amr.c revision 1.62.16.2 1 /* $NetBSD: amr.c,v 1.62.16.2 2020/04/13 08:04:26 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60 */
61
62 /*
63 * Driver for AMI RAID controllers.
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.62.16.2 2020/04/13 08:04:26 martin Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80 #include <sys/mutex.h>
81 #include <sys/condvar.h>
82 #include <sys/module.h>
83
84 #include <machine/endian.h>
85 #include <sys/bus.h>
86
87 #include <dev/pci/pcidevs.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/amrreg.h>
90 #include <dev/pci/amrvar.h>
91 #include <dev/pci/amrio.h>
92
93 #include "locators.h"
94
95 #include "ioconf.h"
96
97 static void amr_attach(device_t, device_t, void *);
98 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
99 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
100 void *);
101 static int amr_init(struct amr_softc *, const char *,
102 struct pci_attach_args *pa);
103 static int amr_intr(void *);
104 static int amr_match(device_t, cfdata_t, void *);
105 static int amr_rescan(device_t, const char *, const int *);
106 static int amr_print(void *, const char *);
107 static void amr_shutdown(void *);
108 static void amr_teardown(struct amr_softc *);
109 static void amr_quartz_thread(void *);
110 static void amr_std_thread(void *);
111
112 static int amr_quartz_get_work(struct amr_softc *,
113 struct amr_mailbox_resp *);
114 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
115 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
116 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
117
118 static dev_type_open(amropen);
119 static dev_type_close(amrclose);
120 static dev_type_ioctl(amrioctl);
121
122 CFATTACH_DECL3_NEW(amr, sizeof(struct amr_softc),
123 amr_match, amr_attach, NULL, NULL, amr_rescan, NULL, 0);
124
125 const struct cdevsw amr_cdevsw = {
126 .d_open = amropen,
127 .d_close = amrclose,
128 .d_read = noread,
129 .d_write = nowrite,
130 .d_ioctl = amrioctl,
131 .d_stop = nostop,
132 .d_tty = notty,
133 .d_poll = nopoll,
134 .d_mmap = nommap,
135 .d_kqfilter = nokqfilter,
136 .d_discard = nodiscard,
137 .d_flag = D_OTHER
138 };
139
140 extern struct cfdriver amr_cd;
141
142 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
143 #define AT_SIG 0x02 /* Check for signature */
144
145 static struct amr_pci_type {
146 u_short apt_vendor;
147 u_short apt_product;
148 u_short apt_flags;
149 } const amr_pci_type[] = {
150 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
151 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
152 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
153 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
154 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
156 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
157 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
158 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
159 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
160 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
161 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
162 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
163 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
164 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
165 };
166
167 static struct amr_typestr {
168 const char *at_str;
169 int at_sig;
170 } const amr_typestr[] = {
171 { "Series 431", AMR_SIG_431 },
172 { "Series 438", AMR_SIG_438 },
173 { "Series 466", AMR_SIG_466 },
174 { "Series 467", AMR_SIG_467 },
175 { "Series 490", AMR_SIG_490 },
176 { "Series 762", AMR_SIG_762 },
177 { "HP NetRAID (T5)", AMR_SIG_T5 },
178 { "HP NetRAID (T7)", AMR_SIG_T7 },
179 };
180
181 static struct {
182 const char *ds_descr;
183 int ds_happy;
184 } const amr_dstate[] = {
185 { "offline", 0 },
186 { "degraded", 1 },
187 { "optimal", 1 },
188 { "online", 1 },
189 { "failed", 0 },
190 { "rebuilding", 1 },
191 { "hotspare", 0 },
192 };
193
194 static void *amr_sdh;
195
196 static kcondvar_t thread_cv;
197 static kmutex_t thread_mutex;
198
199 static int amr_max_segs;
200 int amr_max_xfer;
201
202 static inline u_int8_t
203 amr_inb(struct amr_softc *amr, int off)
204 {
205 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
206 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
207 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
208 }
209
210 static inline u_int32_t
211 amr_inl(struct amr_softc *amr, int off)
212 {
213 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
214 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
215 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
216 }
217
218 static inline void
219 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
220 {
221 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
222 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
223 BUS_SPACE_BARRIER_WRITE);
224 }
225
226 static inline void
227 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
228 {
229 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
230 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
231 BUS_SPACE_BARRIER_WRITE);
232 }
233
234 /*
235 * Match a supported device.
236 */
237 static int
238 amr_match(device_t parent, cfdata_t match, void *aux)
239 {
240 struct pci_attach_args *pa;
241 pcireg_t s;
242 int i;
243
244 pa = (struct pci_attach_args *)aux;
245
246 /*
247 * Don't match the device if it's operating in I2O mode. In this
248 * case it should be handled by the `iop' driver.
249 */
250 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
251 return (0);
252
253 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
254 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
255 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
256 break;
257
258 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
259 return (0);
260
261 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
262 return (1);
263
264 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
265 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
266 }
267
268 /*
269 * Attach a supported device.
270 */
271 static void
272 amr_attach(device_t parent, device_t self, void *aux)
273 {
274 struct pci_attach_args *pa;
275 const struct amr_pci_type *apt;
276 struct amr_softc *amr;
277 pci_chipset_tag_t pc;
278 pci_intr_handle_t ih;
279 const char *intrstr;
280 pcireg_t reg;
281 int rseg, i, size, rv, memreg, ioreg;
282 struct amr_ccb *ac;
283 char intrbuf[PCI_INTRSTR_LEN];
284
285 aprint_naive(": RAID controller\n");
286
287 amr = device_private(self);
288 amr->amr_dv = self;
289
290 mutex_init(&amr->amr_mutex, MUTEX_DEFAULT, IPL_BIO);
291
292 pa = (struct pci_attach_args *)aux;
293 pc = pa->pa_pc;
294
295 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
296 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
297 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
298 break;
299 apt = amr_pci_type + i;
300
301 memreg = ioreg = 0;
302 for (i = 0x10; i <= 0x14; i += 4) {
303 reg = pci_conf_read(pc, pa->pa_tag, i);
304 switch (PCI_MAPREG_TYPE(reg)) {
305 case PCI_MAPREG_TYPE_MEM:
306 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
307 memreg = i;
308 break;
309 case PCI_MAPREG_TYPE_IO:
310 if (PCI_MAPREG_IO_SIZE(reg) != 0)
311 ioreg = i;
312 break;
313 }
314 }
315
316 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
317 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
318 ;
319 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
320 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
321 ;
322 else {
323 aprint_error("can't map control registers\n");
324 amr_teardown(amr);
325 return;
326 }
327
328 amr->amr_flags |= AMRF_PCI_REGS;
329 amr->amr_dmat = pa->pa_dmat;
330 amr->amr_pc = pa->pa_pc;
331
332 /* Enable the device. */
333 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
334 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
335 reg | PCI_COMMAND_MASTER_ENABLE);
336
337 /* Map and establish the interrupt. */
338 if (pci_intr_map(pa, &ih)) {
339 aprint_error("can't map interrupt\n");
340 amr_teardown(amr);
341 return;
342 }
343 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
344 amr->amr_ih = pci_intr_establish_xname(pc, ih, IPL_BIO, amr_intr, amr,
345 device_xname(self));
346 if (amr->amr_ih == NULL) {
347 aprint_error("can't establish interrupt");
348 if (intrstr != NULL)
349 aprint_error(" at %s", intrstr);
350 aprint_error("\n");
351 amr_teardown(amr);
352 return;
353 }
354 amr->amr_flags |= AMRF_PCI_INTR;
355
356 /*
357 * Allocate space for the mailbox and S/G lists. Some controllers
358 * don't like S/G lists to be located below 0x2000, so we allocate
359 * enough slop to enable us to compensate.
360 *
361 * The standard mailbox structure needs to be aligned on a 16-byte
362 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
363 * size, which precedes the standard mailbox.
364 */
365 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
366 amr->amr_dmasize = size;
367
368 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
369 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
370 aprint_error_dev(amr->amr_dv,
371 "unable to allocate buffer, rv = %d\n", rv);
372 amr_teardown(amr);
373 return;
374 }
375 amr->amr_flags |= AMRF_DMA_ALLOC;
376
377 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
378 (void **)&amr->amr_mbox,
379 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
380 aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
381 rv);
382 amr_teardown(amr);
383 return;
384 }
385 amr->amr_flags |= AMRF_DMA_MAP;
386
387 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
388 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
389 aprint_error_dev(amr->amr_dv,
390 "unable to create buffer DMA map, rv = %d\n", rv);
391 amr_teardown(amr);
392 return;
393 }
394 amr->amr_flags |= AMRF_DMA_CREATE;
395
396 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
397 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
398 aprint_error_dev(amr->amr_dv,
399 "unable to load buffer DMA map, rv = %d\n", rv);
400 amr_teardown(amr);
401 return;
402 }
403 amr->amr_flags |= AMRF_DMA_LOAD;
404
405 memset(amr->amr_mbox, 0, size);
406
407 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
408 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
409 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
410 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
411
412 /*
413 * Allocate and initalise the command control blocks.
414 */
415 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_WAITOK | M_ZERO);
416 amr->amr_ccbs = ac;
417 SLIST_INIT(&amr->amr_ccb_freelist);
418 TAILQ_INIT(&amr->amr_ccb_active);
419 amr->amr_flags |= AMRF_CCBS;
420
421 if (amr_max_xfer == 0) {
422 amr_max_xfer = uimin(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
423 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
424 }
425
426 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
427 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
428 amr_max_segs, amr_max_xfer, 0,
429 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
430 if (rv != 0)
431 break;
432
433 ac->ac_ident = i;
434 cv_init(&ac->ac_cv, "amr1ccb");
435 mutex_init(&ac->ac_mutex, MUTEX_DEFAULT, IPL_NONE);
436 amr_ccb_free(amr, ac);
437 }
438 if (i != AMR_MAX_CMDS) {
439 aprint_error_dev(amr->amr_dv, "memory exhausted\n");
440 amr_teardown(amr);
441 return;
442 }
443
444 /*
445 * Take care of model-specific tasks.
446 */
447 if ((apt->apt_flags & AT_QUARTZ) != 0) {
448 amr->amr_submit = amr_quartz_submit;
449 amr->amr_get_work = amr_quartz_get_work;
450 } else {
451 amr->amr_submit = amr_std_submit;
452 amr->amr_get_work = amr_std_get_work;
453
454 /* Notify the controller of the mailbox location. */
455 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
456 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
457
458 /* Clear outstanding interrupts and enable interrupts. */
459 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
460 amr_outb(amr, AMR_SREG_TOGL,
461 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
462 }
463
464 /*
465 * Retrieve parameters, and tell the world about us.
466 */
467 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_WAITOK);
468 amr->amr_flags |= AMRF_ENQBUF;
469 amr->amr_maxqueuecnt = i;
470 aprint_normal(": AMI RAID ");
471 if (amr_init(amr, intrstr, pa) != 0) {
472 amr_teardown(amr);
473 return;
474 }
475
476 /*
477 * Cap the maximum number of outstanding commands. AMI's Linux
478 * driver doesn't trust the controller's reported value, and lockups
479 * have been seen when we do.
480 */
481 amr->amr_maxqueuecnt = uimin(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
482 if (amr->amr_maxqueuecnt > i)
483 amr->amr_maxqueuecnt = i;
484
485 /* Set our `shutdownhook' before we start any device activity. */
486 if (amr_sdh == NULL)
487 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
488
489 /* Attach sub-devices. */
490 amr_rescan(self, "amr", 0);
491
492 SIMPLEQ_INIT(&amr->amr_ccb_queue);
493
494 cv_init(&thread_cv, "amrwdog");
495 mutex_init(&thread_mutex, MUTEX_DEFAULT, IPL_NONE);
496
497 if ((apt->apt_flags & AT_QUARTZ) == 0) {
498 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
499 amr_std_thread, amr, &amr->amr_thread,
500 "%s", device_xname(amr->amr_dv));
501 } else {
502 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
503 amr_quartz_thread, amr, &amr->amr_thread,
504 "%s", device_xname(amr->amr_dv));
505 }
506 if (rv != 0)
507 aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
508 rv);
509 else
510 amr->amr_flags |= AMRF_THREAD;
511 }
512
513 static int
514 amr_rescan(device_t self, const char *attr, const int *flags)
515 {
516 int j;
517 int locs[AMRCF_NLOCS];
518 struct amr_attach_args amra;
519 struct amr_softc *amr;
520
521 amr = device_private(self);
522 for (j = 0; j < amr->amr_numdrives; j++) {
523 if (amr->amr_drive[j].al_dv)
524 continue;
525 if (amr->amr_drive[j].al_size == 0)
526 continue;
527 amra.amra_unit = j;
528
529 locs[AMRCF_UNIT] = j;
530
531 amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv,
532 attr, locs, &amra, amr_print, config_stdsubmatch);
533 }
534 return 0;
535 }
536
537 /*
538 * Free up resources.
539 */
540 static void
541 amr_teardown(struct amr_softc *amr)
542 {
543 struct amr_ccb *ac;
544 int fl;
545
546 fl = amr->amr_flags;
547
548 if ((fl & AMRF_THREAD) != 0) {
549 amr->amr_flags |= AMRF_THREAD_EXIT;
550 mutex_enter(&thread_mutex);
551 cv_broadcast(&thread_cv);
552 mutex_exit(&thread_mutex);
553 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
554 mutex_enter(&thread_mutex);
555 cv_wait(&thread_cv, &thread_mutex);
556 mutex_exit(&thread_mutex);
557 }
558 }
559 if ((fl & AMRF_CCBS) != 0) {
560 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
561 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
562 }
563 free(amr->amr_ccbs, M_DEVBUF);
564 }
565 if ((fl & AMRF_ENQBUF) != 0)
566 free(amr->amr_enqbuf, M_DEVBUF);
567 if ((fl & AMRF_DMA_LOAD) != 0)
568 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
569 if ((fl & AMRF_DMA_MAP) != 0)
570 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
571 amr->amr_dmasize);
572 if ((fl & AMRF_DMA_ALLOC) != 0)
573 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
574 if ((fl & AMRF_DMA_CREATE) != 0)
575 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
576 if ((fl & AMRF_PCI_INTR) != 0)
577 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
578 if ((fl & AMRF_PCI_REGS) != 0)
579 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
580 }
581
582 /*
583 * Print autoconfiguration message for a sub-device.
584 */
585 static int
586 amr_print(void *aux, const char *pnp)
587 {
588 struct amr_attach_args *amra;
589
590 amra = (struct amr_attach_args *)aux;
591
592 if (pnp != NULL)
593 aprint_normal("block device at %s", pnp);
594 aprint_normal(" unit %d", amra->amra_unit);
595 return (UNCONF);
596 }
597
598 /*
599 * Retrieve operational parameters and describe the controller.
600 */
601 static int
602 amr_init(struct amr_softc *amr, const char *intrstr,
603 struct pci_attach_args *pa)
604 {
605 struct amr_adapter_info *aa;
606 struct amr_prodinfo *ap;
607 struct amr_enquiry *ae;
608 struct amr_enquiry3 *aex;
609 const char *prodstr;
610 u_int i, sig, ishp;
611 char sbuf[64];
612
613 /*
614 * Try to get 40LD product info, which tells us what the card is
615 * labelled as.
616 */
617 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
618 amr->amr_enqbuf);
619 if (ap != NULL) {
620 aprint_normal("<%.80s>\n", ap->ap_product);
621 if (intrstr != NULL)
622 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
623 intrstr);
624 aprint_normal_dev(amr->amr_dv,
625 "firmware %.16s, BIOS %.16s, %dMB RAM\n",
626 ap->ap_firmware, ap->ap_bios, le16toh(ap->ap_memsize));
627
628 amr->amr_maxqueuecnt = ap->ap_maxio;
629
630 /*
631 * Fetch and record state of logical drives.
632 */
633 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
634 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
635 if (aex == NULL) {
636 aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
637 return (-1);
638 }
639
640 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
641 aprint_error_dev(amr->amr_dv, "Inquiry returned more "
642 "drives (%d) than the array can handle (%zu)\n",
643 aex->ae_numldrives,
644 __arraycount(aex->ae_drivestate));
645 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
646 }
647 if (aex->ae_numldrives > AMR_MAX_UNITS) {
648 aprint_error_dev(amr->amr_dv,
649 "adjust AMR_MAX_UNITS to %d (currently %d)\n",
650 AMR_MAX_UNITS, amr->amr_numdrives);
651 amr->amr_numdrives = AMR_MAX_UNITS;
652 } else
653 amr->amr_numdrives = aex->ae_numldrives;
654
655 for (i = 0; i < amr->amr_numdrives; i++) {
656 amr->amr_drive[i].al_size =
657 le32toh(aex->ae_drivesize[i]);
658 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
659 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
660 }
661
662 return (0);
663 }
664
665 /*
666 * Try 8LD extended ENQUIRY to get the controller signature. Once
667 * found, search for a product description.
668 */
669 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
670 if (ae != NULL) {
671 i = 0;
672 sig = le32toh(ae->ae_signature);
673
674 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
675 if (amr_typestr[i].at_sig == sig)
676 break;
677 i++;
678 }
679 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
680 snprintf(sbuf, sizeof(sbuf),
681 "unknown ENQUIRY2 sig (0x%08x)", sig);
682 prodstr = sbuf;
683 } else
684 prodstr = amr_typestr[i].at_str;
685 } else {
686 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
687 if (ae == NULL) {
688 aprint_error_dev(amr->amr_dv,
689 "unsupported controller\n");
690 return (-1);
691 }
692
693 switch (PCI_PRODUCT(pa->pa_id)) {
694 case PCI_PRODUCT_AMI_MEGARAID:
695 prodstr = "Series 428";
696 break;
697 case PCI_PRODUCT_AMI_MEGARAID2:
698 prodstr = "Series 434";
699 break;
700 default:
701 snprintf(sbuf, sizeof(sbuf),
702 "unknown PCI dev (0x%04x)",
703 PCI_PRODUCT(pa->pa_id));
704 prodstr = sbuf;
705 break;
706 }
707 }
708
709 /*
710 * HP NetRaid controllers have a special encoding of the firmware
711 * and BIOS versions. The AMI version seems to have it as strings
712 * whereas the HP version does it with a leading uppercase character
713 * and two binary numbers.
714 */
715 aa = &ae->ae_adapter;
716
717 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
718 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
719 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
720 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
721 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
722 /* The AMI 438 is a NetRaid 3si in HP-land. */
723 prodstr = "HP NetRaid 3si";
724 }
725 ishp = 1;
726 } else
727 ishp = 0;
728
729 aprint_normal("<%s>\n", prodstr);
730 if (intrstr != NULL)
731 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
732 intrstr);
733
734 if (ishp)
735 aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, "
736 "BIOS <%c.%02d.%02d>, %dMB RAM\n", aa->aa_firmware[2],
737 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
738 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
739 else
740 aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, "
741 "%dMB RAM\n", aa->aa_firmware, aa->aa_bios,
742 aa->aa_memorysize);
743
744 amr->amr_maxqueuecnt = aa->aa_maxio;
745
746 /*
747 * Record state of logical drives.
748 */
749 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
750 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives "
751 "(%d) than the array can handle (%zu)\n",
752 ae->ae_ldrv.al_numdrives,
753 __arraycount(ae->ae_ldrv.al_size));
754 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
755 }
756 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
757 aprint_error_dev(amr->amr_dv,
758 "adjust AMR_MAX_UNITS to %d (currently %d)\n",
759 ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
760 amr->amr_numdrives = AMR_MAX_UNITS;
761 } else
762 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
763
764 for (i = 0; i < amr->amr_numdrives; i++) {
765 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
766 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
767 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
768 }
769
770 return (0);
771 }
772
773 /*
774 * Flush the internal cache on each configured controller. Called at
775 * shutdown time.
776 */
777 static void
778 amr_shutdown(void *cookie)
779 {
780 extern struct cfdriver amr_cd;
781 struct amr_softc *amr;
782 struct amr_ccb *ac;
783 int i, rv;
784
785 for (i = 0; i < amr_cd.cd_ndevs; i++) {
786 if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
787 continue;
788
789 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
790 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
791 rv = amr_ccb_poll(amr, ac, 30000);
792 amr_ccb_free(amr, ac);
793 }
794 if (rv != 0)
795 aprint_error_dev(amr->amr_dv,
796 "unable to flush cache (%d)\n", rv);
797 }
798 }
799
800 /*
801 * Interrupt service routine.
802 */
803 static int
804 amr_intr(void *cookie)
805 {
806 struct amr_softc *amr;
807 struct amr_ccb *ac;
808 struct amr_mailbox_resp mbox;
809 u_int i, forus, idx;
810
811 amr = cookie;
812 forus = 0;
813
814 mutex_spin_enter(&amr->amr_mutex);
815
816 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
817 /* Iterate over completed commands in this result. */
818 for (i = 0; i < mbox.mb_nstatus; i++) {
819 idx = mbox.mb_completed[i] - 1;
820 ac = amr->amr_ccbs + idx;
821
822 if (idx >= amr->amr_maxqueuecnt) {
823 printf("%s: bad status (bogus ID: %u=%u)\n",
824 device_xname(amr->amr_dv), i, idx);
825 continue;
826 }
827
828 if ((ac->ac_flags & AC_ACTIVE) == 0) {
829 printf("%s: bad status (not active; 0x04%x)\n",
830 device_xname(amr->amr_dv), ac->ac_flags);
831 continue;
832 }
833
834 ac->ac_status = mbox.mb_status;
835 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
836 AC_COMPLETE;
837 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
838
839 if ((ac->ac_flags & AC_MOAN) != 0)
840 printf("%s: ccb %d completed\n",
841 device_xname(amr->amr_dv), ac->ac_ident);
842
843 /* Pass notification to upper layers. */
844 mutex_spin_exit(&amr->amr_mutex);
845 if (ac->ac_handler != NULL) {
846 (*ac->ac_handler)(ac);
847 } else {
848 mutex_enter(&ac->ac_mutex);
849 cv_signal(&ac->ac_cv);
850 mutex_exit(&ac->ac_mutex);
851 }
852 mutex_spin_enter(&amr->amr_mutex);
853 }
854 forus = 1;
855 }
856
857 mutex_spin_exit(&amr->amr_mutex);
858
859 if (forus)
860 amr_ccb_enqueue(amr, NULL);
861
862 return (forus);
863 }
864
865 /*
866 * Watchdog thread.
867 */
868 static void
869 amr_quartz_thread(void *cookie)
870 {
871 struct amr_softc *amr;
872 struct amr_ccb *ac;
873
874 amr = cookie;
875
876 for (;;) {
877 mutex_enter(&thread_mutex);
878 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
879 mutex_exit(&thread_mutex);
880
881 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
882 amr->amr_flags ^= AMRF_THREAD_EXIT;
883 mutex_enter(&thread_mutex);
884 cv_signal(&thread_cv);
885 mutex_exit(&thread_mutex);
886 kthread_exit(0);
887 }
888
889 if (amr_intr(amr) == 0)
890 amr_ccb_enqueue(amr, NULL);
891
892 mutex_spin_enter(&amr->amr_mutex);
893 ac = TAILQ_FIRST(&amr->amr_ccb_active);
894 while (ac != NULL) {
895 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
896 break;
897 if ((ac->ac_flags & AC_MOAN) == 0) {
898 printf("%s: ccb %d timed out; mailbox:\n",
899 device_xname(amr->amr_dv), ac->ac_ident);
900 amr_ccb_dump(amr, ac);
901 ac->ac_flags |= AC_MOAN;
902 }
903 ac = TAILQ_NEXT(ac, ac_chain.tailq);
904 }
905 mutex_spin_exit(&amr->amr_mutex);
906 }
907 }
908
909 static void
910 amr_std_thread(void *cookie)
911 {
912 struct amr_softc *amr;
913 struct amr_ccb *ac;
914 struct amr_logdrive *al;
915 struct amr_enquiry *ae;
916 int rv, i;
917
918 amr = cookie;
919 ae = amr->amr_enqbuf;
920
921 for (;;) {
922 mutex_enter(&thread_mutex);
923 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
924 mutex_exit(&thread_mutex);
925
926 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
927 amr->amr_flags ^= AMRF_THREAD_EXIT;
928 mutex_enter(&thread_mutex);
929 cv_signal(&thread_cv);
930 mutex_exit(&thread_mutex);
931 kthread_exit(0);
932 }
933
934 if (amr_intr(amr) == 0)
935 amr_ccb_enqueue(amr, NULL);
936
937 mutex_spin_enter(&amr->amr_mutex);
938 ac = TAILQ_FIRST(&amr->amr_ccb_active);
939 while (ac != NULL) {
940 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
941 break;
942 if ((ac->ac_flags & AC_MOAN) == 0) {
943 printf("%s: ccb %d timed out; mailbox:\n",
944 device_xname(amr->amr_dv), ac->ac_ident);
945 amr_ccb_dump(amr, ac);
946 ac->ac_flags |= AC_MOAN;
947 }
948 ac = TAILQ_NEXT(ac, ac_chain.tailq);
949 }
950 mutex_spin_exit(&amr->amr_mutex);
951
952 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
953 printf("%s: ccb_alloc failed (%d)\n",
954 device_xname(amr->amr_dv), rv);
955 continue;
956 }
957
958 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
959
960 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
961 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
962 if (rv != 0) {
963 aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
964 rv);
965 amr_ccb_free(amr, ac);
966 continue;
967 }
968
969 rv = amr_ccb_wait(amr, ac);
970 amr_ccb_unmap(amr, ac);
971 if (rv != 0) {
972 aprint_error_dev(amr->amr_dv,
973 "enquiry failed (st=%d)\n", ac->ac_status);
974 continue;
975 }
976 amr_ccb_free(amr, ac);
977
978 al = amr->amr_drive;
979 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
980 if (al->al_dv == NULL)
981 continue;
982 if (al->al_state == ae->ae_ldrv.al_state[i])
983 continue;
984
985 printf("%s: state changed: %s -> %s\n",
986 device_xname(al->al_dv),
987 amr_drive_state(al->al_state, NULL),
988 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
989
990 al->al_state = ae->ae_ldrv.al_state[i];
991 }
992 }
993 }
994
995 /*
996 * Return a text description of a logical drive's current state.
997 */
998 const char *
999 amr_drive_state(int state, int *happy)
1000 {
1001 const char *str;
1002
1003 state = AMR_DRV_CURSTATE(state);
1004 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
1005 if (happy)
1006 *happy = 1;
1007 str = "status unknown";
1008 } else {
1009 if (happy)
1010 *happy = amr_dstate[state].ds_happy;
1011 str = amr_dstate[state].ds_descr;
1012 }
1013
1014 return (str);
1015 }
1016
1017 /*
1018 * Run a generic enquiry-style command.
1019 */
1020 static void *
1021 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
1022 u_int8_t cmdqual, void *sbuf)
1023 {
1024 struct amr_ccb *ac;
1025 u_int8_t *mb;
1026 int rv;
1027
1028 if (amr_ccb_alloc(amr, &ac) != 0)
1029 return (NULL);
1030
1031 /* Build the command proper. */
1032 mb = (u_int8_t *)&ac->ac_cmd;
1033 mb[0] = cmd;
1034 mb[2] = cmdsub;
1035 mb[3] = cmdqual;
1036
1037 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
1038 if (rv == 0) {
1039 rv = amr_ccb_poll(amr, ac, 2000);
1040 amr_ccb_unmap(amr, ac);
1041 }
1042 amr_ccb_free(amr, ac);
1043
1044 return (rv ? NULL : sbuf);
1045 }
1046
1047 /*
1048 * Allocate and initialise a CCB.
1049 */
1050 int
1051 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
1052 {
1053 mutex_spin_enter(&amr->amr_mutex);
1054 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
1055 mutex_spin_exit(&amr->amr_mutex);
1056 return (EAGAIN);
1057 }
1058 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
1059 mutex_spin_exit(&amr->amr_mutex);
1060
1061 return (0);
1062 }
1063
1064 /*
1065 * Free a CCB.
1066 */
1067 void
1068 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
1069 {
1070 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1071 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1072 ac->ac_cmd.mb_busy = 1;
1073 ac->ac_handler = NULL;
1074 ac->ac_flags = 0;
1075
1076 mutex_spin_enter(&amr->amr_mutex);
1077 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1078 mutex_spin_exit(&amr->amr_mutex);
1079 }
1080
1081 /*
1082 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1083 * the order that they were enqueued and try to submit their command blocks
1084 * to the controller for execution.
1085 */
1086 void
1087 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1088 {
1089 if (ac != NULL) {
1090 mutex_spin_enter(&amr->amr_mutex);
1091 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1092 mutex_spin_exit(&amr->amr_mutex);
1093 }
1094
1095 while (SIMPLEQ_FIRST(&amr->amr_ccb_queue) != NULL) {
1096 mutex_spin_enter(&amr->amr_mutex);
1097 if ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1098 if ((*amr->amr_submit)(amr, ac) != 0) {
1099 mutex_spin_exit(&amr->amr_mutex);
1100 break;
1101 }
1102 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue,
1103 ac_chain.simpleq);
1104 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac,
1105 ac_chain.tailq);
1106 }
1107 mutex_spin_exit(&amr->amr_mutex);
1108 }
1109 }
1110
1111 /*
1112 * Map the specified CCB's data buffer onto the bus, and fill the
1113 * scatter-gather list.
1114 */
1115 int
1116 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1117 int tflag)
1118 {
1119 struct amr_sgentry *sge;
1120 struct amr_mailbox_cmd *mb;
1121 int nsegs, i, rv, sgloff;
1122 bus_dmamap_t xfer;
1123 int dmaflag = 0;
1124
1125 xfer = ac->ac_xfer_map;
1126
1127 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1128 BUS_DMA_NOWAIT);
1129 if (rv != 0)
1130 return (rv);
1131
1132 mb = &ac->ac_cmd;
1133 ac->ac_xfer_size = size;
1134 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1135 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1136
1137 if (tflag & AC_XFER_OUT)
1138 dmaflag |= BUS_DMASYNC_PREWRITE;
1139 if (tflag & AC_XFER_IN)
1140 dmaflag |= BUS_DMASYNC_PREREAD;
1141
1142 /* We don't need to use a scatter/gather list for just 1 segment. */
1143 nsegs = xfer->dm_nsegs;
1144 if (nsegs == 1) {
1145 mb->mb_nsgelem = 0;
1146 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1147 ac->ac_flags |= AC_NOSGL;
1148 } else {
1149 mb->mb_nsgelem = nsegs;
1150 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1151
1152 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1153 for (i = 0; i < nsegs; i++, sge++) {
1154 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1155 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1156 }
1157 }
1158
1159 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1160
1161 if ((ac->ac_flags & AC_NOSGL) == 0)
1162 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1163 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1164
1165 return (0);
1166 }
1167
1168 /*
1169 * Unmap the specified CCB's data buffer.
1170 */
1171 void
1172 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1173 {
1174 int dmaflag = 0;
1175
1176 if (ac->ac_flags & AC_XFER_IN)
1177 dmaflag |= BUS_DMASYNC_POSTREAD;
1178 if (ac->ac_flags & AC_XFER_OUT)
1179 dmaflag |= BUS_DMASYNC_POSTWRITE;
1180
1181 if ((ac->ac_flags & AC_NOSGL) == 0)
1182 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1183 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1184 BUS_DMASYNC_POSTWRITE);
1185 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1186 dmaflag);
1187 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1188 }
1189
1190 /*
1191 * Submit a command to the controller and poll on completion. Return
1192 * non-zero on timeout or error.
1193 */
1194 int
1195 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1196 {
1197 int rv, i;
1198
1199 mutex_spin_enter(&amr->amr_mutex);
1200 if ((rv = (*amr->amr_submit)(amr, ac)) != 0) {
1201 mutex_spin_exit(&amr->amr_mutex);
1202 return (rv);
1203 }
1204 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1205 mutex_spin_exit(&amr->amr_mutex);
1206
1207 for (i = timo * 10; i > 0; i--) {
1208 amr_intr(amr);
1209 if ((ac->ac_flags & AC_COMPLETE) != 0)
1210 break;
1211 DELAY(100);
1212 }
1213
1214 if (i == 0)
1215 printf("%s: polled operation timed out after %d ms\n",
1216 device_xname(amr->amr_dv), timo);
1217
1218 return ((i == 0 || ac->ac_status != 0) ? EIO : 0);
1219 }
1220
1221 /*
1222 * Submit a command to the controller and sleep on completion. Return
1223 * non-zero on error.
1224 */
1225 int
1226 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1227 {
1228 amr_ccb_enqueue(amr, ac);
1229 mutex_enter(&ac->ac_mutex);
1230 cv_wait(&ac->ac_cv, &ac->ac_mutex);
1231 mutex_exit(&ac->ac_mutex);
1232
1233 return (ac->ac_status != 0 ? EIO : 0);
1234 }
1235
1236 #if 0
1237 /*
1238 * Wait for the mailbox to become available.
1239 */
1240 static int
1241 amr_mbox_wait(struct amr_softc *amr)
1242 {
1243 int timo;
1244
1245 for (timo = 10000; timo != 0; timo--) {
1246 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1247 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1248 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1249 break;
1250 DELAY(100);
1251 }
1252
1253 if (timo == 0)
1254 printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1255
1256 return (timo != 0 ? 0 : EAGAIN);
1257 }
1258 #endif
1259
1260 /*
1261 * Tell the controller that the mailbox contains a valid command. Must be
1262 * called with interrupts blocked.
1263 */
1264 static int
1265 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1266 {
1267 int i = 0;
1268 u_int32_t v;
1269
1270 amr->amr_mbox->mb_poll = 0;
1271 amr->amr_mbox->mb_ack = 0;
1272
1273 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1274 sizeof(struct amr_mailbox),
1275 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1276
1277 v = amr_inl(amr, AMR_QREG_ODB);
1278 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1279 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1280 while ((amr->amr_mbox->mb_cmd.mb_busy != 0) && (i++ < 10)) {
1281 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1282 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1283 /* This is a no-op read that flushes pending mailbox updates */
1284 v = amr_inl(amr, AMR_QREG_ODB);
1285 DELAY(1);
1286 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1287 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1288 }
1289
1290 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1291 return (EAGAIN);
1292
1293 v = amr_inl(amr, AMR_QREG_IDB);
1294 if ((v & AMR_QIDB_SUBMIT) != 0) {
1295 amr->amr_mbox->mb_cmd.mb_busy = 0;
1296 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1297 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1298 printf("%s: submit failed\n", device_xname(amr->amr_dv));
1299 return (EAGAIN);
1300 }
1301
1302 amr->amr_mbox->mb_segment = 0;
1303 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1304 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1305 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1306
1307 ac->ac_start_time = time_uptime;
1308 ac->ac_flags |= AC_ACTIVE;
1309
1310 amr_outl(amr, AMR_QREG_IDB,
1311 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1312 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1313 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1314
1315 return (0);
1316 }
1317
1318 static int
1319 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1320 {
1321
1322 amr->amr_mbox->mb_poll = 0;
1323 amr->amr_mbox->mb_ack = 0;
1324
1325 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1326 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1327
1328 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1329 return (EAGAIN);
1330
1331 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1332 amr->amr_mbox->mb_cmd.mb_busy = 0;
1333 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1334 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1335 return (EAGAIN);
1336 }
1337
1338 amr->amr_mbox->mb_segment = 0;
1339 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1340
1341 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1342 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1343
1344 ac->ac_start_time = time_uptime;
1345 ac->ac_flags |= AC_ACTIVE;
1346 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1347
1348 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1349 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1350
1351 return (0);
1352 }
1353
1354 /*
1355 * Claim any work that the controller has completed; acknowledge completion,
1356 * save details of the completion in (mbsave). Must be called with
1357 * interrupts blocked.
1358 */
1359 static int
1360 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1361 {
1362 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1363 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1364
1365 /* Work waiting for us? */
1366 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1367 return (-1);
1368
1369 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1370 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1371
1372 /* Save the mailbox, which contains a list of completed commands. */
1373 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1374
1375 /* Ack the interrupt and mailbox transfer. */
1376 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1377 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1378
1379 /*
1380 * This waits for the controller to notice that we've taken the
1381 * command from it. It's very inefficient, and we shouldn't do it,
1382 * but if we remove this code, we stop completing commands under
1383 * load.
1384 *
1385 * Peter J says we shouldn't do this. The documentation says we
1386 * should. Who is right?
1387 */
1388 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1389 DELAY(10);
1390
1391 return (0);
1392 }
1393
1394 static int
1395 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1396 {
1397 u_int8_t istat;
1398
1399 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1400 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1401
1402 /* Check for valid interrupt status. */
1403 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1404 return (-1);
1405
1406 /* Ack the interrupt. */
1407 amr_outb(amr, AMR_SREG_INTR, istat);
1408
1409 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1410 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1411
1412 /* Save mailbox, which contains a list of completed commands. */
1413 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1414
1415 /* Ack mailbox transfer. */
1416 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1417
1418 return (0);
1419 }
1420
1421 static void
1422 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1423 {
1424 int i;
1425
1426 printf("%s: ", device_xname(amr->amr_dv));
1427 for (i = 0; i < 4; i++)
1428 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1429 printf("\n");
1430 }
1431
1432 static int
1433 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1434 {
1435 struct amr_softc *amr;
1436
1437 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1438 return (ENXIO);
1439 if ((amr->amr_flags & AMRF_OPEN) != 0)
1440 return (EBUSY);
1441
1442 amr->amr_flags |= AMRF_OPEN;
1443 return (0);
1444 }
1445
1446 static int
1447 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1448 {
1449 struct amr_softc *amr;
1450
1451 amr = device_lookup_private(&amr_cd, minor(dev));
1452 amr->amr_flags &= ~AMRF_OPEN;
1453 return (0);
1454 }
1455
1456 /* used below to correct for a firmware bug */
1457 static unsigned long
1458 amrioctl_buflen(unsigned long len)
1459 {
1460 if (len <= 4 * 1024)
1461 return (4 * 1024);
1462 if (len <= 8 * 1024)
1463 return (8 * 1024);
1464 if (len <= 32 * 1024)
1465 return (32 * 1024);
1466 if (len <= 64 * 1024)
1467 return (64 * 1024);
1468 return (len);
1469 }
1470
1471 static int
1472 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1473 struct lwp *l)
1474 {
1475 struct amr_softc *amr;
1476 struct amr_user_ioctl *au;
1477 struct amr_ccb *ac;
1478 struct amr_mailbox_ioctl *mbi;
1479 unsigned long au_length;
1480 uint8_t *au_cmd;
1481 int error;
1482 void *dp = NULL, *au_buffer;
1483
1484 amr = device_lookup_private(&amr_cd, minor(dev));
1485
1486 /* This should be compatible with the FreeBSD interface */
1487
1488 switch (cmd) {
1489 case AMR_IO_VERSION:
1490 *(int *)data = AMR_IO_VERSION_NUMBER;
1491 return 0;
1492 case AMR_IO_COMMAND:
1493 error = kauth_authorize_device_passthru(l->l_cred, dev,
1494 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1495 if (error)
1496 return (error);
1497
1498 au = (struct amr_user_ioctl *)data;
1499 au_cmd = au->au_cmd;
1500 au_buffer = au->au_buffer;
1501 au_length = au->au_length;
1502 break;
1503 default:
1504 return ENOTTY;
1505 }
1506
1507 if (au_cmd[0] == AMR_CMD_PASS) {
1508 /* not yet */
1509 return EOPNOTSUPP;
1510 }
1511
1512 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1513 return (EINVAL);
1514
1515 /*
1516 * allocate kernel memory for data, doing I/O directly to user
1517 * buffer isn't that easy. Correct allocation size for a bug
1518 * in at least some versions of the device firmware, by using
1519 * the amrioctl_buflen() function, defined above.
1520 */
1521 dp = malloc(amrioctl_buflen(au_length), M_DEVBUF, M_WAITOK|M_ZERO);
1522 if (dp == NULL)
1523 return ENOMEM;
1524 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1525 goto out;
1526
1527 /* direct command to controller */
1528 while (amr_ccb_alloc(amr, &ac) != 0) {
1529 mutex_enter(&thread_mutex);
1530 error = cv_timedwait_sig(&thread_cv, &thread_mutex, hz);
1531 mutex_exit(&thread_mutex);
1532 if (error == EINTR)
1533 goto out;
1534 }
1535
1536 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1537 mbi->mb_command = au_cmd[0];
1538 mbi->mb_channel = au_cmd[1];
1539 mbi->mb_param = au_cmd[2];
1540 mbi->mb_pad[0] = au_cmd[3];
1541 mbi->mb_drive = au_cmd[4];
1542 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1543 AC_XFER_IN | AC_XFER_OUT);
1544 if (error == 0) {
1545 error = amr_ccb_wait(amr, ac);
1546 amr_ccb_unmap(amr, ac);
1547 if (error == 0)
1548 error = copyout(dp, au_buffer, au_length);
1549
1550 }
1551 amr_ccb_free(amr, ac);
1552 out:
1553 free(dp, M_DEVBUF);
1554 return (error);
1555 }
1556
1557 MODULE(MODULE_CLASS_DRIVER, amr, "pci");
1558
1559 #ifdef _MODULE
1560 #include "ioconf.c"
1561 #endif
1562
1563 static int
1564 amr_modcmd(modcmd_t cmd, void *opaque)
1565 {
1566 int error = 0;
1567
1568 #ifdef _MODULE
1569 switch (cmd) {
1570 case MODULE_CMD_INIT:
1571 error = config_init_component(cfdriver_ioconf_amr,
1572 cfattach_ioconf_amr, cfdata_ioconf_amr);
1573 break;
1574 case MODULE_CMD_FINI:
1575 error = config_fini_component(cfdriver_ioconf_amr,
1576 cfattach_ioconf_amr, cfdata_ioconf_amr);
1577 break;
1578 default:
1579 error = ENOTTY;
1580 break;
1581 }
1582 #endif
1583
1584 return error;
1585 }
1586