ac_chain.tailq);
884 }
885 mutex_spin_exit(&amr->amr_mutex);
886 }
887 }
888
889 static void
890 amr_std_thread(void *cookie)
891 {
892 struct amr_softc *amr;
893 struct amr_ccb *ac;
894 struct amr_logdrive *al;
895 struct amr_enquiry *ae;
896 int rv, i;
897
898 amr = cookie;
899 ae = amr->amr_enqbuf;
900
901 for (;;) {
902 mutex_enter(&thread_mutex);
903 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
904 mutex_exit(&thread_mutex);
905
906 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
907 amr->amr_flags ^= AMRF_THREAD_EXIT;
908 mutex_enter(&thread_mutex);
909 cv_signal(&thread_cv);
910 mutex_exit(&thread_mutex);
911 kthread_exit(0);
912 }
913
914 if (amr_intr(amr) == 0)
915 amr_ccb_enqueue(amr, NULL);
916
917 mutex_spin_enter(&amr->amr_mutex);
918 ac = TAILQ_FIRST(&amr->amr_ccb_active);
919 while (ac != NULL) {
920 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
921 break;
922 if ((ac->ac_flags & AC_MOAN) == 0) {
923 printf("%s: ccb %d timed out; mailbox:\n",
924 device_xname(amr->amr_dv), ac->ac_ident);
925 amr_ccb_dump(amr, ac);
926 ac->ac_flags |= AC_MOAN;
927 }
928 ac = TAILQ_NEXT(ac, ac_chain.tailq);
929 }
930 mutex_spin_exit(&amr->amr_mutex);
931
932 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
933 printf("%s: ccb_alloc failed (%d)\n",
934 device_xname(amr->amr_dv), rv);
935 continue;
936 }
937
938 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
939
940 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
941 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
942 if (rv != 0) {
943 aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
944 rv);
945 amr_ccb_free(amr, ac);
946 continue;
947 }
948
949 rv = amr_ccb_wait(amr, ac);
950 amr_ccb_unmap(amr, ac);
951 if (rv != 0) {
952 aprint_error_dev(amr->amr_dv, "enquiry failed (st=%d)\n",
953 ac->ac_status);
954 continue;
955 }
956 amr_ccb_free(amr, ac);
957
958 al = amr->amr_drive;
959 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
960 if (al->al_dv == NULL)
961 continue;
962 if (al->al_state == ae->ae_ldrv.al_state[i])
963 continue;
964
965 printf("%s: state changed: %s -> %s\n",
966 device_xname(al->al_dv),
967 amr_drive_state(al->al_state, NULL),
968 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
969
970 al->al_state = ae->ae_ldrv.al_state[i];
971 }
972 }
973 }
974
975 /*
976 * Return a text description of a logical drive's current state.
977 */
978 const char *
979 amr_drive_state(int state, int *happy)
980 {
981 const char *str;
982
983 state = AMR_DRV_CURSTATE(state);
984 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
985 if (happy)
986 *happy = 1;
987 str = "status unknown";
988 } else {
989 if (happy)
990 *happy = amr_dstate[state].ds_happy;
991 str = amr_dstate[state].ds_descr;
992 }
993
994 return (str);
995 }
996
997 /*
998 * Run a generic enquiry-style command.
999 */
1000 static void *
1001 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
1002 u_int8_t cmdqual, void *sbuf)
1003 {
1004 struct amr_ccb *ac;
1005 u_int8_t *mb;
1006 int rv;
1007
1008 if (amr_ccb_alloc(amr, &ac) != 0)
1009 return (NULL);
1010
1011 /* Build the command proper. */
1012 mb = (u_int8_t *)&ac->ac_cmd;
1013 mb[0] = cmd;
1014 mb[2] = cmdsub;
1015 mb[3] = cmdqual;
1016
1017 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
1018 if (rv == 0) {
1019 rv = amr_ccb_poll(amr, ac, 2000);
1020 amr_ccb_unmap(amr, ac);
1021 }
1022 amr_ccb_free(amr, ac);
1023
1024 return (rv ? NULL : sbuf);
1025 }
1026
1027 /*
1028 * Allocate and initialise a CCB.
1029 */
1030 int
1031 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
1032 {
1033 mutex_spin_enter(&amr->amr_mutex);
1034 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
1035 mutex_spin_exit(&amr->amr_mutex);
1036 return (EAGAIN);
1037 }
1038 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
1039 mutex_spin_exit(&amr->amr_mutex);
1040
1041 return (0);
1042 }
1043
1044 /*
1045 * Free a CCB.
1046 */
1047 void
1048 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
1049 {
1050 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1051 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1052 ac->ac_cmd.mb_busy = 1;
1053 ac->ac_handler = NULL;
1054 ac->ac_flags = 0;
1055
1056 mutex_spin_enter(&amr->amr_mutex);
1057 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1058 mutex_spin_exit(&amr->amr_mutex);
1059 }
1060
1061 /*
1062 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1063 * the order that they were enqueued and try to submit their command blocks
1064 * to the controller for execution.
1065 */
1066 void
1067 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1068 {
1069 if (ac != NULL) {
1070 mutex_spin_enter(&amr->amr_mutex);
1071 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1072 mutex_spin_exit(&amr->amr_mutex);
1073 }
1074
1075 while (SIMPLEQ_FIRST(&amr->amr_ccb_queue) != NULL) {
1076 mutex_spin_enter(&amr->amr_mutex);
1077 if ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1078 if ((*amr->amr_submit)(amr, ac) != 0) {
1079 mutex_spin_exit(&amr->amr_mutex);
1080 break;
1081 }
1082 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1083 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1084 }
1085 mutex_spin_exit(&amr->amr_mutex);
1086 }
1087 }
1088
1089 /*
1090 * Map the specified CCB's data buffer onto the bus, and fill the
1091 * scatter-gather list.
1092 */
1093 int
1094 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1095 int tflag)
1096 {
1097 struct amr_sgentry *sge;
1098 struct amr_mailbox_cmd *mb;
1099 int nsegs, i, rv, sgloff;
1100 bus_dmamap_t xfer;
1101 int dmaflag = 0;
1102
1103 xfer = ac->ac_xfer_map;
1104
1105 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1106 BUS_DMA_NOWAIT);
1107 if (rv != 0)
1108 return (rv);
1109
1110 mb = &ac->ac_cmd;
1111 ac->ac_xfer_size = size;
1112 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1113 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1114
1115 if (tflag & AC_XFER_OUT)
1116 dmaflag |= BUS_DMASYNC_PREWRITE;
1117 if (tflag & AC_XFER_IN)
1118 dmaflag |= BUS_DMASYNC_PREREAD;
1119
1120 /* We don't need to use a scatter/gather list for just 1 segment. */
1121 nsegs = xfer->dm_nsegs;
1122 if (nsegs == 1) {
1123 mb->mb_nsgelem = 0;
1124 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1125 ac->ac_flags |= AC_NOSGL;
1126 } else {
1127 mb->mb_nsgelem = nsegs;
1128 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1129
1130 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1131 for (i = 0; i < nsegs; i++, sge++) {
1132 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1133 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1134 }
1135 }
1136
1137 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1138
1139 if ((ac->ac_flags & AC_NOSGL) == 0)
1140 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1141 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1142
1143 return (0);
1144 }
1145
1146 /*
1147 * Unmap the specified CCB's data buffer.
1148 */
1149 void
1150 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1151 {
1152 int dmaflag = 0;
1153
1154 if (ac->ac_flags & AC_XFER_IN)
1155 dmaflag |= BUS_DMASYNC_POSTREAD;
1156 if (ac->ac_flags & AC_XFER_OUT)
1157 dmaflag |= BUS_DMASYNC_POSTWRITE;
1158
1159 if ((ac->ac_flags & AC_NOSGL) == 0)
1160 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1161 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1162 BUS_DMASYNC_POSTWRITE);
1163 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1164 dmaflag);
1165 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1166 }
1167
1168 /*
1169 * Submit a command to the controller and poll on completion. Return
1170 * non-zero on timeout or error.
1171 */
1172 int
1173 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1174 {
1175 int rv, i;
1176
1177 mutex_spin_enter(&amr->amr_mutex);
1178 if ((rv = (*amr->amr_submit)(amr, ac)) != 0) {
1179 mutex_spin_exit(&amr->amr_mutex);
1180 return (rv);
1181 }
1182 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1183 mutex_spin_exit(&amr->amr_mutex);
1184
1185 for (i = timo * 10; i > 0; i--) {
1186 amr_intr(amr);
1187 if ((ac->ac_flags & AC_COMPLETE) != 0)
1188 break;
1189 DELAY(100);
1190 }
1191
1192 if (i == 0)
1193 printf("%s: polled operation timed out after %d ms\n",
1194 device_xname(amr->amr_dv), timo);
1195
1196 return ((i == 0 || ac->ac_status != 0) ? EIO : 0);
1197 }
1198
1199 /*
1200 * Submit a command to the controller and sleep on completion. Return
1201 * non-zero on error.
1202 */
1203 int
1204 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1205 {
1206 amr_ccb_enqueue(amr, ac);
1207 mutex_enter(&ac->ac_mutex);
1208 cv_wait(&ac->ac_cv, &ac->ac_mutex);
1209 mutex_exit(&ac->ac_mutex);
1210
1211 return (ac->ac_status != 0 ? EIO : 0);
1212 }
1213
1214 #if 0
1215 /*
1216 * Wait for the mailbox to become available.
1217 */
1218 static int
1219 amr_mbox_wait(struct amr_softc *amr)
1220 {
1221 int timo;
1222
1223 for (timo = 10000; timo != 0; timo--) {
1224 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1225 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1226 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1227 break;
1228 DELAY(100);
1229 }
1230
1231 if (timo == 0)
1232 printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1233
1234 return (timo != 0 ? 0 : EAGAIN);
1235 }
1236 #endif
1237
1238 /*
1239 * Tell the controller that the mailbox contains a valid command. Must be
1240 * called with interrupts blocked.
1241 */
1242 static int
1243 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1244 {
1245 int i = 0;
1246 u_int32_t v;
1247
1248 amr->amr_mbox->mb_poll = 0;
1249 amr->amr_mbox->mb_ack = 0;
1250
1251 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1252 sizeof(struct amr_mailbox),
1253 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1254
1255 v = amr_inl(amr, AMR_QREG_ODB);
1256 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1257 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1258 while ((amr->amr_mbox->mb_cmd.mb_busy != 0) && (i++ < 10)) {
1259 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1260 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1261 /* This is a no-op read that flushes pending mailbox updates */
1262 v = amr_inl(amr, AMR_QREG_ODB);
1263 DELAY(1);
1264 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1265 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1266 }
1267
1268 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1269 return (EAGAIN);
1270
1271 v = amr_inl(amr, AMR_QREG_IDB);
1272 if ((v & AMR_QIDB_SUBMIT) != 0) {
1273 amr->amr_mbox->mb_cmd.mb_busy = 0;
1274 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1275 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1276 printf("%s: submit failed\n", device_xname(amr->amr_dv));
1277 return (EAGAIN);
1278 }
1279
1280 amr->amr_mbox->mb_segment = 0;
1281 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1282 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1283 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1284
1285 ac->ac_start_time = time_uptime;
1286 ac->ac_flags |= AC_ACTIVE;
1287
1288 amr_outl(amr, AMR_QREG_IDB,
1289 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1290 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1291 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1292
1293 return (0);
1294 }
1295
1296 static int
1297 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1298 {
1299
1300 amr->amr_mbox->mb_poll = 0;
1301 amr->amr_mbox->mb_ack = 0;
1302
1303 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1304 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1305
1306 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1307 return (EAGAIN);
1308
1309 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1310 amr->amr_mbox->mb_cmd.mb_busy = 0;
1311 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1312 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1313 return (EAGAIN);
1314 }
1315
1316 amr->amr_mbox->mb_segment = 0;
1317 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1318
1319 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1320 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1321
1322 ac->ac_start_time = time_uptime;
1323 ac->ac_flags |= AC_ACTIVE;
1324 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1325
1326 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1327 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1328
1329 return (0);
1330 }
1331
1332 /*
1333 * Claim any work that the controller has completed; acknowledge completion,
1334 * save details of the completion in (mbsave). Must be called with
1335 * interrupts blocked.
1336 */
1337 static int
1338 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1339 {
1340 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1341 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1342
1343 /* Work waiting for us? */
1344 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1345 return (-1);
1346
1347 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1348 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1349
1350 /* Save the mailbox, which contains a list of completed commands. */
1351 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1352
1353 /* Ack the interrupt and mailbox transfer. */
1354 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1355 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1356
1357 /*
1358 * This waits for the controller to notice that we've taken the
1359 * command from it. It's very inefficient, and we shouldn't do it,
1360 * but if we remove this code, we stop completing commands under
1361 * load.
1362 *
1363 * Peter J says we shouldn't do this. The documentation says we
1364 * should. Who is right?
1365 */
1366 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1367 DELAY(10);
1368
1369 return (0);
1370 }
1371
1372 static int
1373 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1374 {
1375 u_int8_t istat;
1376
1377 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1378 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1379
1380 /* Check for valid interrupt status. */
1381 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1382 return (-1);
1383
1384 /* Ack the interrupt. */
1385 amr_outb(amr, AMR_SREG_INTR, istat);
1386
1387 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1388 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1389
1390 /* Save mailbox, which contains a list of completed commands. */
1391 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1392
1393 /* Ack mailbox transfer. */
1394 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1395
1396 return (0);
1397 }
1398
1399 static void
1400 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1401 {
1402 int i;
1403
1404 printf("%s: ", device_xname(amr->amr_dv));
1405 for (i = 0; i < 4; i++)
1406 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1407 printf("\n");
1408 }
1409
1410 static int
1411 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1412 {
1413 struct amr_softc *amr;
1414
1415 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1416 return (ENXIO);
1417 if ((amr->amr_flags & AMRF_OPEN) != 0)
1418 return (EBUSY);
1419
1420 amr->amr_flags |= AMRF_OPEN;
1421 return (0);
1422 }
1423
1424 static int
1425 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1426 {
1427 struct amr_softc *amr;
1428
1429 amr = device_lookup_private(&amr_cd, minor(dev));
1430 amr->amr_flags &= ~AMRF_OPEN;
1431 return (0);
1432 }
1433
1434 /* used below to correct for a firmware bug */
1435 static unsigned long
1436 amrioctl_buflen(unsigned long len)
1437 {
1438 if (len <= 4 * 1024)
1439 return (4 * 1024);
1440 if (len <= 8 * 1024)
1441 return (8 * 1024);
1442 if (len <= 32 * 1024)
1443 return (32 * 1024);
1444 if (len <= 64 * 1024)
1445 return (64 * 1024);
1446 return (len);
1447 }
1448
1449 static int
1450 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1451 struct lwp *l)
1452 {
1453 struct amr_softc *amr;
1454 struct amr_user_ioctl *au;
1455 struct amr_ccb *ac;
1456 struct amr_mailbox_ioctl *mbi;
1457 unsigned long au_length;
1458 uint8_t *au_cmd;
1459 int error;
1460 void *dp = NULL, *au_buffer;
1461
1462 amr = device_lookup_private(&amr_cd, minor(dev));
1463
1464 /* This should be compatible with the FreeBSD interface */
1465
1466 switch (cmd) {
1467 case AMR_IO_VERSION:
1468 *(int *)data = AMR_IO_VERSION_NUMBER;
1469 return 0;
1470 case AMR_IO_COMMAND:
1471 error = kauth_authorize_device_passthru(l->l_cred, dev,
1472 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1473 if (error)
1474 return (error);
1475
1476 au = (struct amr_user_ioctl *)data;
1477 au_cmd = au->au_cmd;
1478 au_buffer = au->au_buffer;
1479 au_length = au->au_length;
1480 break;
1481 default:
1482 return ENOTTY;
1483 }
1484
1485 if (au_cmd[0] == AMR_CMD_PASS) {
1486 /* not yet */
1487 return EOPNOTSUPP;
1488 }
1489
1490 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1491 return (EINVAL);
1492
1493 /*
1494 * allocate kernel memory for data, doing I/O directly to user
1495 * buffer isn't that easy. Correct allocation size for a bug
1496 * in at least some versions of the device firmware, by using
1497 * the amrioctl_buflen() function, defined above.
1498 */
1499 dp = malloc(amrioctl_buflen(au_length), M_DEVBUF, M_WAITOK|M_ZERO);
1500 if (dp == NULL)
1501 return ENOMEM;
1502 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1503 goto out;
1504
1505 /* direct command to controller */
1506 while (amr_ccb_alloc(amr, &ac) != 0) {
1507 mutex_enter(&thread_mutex);
1508 error = cv_timedwait_sig(&thread_cv, &thread_mutex, hz);
1509 mutex_exit(&thread_mutex);
1510 if (error == EINTR)
1511 goto out;
1512 }
1513
1514 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1515 mbi->mb_command = au_cmd[0];
1516 mbi->mb_channel = au_cmd[1];
1517 mbi->mb_param = au_cmd[2];
1518 mbi->mb_pad[0] = au_cmd[3];
1519 mbi->mb_drive = au_cmd[4];
1520 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1521 AC_XFER_IN | AC_XFER_OUT);
1522 if (error == 0) {
1523 error = amr_ccb_wait(amr, ac);
1524 amr_ccb_unmap(amr, ac);
1525 if (error == 0)
1526 error = copyout(dp, au_buffer, au_length);
1527
1528 }
1529 amr_ccb_free(amr, ac);
1530 out:
1531 free(dp, M_DEVBUF);
1532 return (error);
1533 }
1534