amr.c revision 1.66 1 /* $NetBSD: amr.c,v 1.66 2021/04/24 23:36:57 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60 */
61
62 /*
63 * Driver for AMI RAID controllers.
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.66 2021/04/24 23:36:57 thorpej Exp $");
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80 #include <sys/mutex.h>
81 #include <sys/condvar.h>
82 #include <sys/module.h>
83
84 #include <machine/endian.h>
85 #include <sys/bus.h>
86
87 #include <dev/pci/pcidevs.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/amrreg.h>
90 #include <dev/pci/amrvar.h>
91 #include <dev/pci/amrio.h>
92
93 #include "locators.h"
94
95 #include "ioconf.h"
96
97 static void amr_attach(device_t, device_t, void *);
98 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
99 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
100 void *);
101 static int amr_init(struct amr_softc *, const char *,
102 struct pci_attach_args *pa);
103 static int amr_intr(void *);
104 static int amr_match(device_t, cfdata_t, void *);
105 static int amr_rescan(device_t, const char *, const int *);
106 static int amr_print(void *, const char *);
107 static void amr_shutdown(void *);
108 static void amr_teardown(struct amr_softc *);
109 static void amr_quartz_thread(void *);
110 static void amr_std_thread(void *);
111
112 static int amr_quartz_get_work(struct amr_softc *,
113 struct amr_mailbox_resp *);
114 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
115 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
116 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
117
118 static dev_type_open(amropen);
119 static dev_type_close(amrclose);
120 static dev_type_ioctl(amrioctl);
121
122 CFATTACH_DECL3_NEW(amr, sizeof(struct amr_softc),
123 amr_match, amr_attach, NULL, NULL, amr_rescan, NULL, 0);
124
125 const struct cdevsw amr_cdevsw = {
126 .d_open = amropen,
127 .d_close = amrclose,
128 .d_read = noread,
129 .d_write = nowrite,
130 .d_ioctl = amrioctl,
131 .d_stop = nostop,
132 .d_tty = notty,
133 .d_poll = nopoll,
134 .d_mmap = nommap,
135 .d_kqfilter = nokqfilter,
136 .d_discard = nodiscard,
137 .d_flag = D_OTHER
138 };
139
140 extern struct cfdriver amr_cd;
141
142 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
143 #define AT_SIG 0x02 /* Check for signature */
144
145 static struct amr_pci_type {
146 u_short apt_vendor;
147 u_short apt_product;
148 u_short apt_flags;
149 } const amr_pci_type[] = {
150 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
151 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
152 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
153 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
154 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
155 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
156 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
157 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
158 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
159 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
160 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
161 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
162 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
163 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
164 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
165 };
166
167 static struct amr_typestr {
168 const char *at_str;
169 int at_sig;
170 } const amr_typestr[] = {
171 { "Series 431", AMR_SIG_431 },
172 { "Series 438", AMR_SIG_438 },
173 { "Series 466", AMR_SIG_466 },
174 { "Series 467", AMR_SIG_467 },
175 { "Series 490", AMR_SIG_490 },
176 { "Series 762", AMR_SIG_762 },
177 { "HP NetRAID (T5)", AMR_SIG_T5 },
178 { "HP NetRAID (T7)", AMR_SIG_T7 },
179 };
180
181 static struct {
182 const char *ds_descr;
183 int ds_happy;
184 } const amr_dstate[] = {
185 { "offline", 0 },
186 { "degraded", 1 },
187 { "optimal", 1 },
188 { "online", 1 },
189 { "failed", 0 },
190 { "rebuilding", 1 },
191 { "hotspare", 0 },
192 };
193
194 static void *amr_sdh;
195
196 static kcondvar_t thread_cv;
197 static kmutex_t thread_mutex;
198
199 static int amr_max_segs;
200 int amr_max_xfer;
201
202 static inline u_int8_t
203 amr_inb(struct amr_softc *amr, int off)
204 {
205 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
206 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
207 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
208 }
209
210 static inline u_int32_t
211 amr_inl(struct amr_softc *amr, int off)
212 {
213 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
214 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
215 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
216 }
217
218 static inline void
219 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
220 {
221 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
222 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
223 BUS_SPACE_BARRIER_WRITE);
224 }
225
226 static inline void
227 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
228 {
229 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
230 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
231 BUS_SPACE_BARRIER_WRITE);
232 }
233
234 /*
235 * Match a supported device.
236 */
237 static int
238 amr_match(device_t parent, cfdata_t match, void *aux)
239 {
240 struct pci_attach_args *pa;
241 pcireg_t s;
242 int i;
243
244 pa = (struct pci_attach_args *)aux;
245
246 /*
247 * Don't match the device if it's operating in I2O mode. In this
248 * case it should be handled by the `iop' driver.
249 */
250 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
251 return (0);
252
253 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
254 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
255 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
256 break;
257
258 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
259 return (0);
260
261 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
262 return (1);
263
264 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
265 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
266 }
267
268 /*
269 * Attach a supported device.
270 */
271 static void
272 amr_attach(device_t parent, device_t self, void *aux)
273 {
274 struct pci_attach_args *pa;
275 const struct amr_pci_type *apt;
276 struct amr_softc *amr;
277 pci_chipset_tag_t pc;
278 pci_intr_handle_t ih;
279 const char *intrstr;
280 pcireg_t reg;
281 int rseg, i, size, rv, memreg, ioreg;
282 struct amr_ccb *ac;
283 char intrbuf[PCI_INTRSTR_LEN];
284
285 aprint_naive(": RAID controller\n");
286
287 amr = device_private(self);
288 amr->amr_dv = self;
289
290 mutex_init(&amr->amr_mutex, MUTEX_DEFAULT, IPL_BIO);
291
292 pa = (struct pci_attach_args *)aux;
293 pc = pa->pa_pc;
294
295 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
296 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
297 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
298 break;
299 apt = amr_pci_type + i;
300
301 memreg = ioreg = 0;
302 for (i = 0x10; i <= 0x14; i += 4) {
303 reg = pci_conf_read(pc, pa->pa_tag, i);
304 switch (PCI_MAPREG_TYPE(reg)) {
305 case PCI_MAPREG_TYPE_MEM:
306 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
307 memreg = i;
308 break;
309 case PCI_MAPREG_TYPE_IO:
310 if (PCI_MAPREG_IO_SIZE(reg) != 0)
311 ioreg = i;
312 break;
313 }
314 }
315
316 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
317 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
318 ;
319 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
320 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
321 ;
322 else {
323 aprint_error("can't map control registers\n");
324 amr_teardown(amr);
325 return;
326 }
327
328 amr->amr_flags |= AMRF_PCI_REGS;
329 amr->amr_dmat = pa->pa_dmat;
330 amr->amr_pc = pa->pa_pc;
331
332 /* Enable the device. */
333 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
334 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
335 reg | PCI_COMMAND_MASTER_ENABLE);
336
337 /* Map and establish the interrupt. */
338 if (pci_intr_map(pa, &ih)) {
339 aprint_error("can't map interrupt\n");
340 amr_teardown(amr);
341 return;
342 }
343 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
344 amr->amr_ih = pci_intr_establish_xname(pc, ih, IPL_BIO, amr_intr, amr,
345 device_xname(self));
346 if (amr->amr_ih == NULL) {
347 aprint_error("can't establish interrupt");
348 if (intrstr != NULL)
349 aprint_error(" at %s", intrstr);
350 aprint_error("\n");
351 amr_teardown(amr);
352 return;
353 }
354 amr->amr_flags |= AMRF_PCI_INTR;
355
356 /*
357 * Allocate space for the mailbox and S/G lists. Some controllers
358 * don't like S/G lists to be located below 0x2000, so we allocate
359 * enough slop to enable us to compensate.
360 *
361 * The standard mailbox structure needs to be aligned on a 16-byte
362 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
363 * size, which precedes the standard mailbox.
364 */
365 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
366 amr->amr_dmasize = size;
367
368 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
369 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
370 aprint_error_dev(amr->amr_dv,
371 "unable to allocate buffer, rv = %d\n", rv);
372 amr_teardown(amr);
373 return;
374 }
375 amr->amr_flags |= AMRF_DMA_ALLOC;
376
377 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
378 (void **)&amr->amr_mbox,
379 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
380 aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
381 rv);
382 amr_teardown(amr);
383 return;
384 }
385 amr->amr_flags |= AMRF_DMA_MAP;
386
387 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
388 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
389 aprint_error_dev(amr->amr_dv,
390 "unable to create buffer DMA map, rv = %d\n", rv);
391 amr_teardown(amr);
392 return;
393 }
394 amr->amr_flags |= AMRF_DMA_CREATE;
395
396 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
397 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
398 aprint_error_dev(amr->amr_dv,
399 "unable to load buffer DMA map, rv = %d\n", rv);
400 amr_teardown(amr);
401 return;
402 }
403 amr->amr_flags |= AMRF_DMA_LOAD;
404
405 memset(amr->amr_mbox, 0, size);
406
407 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
408 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
409 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
410 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
411
412 /*
413 * Allocate and initalise the command control blocks.
414 */
415 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_WAITOK | M_ZERO);
416 amr->amr_ccbs = ac;
417 SLIST_INIT(&amr->amr_ccb_freelist);
418 TAILQ_INIT(&amr->amr_ccb_active);
419 amr->amr_flags |= AMRF_CCBS;
420
421 if (amr_max_xfer == 0) {
422 amr_max_xfer = uimin(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
423 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
424 }
425
426 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
427 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
428 amr_max_segs, amr_max_xfer, 0,
429 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
430 if (rv != 0)
431 break;
432
433 ac->ac_ident = i;
434 cv_init(&ac->ac_cv, "amr1ccb");
435 mutex_init(&ac->ac_mutex, MUTEX_DEFAULT, IPL_NONE);
436 amr_ccb_free(amr, ac);
437 }
438 if (i != AMR_MAX_CMDS) {
439 aprint_error_dev(amr->amr_dv, "memory exhausted\n");
440 amr_teardown(amr);
441 return;
442 }
443
444 /*
445 * Take care of model-specific tasks.
446 */
447 if ((apt->apt_flags & AT_QUARTZ) != 0) {
448 amr->amr_submit = amr_quartz_submit;
449 amr->amr_get_work = amr_quartz_get_work;
450 } else {
451 amr->amr_submit = amr_std_submit;
452 amr->amr_get_work = amr_std_get_work;
453
454 /* Notify the controller of the mailbox location. */
455 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
456 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
457
458 /* Clear outstanding interrupts and enable interrupts. */
459 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
460 amr_outb(amr, AMR_SREG_TOGL,
461 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
462 }
463
464 /*
465 * Retrieve parameters, and tell the world about us.
466 */
467 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_WAITOK);
468 amr->amr_flags |= AMRF_ENQBUF;
469 amr->amr_maxqueuecnt = i;
470 aprint_normal(": AMI RAID ");
471 if (amr_init(amr, intrstr, pa) != 0) {
472 amr_teardown(amr);
473 return;
474 }
475
476 /*
477 * Cap the maximum number of outstanding commands. AMI's Linux
478 * driver doesn't trust the controller's reported value, and lockups
479 * have been seen when we do.
480 */
481 amr->amr_maxqueuecnt = uimin(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
482 if (amr->amr_maxqueuecnt > i)
483 amr->amr_maxqueuecnt = i;
484
485 /* Set our `shutdownhook' before we start any device activity. */
486 if (amr_sdh == NULL)
487 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
488
489 /* Attach sub-devices. */
490 amr_rescan(self, NULL, NULL);
491
492 SIMPLEQ_INIT(&amr->amr_ccb_queue);
493
494 cv_init(&thread_cv, "amrwdog");
495 mutex_init(&thread_mutex, MUTEX_DEFAULT, IPL_NONE);
496
497 if ((apt->apt_flags & AT_QUARTZ) == 0) {
498 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
499 amr_std_thread, amr, &amr->amr_thread,
500 "%s", device_xname(amr->amr_dv));
501 } else {
502 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
503 amr_quartz_thread, amr, &amr->amr_thread,
504 "%s", device_xname(amr->amr_dv));
505 }
506 if (rv != 0)
507 aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
508 rv);
509 else
510 amr->amr_flags |= AMRF_THREAD;
511 }
512
513 static int
514 amr_rescan(device_t self, const char *ifattr, const int *ulocs)
515 {
516 int j;
517 int locs[AMRCF_NLOCS];
518 struct amr_attach_args amra;
519 struct amr_softc *amr;
520
521 amr = device_private(self);
522 for (j = 0; j < amr->amr_numdrives; j++) {
523 if (amr->amr_drive[j].al_dv)
524 continue;
525 if (amr->amr_drive[j].al_size == 0)
526 continue;
527 amra.amra_unit = j;
528
529 locs[AMRCF_UNIT] = j;
530
531 amr->amr_drive[j].al_dv =
532 config_found(amr->amr_dv, &amra, amr_print,
533 CFARG_SUBMATCH, config_stdsubmatch,
534 CFARG_IATTR, ifattr,
535 CFARG_LOCATORS, locs,
536 CFARG_EOL);
537 }
538 return 0;
539 }
540
541 /*
542 * Free up resources.
543 */
544 static void
545 amr_teardown(struct amr_softc *amr)
546 {
547 struct amr_ccb *ac;
548 int fl;
549
550 fl = amr->amr_flags;
551
552 if ((fl & AMRF_THREAD) != 0) {
553 amr->amr_flags |= AMRF_THREAD_EXIT;
554 mutex_enter(&thread_mutex);
555 cv_broadcast(&thread_cv);
556 mutex_exit(&thread_mutex);
557 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
558 mutex_enter(&thread_mutex);
559 cv_wait(&thread_cv, &thread_mutex);
560 mutex_exit(&thread_mutex);
561 }
562 }
563 if ((fl & AMRF_CCBS) != 0) {
564 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
565 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
566 }
567 free(amr->amr_ccbs, M_DEVBUF);
568 }
569 if ((fl & AMRF_ENQBUF) != 0)
570 free(amr->amr_enqbuf, M_DEVBUF);
571 if ((fl & AMRF_DMA_LOAD) != 0)
572 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
573 if ((fl & AMRF_DMA_MAP) != 0)
574 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
575 amr->amr_dmasize);
576 if ((fl & AMRF_DMA_ALLOC) != 0)
577 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
578 if ((fl & AMRF_DMA_CREATE) != 0)
579 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
580 if ((fl & AMRF_PCI_INTR) != 0)
581 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
582 if ((fl & AMRF_PCI_REGS) != 0)
583 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
584 }
585
586 /*
587 * Print autoconfiguration message for a sub-device.
588 */
589 static int
590 amr_print(void *aux, const char *pnp)
591 {
592 struct amr_attach_args *amra;
593
594 amra = (struct amr_attach_args *)aux;
595
596 if (pnp != NULL)
597 aprint_normal("block device at %s", pnp);
598 aprint_normal(" unit %d", amra->amra_unit);
599 return (UNCONF);
600 }
601
602 /*
603 * Retrieve operational parameters and describe the controller.
604 */
605 static int
606 amr_init(struct amr_softc *amr, const char *intrstr,
607 struct pci_attach_args *pa)
608 {
609 struct amr_adapter_info *aa;
610 struct amr_prodinfo *ap;
611 struct amr_enquiry *ae;
612 struct amr_enquiry3 *aex;
613 const char *prodstr;
614 u_int i, sig, ishp;
615 char sbuf[64];
616
617 /*
618 * Try to get 40LD product info, which tells us what the card is
619 * labelled as.
620 */
621 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
622 amr->amr_enqbuf);
623 if (ap != NULL) {
624 aprint_normal("<%.80s>\n", ap->ap_product);
625 if (intrstr != NULL)
626 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
627 intrstr);
628 aprint_normal_dev(amr->amr_dv,
629 "firmware %.16s, BIOS %.16s, %dMB RAM\n",
630 ap->ap_firmware, ap->ap_bios, le16toh(ap->ap_memsize));
631
632 amr->amr_maxqueuecnt = ap->ap_maxio;
633
634 /*
635 * Fetch and record state of logical drives.
636 */
637 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
638 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
639 if (aex == NULL) {
640 aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
641 return (-1);
642 }
643
644 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
645 aprint_error_dev(amr->amr_dv, "Inquiry returned more "
646 "drives (%d) than the array can handle (%zu)\n",
647 aex->ae_numldrives,
648 __arraycount(aex->ae_drivestate));
649 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
650 }
651 if (aex->ae_numldrives > AMR_MAX_UNITS) {
652 aprint_error_dev(amr->amr_dv,
653 "adjust AMR_MAX_UNITS to %d (currently %d)\n",
654 AMR_MAX_UNITS, amr->amr_numdrives);
655 amr->amr_numdrives = AMR_MAX_UNITS;
656 } else
657 amr->amr_numdrives = aex->ae_numldrives;
658
659 for (i = 0; i < amr->amr_numdrives; i++) {
660 amr->amr_drive[i].al_size =
661 le32toh(aex->ae_drivesize[i]);
662 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
663 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
664 }
665
666 return (0);
667 }
668
669 /*
670 * Try 8LD extended ENQUIRY to get the controller signature. Once
671 * found, search for a product description.
672 */
673 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
674 if (ae != NULL) {
675 i = 0;
676 sig = le32toh(ae->ae_signature);
677
678 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
679 if (amr_typestr[i].at_sig == sig)
680 break;
681 i++;
682 }
683 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
684 snprintf(sbuf, sizeof(sbuf),
685 "unknown ENQUIRY2 sig (0x%08x)", sig);
686 prodstr = sbuf;
687 } else
688 prodstr = amr_typestr[i].at_str;
689 } else {
690 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
691 if (ae == NULL) {
692 aprint_error_dev(amr->amr_dv,
693 "unsupported controller\n");
694 return (-1);
695 }
696
697 switch (PCI_PRODUCT(pa->pa_id)) {
698 case PCI_PRODUCT_AMI_MEGARAID:
699 prodstr = "Series 428";
700 break;
701 case PCI_PRODUCT_AMI_MEGARAID2:
702 prodstr = "Series 434";
703 break;
704 default:
705 snprintf(sbuf, sizeof(sbuf),
706 "unknown PCI dev (0x%04x)",
707 PCI_PRODUCT(pa->pa_id));
708 prodstr = sbuf;
709 break;
710 }
711 }
712
713 /*
714 * HP NetRaid controllers have a special encoding of the firmware
715 * and BIOS versions. The AMI version seems to have it as strings
716 * whereas the HP version does it with a leading uppercase character
717 * and two binary numbers.
718 */
719 aa = &ae->ae_adapter;
720
721 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
722 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
723 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
724 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
725 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
726 /* The AMI 438 is a NetRaid 3si in HP-land. */
727 prodstr = "HP NetRaid 3si";
728 }
729 ishp = 1;
730 } else
731 ishp = 0;
732
733 aprint_normal("<%s>\n", prodstr);
734 if (intrstr != NULL)
735 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
736 intrstr);
737
738 if (ishp)
739 aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, "
740 "BIOS <%c.%02d.%02d>, %dMB RAM\n", aa->aa_firmware[2],
741 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
742 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
743 else
744 aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, "
745 "%dMB RAM\n", aa->aa_firmware, aa->aa_bios,
746 aa->aa_memorysize);
747
748 amr->amr_maxqueuecnt = aa->aa_maxio;
749
750 /*
751 * Record state of logical drives.
752 */
753 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
754 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives "
755 "(%d) than the array can handle (%zu)\n",
756 ae->ae_ldrv.al_numdrives,
757 __arraycount(ae->ae_ldrv.al_size));
758 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
759 }
760 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
761 aprint_error_dev(amr->amr_dv,
762 "adjust AMR_MAX_UNITS to %d (currently %d)\n",
763 ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
764 amr->amr_numdrives = AMR_MAX_UNITS;
765 } else
766 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
767
768 for (i = 0; i < amr->amr_numdrives; i++) {
769 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
770 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
771 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
772 }
773
774 return (0);
775 }
776
777 /*
778 * Flush the internal cache on each configured controller. Called at
779 * shutdown time.
780 */
781 static void
782 amr_shutdown(void *cookie)
783 {
784 extern struct cfdriver amr_cd;
785 struct amr_softc *amr;
786 struct amr_ccb *ac;
787 int i, rv;
788
789 for (i = 0; i < amr_cd.cd_ndevs; i++) {
790 if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
791 continue;
792
793 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
794 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
795 rv = amr_ccb_poll(amr, ac, 30000);
796 amr_ccb_free(amr, ac);
797 }
798 if (rv != 0)
799 aprint_error_dev(amr->amr_dv,
800 "unable to flush cache (%d)\n", rv);
801 }
802 }
803
804 /*
805 * Interrupt service routine.
806 */
807 static int
808 amr_intr(void *cookie)
809 {
810 struct amr_softc *amr;
811 struct amr_ccb *ac;
812 struct amr_mailbox_resp mbox;
813 u_int i, forus, idx;
814
815 amr = cookie;
816 forus = 0;
817
818 mutex_spin_enter(&amr->amr_mutex);
819
820 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
821 /* Iterate over completed commands in this result. */
822 for (i = 0; i < mbox.mb_nstatus; i++) {
823 idx = mbox.mb_completed[i] - 1;
824 ac = amr->amr_ccbs + idx;
825
826 if (idx >= amr->amr_maxqueuecnt) {
827 printf("%s: bad status (bogus ID: %u=%u)\n",
828 device_xname(amr->amr_dv), i, idx);
829 continue;
830 }
831
832 if ((ac->ac_flags & AC_ACTIVE) == 0) {
833 printf("%s: bad status (not active; 0x04%x)\n",
834 device_xname(amr->amr_dv), ac->ac_flags);
835 continue;
836 }
837
838 ac->ac_status = mbox.mb_status;
839 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
840 AC_COMPLETE;
841 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
842
843 if ((ac->ac_flags & AC_MOAN) != 0)
844 printf("%s: ccb %d completed\n",
845 device_xname(amr->amr_dv), ac->ac_ident);
846
847 /* Pass notification to upper layers. */
848 mutex_spin_exit(&amr->amr_mutex);
849 if (ac->ac_handler != NULL) {
850 (*ac->ac_handler)(ac);
851 } else {
852 mutex_enter(&ac->ac_mutex);
853 cv_signal(&ac->ac_cv);
854 mutex_exit(&ac->ac_mutex);
855 }
856 mutex_spin_enter(&amr->amr_mutex);
857 }
858 forus = 1;
859 }
860
861 mutex_spin_exit(&amr->amr_mutex);
862
863 if (forus)
864 amr_ccb_enqueue(amr, NULL);
865
866 return (forus);
867 }
868
869 /*
870 * Watchdog thread.
871 */
872 static void
873 amr_quartz_thread(void *cookie)
874 {
875 struct amr_softc *amr;
876 struct amr_ccb *ac;
877
878 amr = cookie;
879
880 for (;;) {
881 mutex_enter(&thread_mutex);
882 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
883 mutex_exit(&thread_mutex);
884
885 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
886 amr->amr_flags ^= AMRF_THREAD_EXIT;
887 mutex_enter(&thread_mutex);
888 cv_signal(&thread_cv);
889 mutex_exit(&thread_mutex);
890 kthread_exit(0);
891 }
892
893 if (amr_intr(amr) == 0)
894 amr_ccb_enqueue(amr, NULL);
895
896 mutex_spin_enter(&amr->amr_mutex);
897 ac = TAILQ_FIRST(&amr->amr_ccb_active);
898 while (ac != NULL) {
899 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
900 break;
901 if ((ac->ac_flags & AC_MOAN) == 0) {
902 printf("%s: ccb %d timed out; mailbox:\n",
903 device_xname(amr->amr_dv), ac->ac_ident);
904 amr_ccb_dump(amr, ac);
905 ac->ac_flags |= AC_MOAN;
906 }
907 ac = TAILQ_NEXT(ac, ac_chain.tailq);
908 }
909 mutex_spin_exit(&amr->amr_mutex);
910 }
911 }
912
913 static void
914 amr_std_thread(void *cookie)
915 {
916 struct amr_softc *amr;
917 struct amr_ccb *ac;
918 struct amr_logdrive *al;
919 struct amr_enquiry *ae;
920 int rv, i;
921
922 amr = cookie;
923 ae = amr->amr_enqbuf;
924
925 for (;;) {
926 mutex_enter(&thread_mutex);
927 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
928 mutex_exit(&thread_mutex);
929
930 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
931 amr->amr_flags ^= AMRF_THREAD_EXIT;
932 mutex_enter(&thread_mutex);
933 cv_signal(&thread_cv);
934 mutex_exit(&thread_mutex);
935 kthread_exit(0);
936 }
937
938 if (amr_intr(amr) == 0)
939 amr_ccb_enqueue(amr, NULL);
940
941 mutex_spin_enter(&amr->amr_mutex);
942 ac = TAILQ_FIRST(&amr->amr_ccb_active);
943 while (ac != NULL) {
944 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
945 break;
946 if ((ac->ac_flags & AC_MOAN) == 0) {
947 printf("%s: ccb %d timed out; mailbox:\n",
948 device_xname(amr->amr_dv), ac->ac_ident);
949 amr_ccb_dump(amr, ac);
950 ac->ac_flags |= AC_MOAN;
951 }
952 ac = TAILQ_NEXT(ac, ac_chain.tailq);
953 }
954 mutex_spin_exit(&amr->amr_mutex);
955
956 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
957 printf("%s: ccb_alloc failed (%d)\n",
958 device_xname(amr->amr_dv), rv);
959 continue;
960 }
961
962 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
963
964 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
965 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
966 if (rv != 0) {
967 aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
968 rv);
969 amr_ccb_free(amr, ac);
970 continue;
971 }
972
973 rv = amr_ccb_wait(amr, ac);
974 amr_ccb_unmap(amr, ac);
975 if (rv != 0) {
976 aprint_error_dev(amr->amr_dv,
977 "enquiry failed (st=%d)\n", ac->ac_status);
978 continue;
979 }
980 amr_ccb_free(amr, ac);
981
982 al = amr->amr_drive;
983 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
984 if (al->al_dv == NULL)
985 continue;
986 if (al->al_state == ae->ae_ldrv.al_state[i])
987 continue;
988
989 printf("%s: state changed: %s -> %s\n",
990 device_xname(al->al_dv),
991 amr_drive_state(al->al_state, NULL),
992 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
993
994 al->al_state = ae->ae_ldrv.al_state[i];
995 }
996 }
997 }
998
999 /*
1000 * Return a text description of a logical drive's current state.
1001 */
1002 const char *
1003 amr_drive_state(int state, int *happy)
1004 {
1005 const char *str;
1006
1007 state = AMR_DRV_CURSTATE(state);
1008 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
1009 if (happy)
1010 *happy = 1;
1011 str = "status unknown";
1012 } else {
1013 if (happy)
1014 *happy = amr_dstate[state].ds_happy;
1015 str = amr_dstate[state].ds_descr;
1016 }
1017
1018 return (str);
1019 }
1020
1021 /*
1022 * Run a generic enquiry-style command.
1023 */
1024 static void *
1025 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
1026 u_int8_t cmdqual, void *sbuf)
1027 {
1028 struct amr_ccb *ac;
1029 u_int8_t *mb;
1030 int rv;
1031
1032 if (amr_ccb_alloc(amr, &ac) != 0)
1033 return (NULL);
1034
1035 /* Build the command proper. */
1036 mb = (u_int8_t *)&ac->ac_cmd;
1037 mb[0] = cmd;
1038 mb[2] = cmdsub;
1039 mb[3] = cmdqual;
1040
1041 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
1042 if (rv == 0) {
1043 rv = amr_ccb_poll(amr, ac, 2000);
1044 amr_ccb_unmap(amr, ac);
1045 }
1046 amr_ccb_free(amr, ac);
1047
1048 return (rv ? NULL : sbuf);
1049 }
1050
1051 /*
1052 * Allocate and initialise a CCB.
1053 */
1054 int
1055 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
1056 {
1057 mutex_spin_enter(&amr->amr_mutex);
1058 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
1059 mutex_spin_exit(&amr->amr_mutex);
1060 return (EAGAIN);
1061 }
1062 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
1063 mutex_spin_exit(&amr->amr_mutex);
1064
1065 return (0);
1066 }
1067
1068 /*
1069 * Free a CCB.
1070 */
1071 void
1072 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
1073 {
1074 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1075 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1076 ac->ac_cmd.mb_busy = 1;
1077 ac->ac_handler = NULL;
1078 ac->ac_flags = 0;
1079
1080 mutex_spin_enter(&amr->amr_mutex);
1081 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1082 mutex_spin_exit(&amr->amr_mutex);
1083 }
1084
1085 /*
1086 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1087 * the order that they were enqueued and try to submit their command blocks
1088 * to the controller for execution.
1089 */
1090 void
1091 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1092 {
1093 if (ac != NULL) {
1094 mutex_spin_enter(&amr->amr_mutex);
1095 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1096 mutex_spin_exit(&amr->amr_mutex);
1097 }
1098
1099 while (SIMPLEQ_FIRST(&amr->amr_ccb_queue) != NULL) {
1100 mutex_spin_enter(&amr->amr_mutex);
1101 if ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1102 if ((*amr->amr_submit)(amr, ac) != 0) {
1103 mutex_spin_exit(&amr->amr_mutex);
1104 break;
1105 }
1106 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue,
1107 ac_chain.simpleq);
1108 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac,
1109 ac_chain.tailq);
1110 }
1111 mutex_spin_exit(&amr->amr_mutex);
1112 }
1113 }
1114
1115 /*
1116 * Map the specified CCB's data buffer onto the bus, and fill the
1117 * scatter-gather list.
1118 */
1119 int
1120 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1121 int tflag)
1122 {
1123 struct amr_sgentry *sge;
1124 struct amr_mailbox_cmd *mb;
1125 int nsegs, i, rv, sgloff;
1126 bus_dmamap_t xfer;
1127 int dmaflag = 0;
1128
1129 xfer = ac->ac_xfer_map;
1130
1131 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1132 BUS_DMA_NOWAIT);
1133 if (rv != 0)
1134 return (rv);
1135
1136 mb = &ac->ac_cmd;
1137 ac->ac_xfer_size = size;
1138 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1139 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1140
1141 if (tflag & AC_XFER_OUT)
1142 dmaflag |= BUS_DMASYNC_PREWRITE;
1143 if (tflag & AC_XFER_IN)
1144 dmaflag |= BUS_DMASYNC_PREREAD;
1145
1146 /* We don't need to use a scatter/gather list for just 1 segment. */
1147 nsegs = xfer->dm_nsegs;
1148 if (nsegs == 1) {
1149 mb->mb_nsgelem = 0;
1150 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1151 ac->ac_flags |= AC_NOSGL;
1152 } else {
1153 mb->mb_nsgelem = nsegs;
1154 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1155
1156 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1157 for (i = 0; i < nsegs; i++, sge++) {
1158 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1159 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1160 }
1161 }
1162
1163 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1164
1165 if ((ac->ac_flags & AC_NOSGL) == 0)
1166 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1167 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1168
1169 return (0);
1170 }
1171
1172 /*
1173 * Unmap the specified CCB's data buffer.
1174 */
1175 void
1176 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1177 {
1178 int dmaflag = 0;
1179
1180 if (ac->ac_flags & AC_XFER_IN)
1181 dmaflag |= BUS_DMASYNC_POSTREAD;
1182 if (ac->ac_flags & AC_XFER_OUT)
1183 dmaflag |= BUS_DMASYNC_POSTWRITE;
1184
1185 if ((ac->ac_flags & AC_NOSGL) == 0)
1186 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1187 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1188 BUS_DMASYNC_POSTWRITE);
1189 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1190 dmaflag);
1191 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1192 }
1193
1194 /*
1195 * Submit a command to the controller and poll on completion. Return
1196 * non-zero on timeout or error.
1197 */
1198 int
1199 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1200 {
1201 int rv, i;
1202
1203 mutex_spin_enter(&amr->amr_mutex);
1204 if ((rv = (*amr->amr_submit)(amr, ac)) != 0) {
1205 mutex_spin_exit(&amr->amr_mutex);
1206 return (rv);
1207 }
1208 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1209 mutex_spin_exit(&amr->amr_mutex);
1210
1211 for (i = timo * 10; i > 0; i--) {
1212 amr_intr(amr);
1213 if ((ac->ac_flags & AC_COMPLETE) != 0)
1214 break;
1215 DELAY(100);
1216 }
1217
1218 if (i == 0)
1219 printf("%s: polled operation timed out after %d ms\n",
1220 device_xname(amr->amr_dv), timo);
1221
1222 return ((i == 0 || ac->ac_status != 0) ? EIO : 0);
1223 }
1224
1225 /*
1226 * Submit a command to the controller and sleep on completion. Return
1227 * non-zero on error.
1228 */
1229 int
1230 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1231 {
1232 amr_ccb_enqueue(amr, ac);
1233 mutex_enter(&ac->ac_mutex);
1234 cv_wait(&ac->ac_cv, &ac->ac_mutex);
1235 mutex_exit(&ac->ac_mutex);
1236
1237 return (ac->ac_status != 0 ? EIO : 0);
1238 }
1239
1240 #if 0
1241 /*
1242 * Wait for the mailbox to become available.
1243 */
1244 static int
1245 amr_mbox_wait(struct amr_softc *amr)
1246 {
1247 int timo;
1248
1249 for (timo = 10000; timo != 0; timo--) {
1250 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1251 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1252 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1253 break;
1254 DELAY(100);
1255 }
1256
1257 if (timo == 0)
1258 printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1259
1260 return (timo != 0 ? 0 : EAGAIN);
1261 }
1262 #endif
1263
1264 /*
1265 * Tell the controller that the mailbox contains a valid command. Must be
1266 * called with interrupts blocked.
1267 */
1268 static int
1269 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1270 {
1271 int i = 0;
1272 u_int32_t v;
1273
1274 amr->amr_mbox->mb_poll = 0;
1275 amr->amr_mbox->mb_ack = 0;
1276
1277 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1278 sizeof(struct amr_mailbox),
1279 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1280
1281 v = amr_inl(amr, AMR_QREG_ODB);
1282 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1283 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1284 while ((amr->amr_mbox->mb_cmd.mb_busy != 0) && (i++ < 10)) {
1285 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1286 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1287 /* This is a no-op read that flushes pending mailbox updates */
1288 v = amr_inl(amr, AMR_QREG_ODB);
1289 DELAY(1);
1290 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1291 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1292 }
1293
1294 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1295 return (EAGAIN);
1296
1297 v = amr_inl(amr, AMR_QREG_IDB);
1298 if ((v & AMR_QIDB_SUBMIT) != 0) {
1299 amr->amr_mbox->mb_cmd.mb_busy = 0;
1300 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1301 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1302 printf("%s: submit failed\n", device_xname(amr->amr_dv));
1303 return (EAGAIN);
1304 }
1305
1306 amr->amr_mbox->mb_segment = 0;
1307 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1308 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1309 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1310
1311 ac->ac_start_time = time_uptime;
1312 ac->ac_flags |= AC_ACTIVE;
1313
1314 amr_outl(amr, AMR_QREG_IDB,
1315 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1316 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1317 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1318
1319 return (0);
1320 }
1321
1322 static int
1323 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1324 {
1325
1326 amr->amr_mbox->mb_poll = 0;
1327 amr->amr_mbox->mb_ack = 0;
1328
1329 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1330 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1331
1332 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1333 return (EAGAIN);
1334
1335 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1336 amr->amr_mbox->mb_cmd.mb_busy = 0;
1337 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1338 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1339 return (EAGAIN);
1340 }
1341
1342 amr->amr_mbox->mb_segment = 0;
1343 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1344
1345 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1346 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1347
1348 ac->ac_start_time = time_uptime;
1349 ac->ac_flags |= AC_ACTIVE;
1350 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1351
1352 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1353 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1354
1355 return (0);
1356 }
1357
1358 /*
1359 * Claim any work that the controller has completed; acknowledge completion,
1360 * save details of the completion in (mbsave). Must be called with
1361 * interrupts blocked.
1362 */
1363 static int
1364 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1365 {
1366 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1367 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1368
1369 /* Work waiting for us? */
1370 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1371 return (-1);
1372
1373 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1374 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1375
1376 /* Save the mailbox, which contains a list of completed commands. */
1377 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1378
1379 /* Ack the interrupt and mailbox transfer. */
1380 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1381 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1382
1383 /*
1384 * This waits for the controller to notice that we've taken the
1385 * command from it. It's very inefficient, and we shouldn't do it,
1386 * but if we remove this code, we stop completing commands under
1387 * load.
1388 *
1389 * Peter J says we shouldn't do this. The documentation says we
1390 * should. Who is right?
1391 */
1392 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1393 DELAY(10);
1394
1395 return (0);
1396 }
1397
1398 static int
1399 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1400 {
1401 u_int8_t istat;
1402
1403 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1404 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1405
1406 /* Check for valid interrupt status. */
1407 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1408 return (-1);
1409
1410 /* Ack the interrupt. */
1411 amr_outb(amr, AMR_SREG_INTR, istat);
1412
1413 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1414 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1415
1416 /* Save mailbox, which contains a list of completed commands. */
1417 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1418
1419 /* Ack mailbox transfer. */
1420 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1421
1422 return (0);
1423 }
1424
1425 static void
1426 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1427 {
1428 int i;
1429
1430 printf("%s: ", device_xname(amr->amr_dv));
1431 for (i = 0; i < 4; i++)
1432 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1433 printf("\n");
1434 }
1435
1436 static int
1437 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1438 {
1439 struct amr_softc *amr;
1440
1441 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1442 return (ENXIO);
1443 if ((amr->amr_flags & AMRF_OPEN) != 0)
1444 return (EBUSY);
1445
1446 amr->amr_flags |= AMRF_OPEN;
1447 return (0);
1448 }
1449
1450 static int
1451 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1452 {
1453 struct amr_softc *amr;
1454
1455 amr = device_lookup_private(&amr_cd, minor(dev));
1456 amr->amr_flags &= ~AMRF_OPEN;
1457 return (0);
1458 }
1459
1460 /* used below to correct for a firmware bug */
1461 static unsigned long
1462 amrioctl_buflen(unsigned long len)
1463 {
1464 if (len <= 4 * 1024)
1465 return (4 * 1024);
1466 if (len <= 8 * 1024)
1467 return (8 * 1024);
1468 if (len <= 32 * 1024)
1469 return (32 * 1024);
1470 if (len <= 64 * 1024)
1471 return (64 * 1024);
1472 return (len);
1473 }
1474
1475 static int
1476 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1477 struct lwp *l)
1478 {
1479 struct amr_softc *amr;
1480 struct amr_user_ioctl *au;
1481 struct amr_ccb *ac;
1482 struct amr_mailbox_ioctl *mbi;
1483 unsigned long au_length;
1484 uint8_t *au_cmd;
1485 int error;
1486 void *dp = NULL, *au_buffer;
1487
1488 amr = device_lookup_private(&amr_cd, minor(dev));
1489
1490 /* This should be compatible with the FreeBSD interface */
1491
1492 switch (cmd) {
1493 case AMR_IO_VERSION:
1494 *(int *)data = AMR_IO_VERSION_NUMBER;
1495 return 0;
1496 case AMR_IO_COMMAND:
1497 error = kauth_authorize_device_passthru(l->l_cred, dev,
1498 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1499 if (error)
1500 return (error);
1501
1502 au = (struct amr_user_ioctl *)data;
1503 au_cmd = au->au_cmd;
1504 au_buffer = au->au_buffer;
1505 au_length = au->au_length;
1506 break;
1507 default:
1508 return ENOTTY;
1509 }
1510
1511 if (au_cmd[0] == AMR_CMD_PASS) {
1512 /* not yet */
1513 return EOPNOTSUPP;
1514 }
1515
1516 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1517 return (EINVAL);
1518
1519 /*
1520 * allocate kernel memory for data, doing I/O directly to user
1521 * buffer isn't that easy. Correct allocation size for a bug
1522 * in at least some versions of the device firmware, by using
1523 * the amrioctl_buflen() function, defined above.
1524 */
1525 dp = malloc(amrioctl_buflen(au_length), M_DEVBUF, M_WAITOK|M_ZERO);
1526 if (dp == NULL)
1527 return ENOMEM;
1528 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1529 goto out;
1530
1531 /* direct command to controller */
1532 while (amr_ccb_alloc(amr, &ac) != 0) {
1533 mutex_enter(&thread_mutex);
1534 error = cv_timedwait_sig(&thread_cv, &thread_mutex, hz);
1535 mutex_exit(&thread_mutex);
1536 if (error == EINTR)
1537 goto out;
1538 }
1539
1540 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1541 mbi->mb_command = au_cmd[0];
1542 mbi->mb_channel = au_cmd[1];
1543 mbi->mb_param = au_cmd[2];
1544 mbi->mb_pad[0] = au_cmd[3];
1545 mbi->mb_drive = au_cmd[4];
1546 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1547 AC_XFER_IN | AC_XFER_OUT);
1548 if (error == 0) {
1549 error = amr_ccb_wait(amr, ac);
1550 amr_ccb_unmap(amr, ac);
1551 if (error == 0)
1552 error = copyout(dp, au_buffer, au_length);
1553
1554 }
1555 amr_ccb_free(amr, ac);
1556 out:
1557 free(dp, M_DEVBUF);
1558 return (error);
1559 }
1560
1561 MODULE(MODULE_CLASS_DRIVER, amr, "pci");
1562
1563 #ifdef _MODULE
1564 #include "ioconf.c"
1565 #endif
1566
1567 static int
1568 amr_modcmd(modcmd_t cmd, void *opaque)
1569 {
1570 int error = 0;
1571
1572 #ifdef _MODULE
1573 switch (cmd) {
1574 case MODULE_CMD_INIT:
1575 error = config_init_component(cfdriver_ioconf_amr,
1576 cfattach_ioconf_amr, cfdata_ioconf_amr);
1577 break;
1578 case MODULE_CMD_FINI:
1579 error = config_fini_component(cfdriver_ioconf_amr,
1580 cfattach_ioconf_amr, cfdata_ioconf_amr);
1581 break;
1582 default:
1583 error = ENOTTY;
1584 break;
1585 }
1586 #endif
1587
1588 return error;
1589 }
1590