auich.c revision 1.50 1 /* $NetBSD: auich.c,v 1.50 2003/10/25 18:31:11 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2000 Michael Shalayeff
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. The name of the author may not be used to endorse or promote products
52 * derived from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
55 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
56 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
57 * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
58 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
59 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
60 * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
62 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
63 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
64 * THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * from OpenBSD: ich.c,v 1.3 2000/08/11 06:17:18 mickey Exp
67 */
68
69 /*
70 * Copyright (c) 2000 Katsurajima Naoto <raven (at) katsurajima.seya.yokohama.jp>
71 * Copyright (c) 2001 Cameron Grant <cg (at) freebsd.org>
72 * All rights reserved.
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * auich_calibrate() was from FreeBSD: ich.c,v 1.22 2002/06/27 22:36:01 scottl Exp
96 */
97
98
99 /* #define ICH_DEBUG */
100 /*
101 * AC'97 audio found on Intel 810/820/440MX chipsets.
102 * http://developer.intel.com/design/chipsets/datashts/290655.htm
103 * http://developer.intel.com/design/chipsets/manuals/298028.htm
104 * ICH3:http://www.intel.com/design/chipsets/datashts/290716.htm
105 * ICH4:http://www.intel.com/design/chipsets/datashts/290744.htm
106 * ICH5:http://www.intel.com/design/chipsets/datashts/252516.htm
107 *
108 * TODO:
109 * - Add support for the dedicated microphone input.
110 *
111 * NOTE:
112 * - The 440MX B-stepping at running 100MHz has a hardware erratum.
113 * It causes PCI master abort and hangups until cold reboot.
114 * http://www.intel.com/design/chipsets/specupdt/245051.htm
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: auich.c,v 1.50 2003/10/25 18:31:11 christos Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/device.h>
125 #include <sys/fcntl.h>
126 #include <sys/proc.h>
127
128 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
129
130 #include <dev/pci/pcidevs.h>
131 #include <dev/pci/pcivar.h>
132 #include <dev/pci/auichreg.h>
133
134 #include <sys/audioio.h>
135 #include <dev/audio_if.h>
136 #include <dev/mulaw.h>
137 #include <dev/auconv.h>
138
139 #include <machine/bus.h>
140
141 #include <dev/ic/ac97reg.h>
142 #include <dev/ic/ac97var.h>
143
144 struct auich_dma {
145 bus_dmamap_t map;
146 caddr_t addr;
147 bus_dma_segment_t segs[1];
148 int nsegs;
149 size_t size;
150 struct auich_dma *next;
151 };
152
153 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
154 #define KERNADDR(p) ((void *)((p)->addr))
155
156 struct auich_cdata {
157 struct auich_dmalist ic_dmalist_pcmo[ICH_DMALIST_MAX];
158 struct auich_dmalist ic_dmalist_pcmi[ICH_DMALIST_MAX];
159 struct auich_dmalist ic_dmalist_mici[ICH_DMALIST_MAX];
160 };
161
162 #define ICH_CDOFF(x) offsetof(struct auich_cdata, x)
163 #define ICH_PCMO_OFF(x) ICH_CDOFF(ic_dmalist_pcmo[(x)])
164 #define ICH_PCMI_OFF(x) ICH_CDOFF(ic_dmalist_pcmi[(x)])
165 #define ICH_MICI_OFF(x) ICH_CDOFF(ic_dmalist_mici[(x)])
166
167 struct auich_softc {
168 struct device sc_dev;
169 void *sc_ih;
170
171 audio_device_t sc_audev;
172
173 bus_space_tag_t iot;
174 bus_space_handle_t mix_ioh;
175 bus_space_handle_t aud_ioh;
176 bus_dma_tag_t dmat;
177
178 struct ac97_codec_if *codec_if;
179 struct ac97_host_if host_if;
180
181 /* DMA scatter-gather lists. */
182 bus_dmamap_t sc_cddmamap;
183 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
184
185 struct auich_cdata *sc_cdata;
186 #define dmalist_pcmo sc_cdata->ic_dmalist_pcmo
187 #define dmalist_pcmi sc_cdata->ic_dmalist_pcmi
188 #define dmalist_mici sc_cdata->ic_dmalist_mici
189
190 int ptr_pcmo,
191 ptr_pcmi,
192 ptr_mici;
193
194 /* i/o buffer pointers */
195 u_int32_t pcmo_start, pcmo_p, pcmo_end;
196 int pcmo_blksize, pcmo_fifoe;
197
198 u_int32_t pcmi_start, pcmi_p, pcmi_end;
199 int pcmi_blksize, pcmi_fifoe;
200
201 u_int32_t mici_start, mici_p, mici_end;
202 int mici_blksize, mici_fifoe;
203
204 struct auich_dma *sc_dmas;
205
206 #ifdef DIAGNOSTIC
207 pci_chipset_tag_t sc_pc;
208 pcitag_t sc_pt;
209 #endif
210 /* SiS 7012 hack */
211 int sc_sample_size;
212 int sc_sts_reg;
213 /* 440MX workaround */
214 int sc_dmamap_flags;
215
216 void (*sc_pintr)(void *);
217 void *sc_parg;
218
219 void (*sc_rintr)(void *);
220 void *sc_rarg;
221
222 /* Power Management */
223 void *sc_powerhook;
224 int sc_suspend;
225 u_int16_t ext_status;
226 };
227
228 #define IS_FIXED_RATE(codec) !((codec)->vtbl->get_extcaps(codec) \
229 & AC97_EXT_AUDIO_VRA)
230 #define SUPPORTS_4CH(codec) ((codec)->vtbl->get_extcaps(codec) \
231 & AC97_EXT_AUDIO_SDAC)
232 #define AC97_6CH_DACS (AC97_EXT_AUDIO_SDAC | AC97_EXT_AUDIO_CDAC \
233 | AC97_EXT_AUDIO_LDAC)
234 #define SUPPORTS_6CH(codec) (((codec)->vtbl->get_extcaps(codec) \
235 & AC97_6CH_DACS) == AC97_6CH_DACS)
236
237 /* Debug */
238 #ifdef AUDIO_DEBUG
239 #define DPRINTF(l,x) do { if (auich_debug & (l)) printf x; } while(0)
240 int auich_debug = 0xfffe;
241 #define ICH_DEBUG_CODECIO 0x0001
242 #define ICH_DEBUG_DMA 0x0002
243 #define ICH_DEBUG_PARAM 0x0004
244 #else
245 #define DPRINTF(x,y) /* nothing */
246 #endif
247
248 int auich_match(struct device *, struct cfdata *, void *);
249 void auich_attach(struct device *, struct device *, void *);
250 int auich_intr(void *);
251
252 CFATTACH_DECL(auich, sizeof(struct auich_softc),
253 auich_match, auich_attach, NULL, NULL);
254
255 int auich_open(void *, int);
256 void auich_close(void *);
257 int auich_query_encoding(void *, struct audio_encoding *);
258 int auich_set_params(void *, int, int, struct audio_params *,
259 struct audio_params *);
260 int auich_round_blocksize(void *, int);
261 int auich_halt_output(void *);
262 int auich_halt_input(void *);
263 int auich_getdev(void *, struct audio_device *);
264 int auich_set_port(void *, mixer_ctrl_t *);
265 int auich_get_port(void *, mixer_ctrl_t *);
266 int auich_query_devinfo(void *, mixer_devinfo_t *);
267 void *auich_allocm(void *, int, size_t, struct malloc_type *, int);
268 void auich_freem(void *, void *, struct malloc_type *);
269 size_t auich_round_buffersize(void *, int, size_t);
270 paddr_t auich_mappage(void *, void *, off_t, int);
271 int auich_get_props(void *);
272 int auich_trigger_output(void *, void *, void *, int, void (*)(void *),
273 void *, struct audio_params *);
274 int auich_trigger_input(void *, void *, void *, int, void (*)(void *),
275 void *, struct audio_params *);
276
277 int auich_alloc_cdata(struct auich_softc *);
278
279 int auich_allocmem(struct auich_softc *, size_t, size_t,
280 struct auich_dma *);
281 int auich_freemem(struct auich_softc *, struct auich_dma *);
282
283 void auich_powerhook(int, void *);
284 int auich_set_rate(struct auich_softc *, int, u_long);
285 void auich_finish_attach(struct device *);
286 void auich_calibrate(struct auich_softc *);
287
288
289 struct audio_hw_if auich_hw_if = {
290 auich_open,
291 auich_close,
292 NULL, /* drain */
293 auich_query_encoding,
294 auich_set_params,
295 auich_round_blocksize,
296 NULL, /* commit_setting */
297 NULL, /* init_output */
298 NULL, /* init_input */
299 NULL, /* start_output */
300 NULL, /* start_input */
301 auich_halt_output,
302 auich_halt_input,
303 NULL, /* speaker_ctl */
304 auich_getdev,
305 NULL, /* getfd */
306 auich_set_port,
307 auich_get_port,
308 auich_query_devinfo,
309 auich_allocm,
310 auich_freem,
311 auich_round_buffersize,
312 auich_mappage,
313 auich_get_props,
314 auich_trigger_output,
315 auich_trigger_input,
316 NULL, /* dev_ioctl */
317 };
318
319 int auich_attach_codec(void *, struct ac97_codec_if *);
320 int auich_read_codec(void *, u_int8_t, u_int16_t *);
321 int auich_write_codec(void *, u_int8_t, u_int16_t);
322 void auich_reset_codec(void *);
323
324 static const struct auich_devtype {
325 int vendor;
326 int product;
327 const char *name;
328 const char *shortname; /* must be less than 11 characters */
329 } auich_devices[] = {
330 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801AA_ACA,
331 "i82801AA (ICH) AC-97 Audio", "ICH" },
332 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801AB_ACA,
333 "i82801AB (ICH0) AC-97 Audio", "ICH0" },
334 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801BA_ACA,
335 "i82801BA (ICH2) AC-97 Audio", "ICH2" },
336 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82440MX_ACA,
337 "i82440MX AC-97 Audio", "440MX" },
338 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801CA_AC,
339 "i82801CA (ICH3) AC-97 Audio", "ICH3" },
340 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801DB_AC,
341 "i82801DB/DBM (ICH4/ICH4M) AC-97 Audio", "ICH4" },
342 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801EB_AC,
343 "i82801EB (ICH5) AC-97 Audio", "ICH5" },
344 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7012_AC,
345 "SiS 7012 AC-97 Audio", "SiS7012" },
346 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_MCP_AC,
347 "nForce MCP AC-97 Audio", "nForce" },
348 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_MCPT_AC,
349 "nForce2 MCP-T AC-97 Audio", "nForce2" },
350 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_MCPT_AC,
351 "nForce3 MCP-T AC-97 Audio", "nForce3" },
352 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PBC768_AC,
353 "AMD768 AC-97 Audio", "AMD768" },
354 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PBC8111_AC,
355 "AMD8111 AC-97 Audio", "AMD8111" },
356 { 0, 0,
357 NULL, NULL },
358 };
359
360 static const struct auich_devtype *
361 auich_lookup(struct pci_attach_args *pa)
362 {
363 const struct auich_devtype *d;
364
365 for (d = auich_devices; d->name != NULL; d++) {
366 if (PCI_VENDOR(pa->pa_id) == d->vendor
367 && PCI_PRODUCT(pa->pa_id) == d->product)
368 return (d);
369 }
370
371 return (NULL);
372 }
373
374 int
375 auich_match(struct device *parent, struct cfdata *match, void *aux)
376 {
377 struct pci_attach_args *pa = aux;
378
379 if (auich_lookup(pa) != NULL)
380 return (1);
381
382 return (0);
383 }
384
385 void
386 auich_attach(struct device *parent, struct device *self, void *aux)
387 {
388 struct auich_softc *sc = (struct auich_softc *)self;
389 struct pci_attach_args *pa = aux;
390 pci_intr_handle_t ih;
391 bus_size_t mix_size, aud_size;
392 pcireg_t csr;
393 const char *intrstr;
394 const struct auich_devtype *d;
395
396 aprint_naive(": Audio controller\n");
397
398 d = auich_lookup(pa);
399 if (d == NULL)
400 panic("auich_attach: impossible");
401
402 #ifdef DIAGNOSTIC
403 sc->sc_pc = pa->pa_pc;
404 sc->sc_pt = pa->pa_tag;
405 #endif
406
407 aprint_normal(": %s\n", d->name);
408
409 if (pci_mapreg_map(pa, ICH_NAMBAR, PCI_MAPREG_TYPE_IO, 0,
410 &sc->iot, &sc->mix_ioh, NULL, &mix_size)) {
411 aprint_error("%s: can't map codec i/o space\n",
412 sc->sc_dev.dv_xname);
413 return;
414 }
415 if (pci_mapreg_map(pa, ICH_NABMBAR, PCI_MAPREG_TYPE_IO, 0,
416 &sc->iot, &sc->aud_ioh, NULL, &aud_size)) {
417 aprint_error("%s: can't map device i/o space\n",
418 sc->sc_dev.dv_xname);
419 return;
420 }
421 sc->dmat = pa->pa_dmat;
422
423 /* enable bus mastering */
424 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
425 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
426 csr | PCI_COMMAND_MASTER_ENABLE);
427
428 /* Map and establish the interrupt. */
429 if (pci_intr_map(pa, &ih)) {
430 aprint_error("%s: can't map interrupt\n", sc->sc_dev.dv_xname);
431 return;
432 }
433 intrstr = pci_intr_string(pa->pa_pc, ih);
434 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO,
435 auich_intr, sc);
436 if (sc->sc_ih == NULL) {
437 aprint_error("%s: can't establish interrupt",
438 sc->sc_dev.dv_xname);
439 if (intrstr != NULL)
440 aprint_normal(" at %s", intrstr);
441 aprint_normal("\n");
442 return;
443 }
444 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
445
446 snprintf(sc->sc_audev.name, MAX_AUDIO_DEV_LEN, "%s AC97", d->shortname);
447 snprintf(sc->sc_audev.version, MAX_AUDIO_DEV_LEN,
448 "0x%02x", PCI_REVISION(pa->pa_class));
449 strlcpy(sc->sc_audev.config, sc->sc_dev.dv_xname, MAX_AUDIO_DEV_LEN);
450
451 /* SiS 7012 needs special handling */
452 if (d->vendor == PCI_VENDOR_SIS
453 && d->product == PCI_PRODUCT_SIS_7012_AC) {
454 sc->sc_sts_reg = ICH_PICB;
455 sc->sc_sample_size = 1;
456 } else {
457 sc->sc_sts_reg = ICH_STS;
458 sc->sc_sample_size = 2;
459 }
460
461 /* Workaround for a 440MX B-stepping erratum */
462 sc->sc_dmamap_flags = BUS_DMA_COHERENT;
463 if (d->vendor == PCI_VENDOR_INTEL
464 && d->product == PCI_PRODUCT_INTEL_82440MX_ACA) {
465 sc->sc_dmamap_flags |= BUS_DMA_NOCACHE;
466 printf("%s: DMA bug workaround enabled\n", sc->sc_dev.dv_xname);
467 }
468
469 /* Set up DMA lists. */
470 sc->ptr_pcmo = sc->ptr_pcmi = sc->ptr_mici = 0;
471 auich_alloc_cdata(sc);
472
473 DPRINTF(ICH_DEBUG_DMA, ("auich_attach: lists %p %p %p\n",
474 sc->dmalist_pcmo, sc->dmalist_pcmi, sc->dmalist_mici));
475
476 sc->host_if.arg = sc;
477 sc->host_if.attach = auich_attach_codec;
478 sc->host_if.read = auich_read_codec;
479 sc->host_if.write = auich_write_codec;
480 sc->host_if.reset = auich_reset_codec;
481
482 if (ac97_attach(&sc->host_if) != 0)
483 return;
484
485 /* Watch for power change */
486 sc->sc_suspend = PWR_RESUME;
487 sc->sc_powerhook = powerhook_establish(auich_powerhook, sc);
488
489 config_interrupts(self, auich_finish_attach);
490 }
491
492 void
493 auich_finish_attach(struct device *self)
494 {
495 struct auich_softc *sc = (void *)self;
496
497 if (!IS_FIXED_RATE(sc->codec_if))
498 auich_calibrate(sc);
499
500 audio_attach_mi(&auich_hw_if, sc, &sc->sc_dev);
501 }
502
503 #define ICH_CODECIO_INTERVAL 10
504 int
505 auich_read_codec(void *v, u_int8_t reg, u_int16_t *val)
506 {
507 struct auich_softc *sc = v;
508 int i;
509 uint32_t status;
510
511 /* wait for an access semaphore */
512 for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- &&
513 bus_space_read_1(sc->iot, sc->aud_ioh, ICH_CAS) & 1;
514 DELAY(ICH_CODECIO_INTERVAL));
515
516 if (i > 0) {
517 *val = bus_space_read_2(sc->iot, sc->mix_ioh, reg);
518 DPRINTF(ICH_DEBUG_CODECIO,
519 ("auich_read_codec(%x, %x)\n", reg, *val));
520 status = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS);
521 if (status & ICH_RCS) {
522 bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS,
523 status & ~(ICH_SRI|ICH_PRI|ICH_GSCI));
524 *val = 0xffff;
525 }
526 return 0;
527 } else {
528 DPRINTF(ICH_DEBUG_CODECIO,
529 ("%s: read_codec timeout\n", sc->sc_dev.dv_xname));
530 return -1;
531 }
532 }
533
534 int
535 auich_write_codec(void *v, u_int8_t reg, u_int16_t val)
536 {
537 struct auich_softc *sc = v;
538 int i;
539
540 DPRINTF(ICH_DEBUG_CODECIO, ("auich_write_codec(%x, %x)\n", reg, val));
541 /* wait for an access semaphore */
542 for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- &&
543 bus_space_read_1(sc->iot, sc->aud_ioh, ICH_CAS) & 1;
544 DELAY(ICH_CODECIO_INTERVAL));
545
546 if (i > 0) {
547 bus_space_write_2(sc->iot, sc->mix_ioh, reg, val);
548 return 0;
549 } else {
550 DPRINTF(ICH_DEBUG_CODECIO,
551 ("%s: write_codec timeout\n", sc->sc_dev.dv_xname));
552 return -1;
553 }
554 }
555
556 int
557 auich_attach_codec(void *v, struct ac97_codec_if *cif)
558 {
559 struct auich_softc *sc = v;
560
561 sc->codec_if = cif;
562 return 0;
563 }
564
565 void
566 auich_reset_codec(void *v)
567 {
568 struct auich_softc *sc = v;
569 int i;
570 uint32_t control, status;
571
572 control = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GCTRL);
573 control &= ~(ICH_ACLSO | ICH_PCM246_MASK);
574 control |= (control & ICH_CRESET) ? ICH_WRESET : ICH_CRESET;
575 bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GCTRL, control);
576
577 for (i = 500000; i >= 0; i--) {
578 status = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS);
579 if (status & (ICH_PCR | ICH_SCR | ICH_S2CR))
580 break;
581 DELAY(1);
582 }
583 if (i <= 0) {
584 printf("%s: auich_reset_codec: time out\n", sc->sc_dev.dv_xname);
585 /* XXX: should not attach the audio device */
586 } else {
587 if (status & ICH_SCR)
588 printf("%s: The 2nd codec is ready.\n",
589 sc->sc_dev.dv_xname);
590 if (status & ICH_S2CR)
591 printf("%s: The 3rd codec is ready.\n",
592 sc->sc_dev.dv_xname);
593 }
594 }
595
596 int
597 auich_open(void *v, int flags)
598 {
599 return 0;
600 }
601
602 void
603 auich_close(void *v)
604 {
605 struct auich_softc *sc = v;
606
607 auich_halt_output(sc);
608 auich_halt_input(sc);
609
610 sc->sc_pintr = NULL;
611 sc->sc_rintr = NULL;
612 }
613
614 int
615 auich_query_encoding(void *v, struct audio_encoding *aep)
616 {
617
618 switch (aep->index) {
619 case 0:
620 strcpy(aep->name, AudioEulinear);
621 aep->encoding = AUDIO_ENCODING_ULINEAR;
622 aep->precision = 8;
623 aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
624 return (0);
625 case 1:
626 strcpy(aep->name, AudioEmulaw);
627 aep->encoding = AUDIO_ENCODING_ULAW;
628 aep->precision = 8;
629 aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
630 return (0);
631 case 2:
632 strcpy(aep->name, AudioEalaw);
633 aep->encoding = AUDIO_ENCODING_ALAW;
634 aep->precision = 8;
635 aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
636 return (0);
637 case 3:
638 strcpy(aep->name, AudioEslinear);
639 aep->encoding = AUDIO_ENCODING_SLINEAR;
640 aep->precision = 8;
641 aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
642 return (0);
643 case 4:
644 strcpy(aep->name, AudioEslinear_le);
645 aep->encoding = AUDIO_ENCODING_SLINEAR_LE;
646 aep->precision = 16;
647 aep->flags = 0;
648 return (0);
649 case 5:
650 strcpy(aep->name, AudioEulinear_le);
651 aep->encoding = AUDIO_ENCODING_ULINEAR_LE;
652 aep->precision = 16;
653 aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
654 return (0);
655 case 6:
656 strcpy(aep->name, AudioEslinear_be);
657 aep->encoding = AUDIO_ENCODING_SLINEAR_BE;
658 aep->precision = 16;
659 aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
660 return (0);
661 case 7:
662 strcpy(aep->name, AudioEulinear_be);
663 aep->encoding = AUDIO_ENCODING_ULINEAR_BE;
664 aep->precision = 16;
665 aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
666 return (0);
667 default:
668 return (EINVAL);
669 }
670 }
671
672 int
673 auich_set_rate(struct auich_softc *sc, int mode, u_long srate)
674 {
675 int ret;
676 u_long ratetmp;
677
678 ratetmp = srate;
679 if (mode == AUMODE_RECORD)
680 return sc->codec_if->vtbl->set_rate(sc->codec_if,
681 AC97_REG_PCM_LR_ADC_RATE, &ratetmp);
682 ret = sc->codec_if->vtbl->set_rate(sc->codec_if,
683 AC97_REG_PCM_FRONT_DAC_RATE, &ratetmp);
684 if (ret)
685 return ret;
686 ratetmp = srate;
687 ret = sc->codec_if->vtbl->set_rate(sc->codec_if,
688 AC97_REG_PCM_SURR_DAC_RATE, &ratetmp);
689 if (ret)
690 return ret;
691 ratetmp = srate;
692 ret = sc->codec_if->vtbl->set_rate(sc->codec_if,
693 AC97_REG_PCM_LFE_DAC_RATE, &ratetmp);
694 return ret;
695 }
696
697 int
698 auich_set_params(void *v, int setmode, int usemode, struct audio_params *play,
699 struct audio_params *rec)
700 {
701 struct auich_softc *sc = v;
702 struct audio_params *p;
703 int mode;
704 u_int32_t control;
705
706 for (mode = AUMODE_RECORD; mode != -1;
707 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
708 if ((setmode & mode) == 0)
709 continue;
710
711 p = mode == AUMODE_PLAY ? play : rec;
712 if (p == NULL)
713 continue;
714
715 if ((p->sample_rate != 8000) &&
716 (p->sample_rate != 11025) &&
717 (p->sample_rate != 12000) &&
718 (p->sample_rate != 16000) &&
719 (p->sample_rate != 22050) &&
720 (p->sample_rate != 24000) &&
721 (p->sample_rate != 32000) &&
722 (p->sample_rate != 44100) &&
723 (p->sample_rate != 48000))
724 return (EINVAL);
725
726 p->factor = 1;
727 if (p->precision == 8)
728 p->factor *= 2;
729
730 p->sw_code = NULL;
731 /* setup hardware formats */
732 p->hw_encoding = AUDIO_ENCODING_SLINEAR_LE;
733 p->hw_precision = 16;
734
735 if (mode == AUMODE_RECORD) {
736 if (p->channels < 1 || p->channels > 2)
737 return EINVAL;
738 } else {
739 switch (p->channels) {
740 case 1:
741 break;
742 case 2:
743 break;
744 case 4:
745 if (!SUPPORTS_4CH(sc->codec_if))
746 return EINVAL;
747 break;
748 case 6:
749 if (!SUPPORTS_6CH(sc->codec_if))
750 return EINVAL;
751 break;
752 default:
753 return EINVAL;
754 }
755 }
756 /* If monaural is requested, aurateconv expands a monaural
757 * stream to stereo. */
758 if (p->channels == 1)
759 p->hw_channels = 2;
760
761 switch (p->encoding) {
762 case AUDIO_ENCODING_SLINEAR_BE:
763 if (p->precision == 16) {
764 p->sw_code = swap_bytes;
765 } else {
766 if (mode == AUMODE_PLAY)
767 p->sw_code = linear8_to_linear16_le;
768 else
769 p->sw_code = linear16_to_linear8_le;
770 }
771 break;
772
773 case AUDIO_ENCODING_SLINEAR_LE:
774 if (p->precision != 16) {
775 if (mode == AUMODE_PLAY)
776 p->sw_code = linear8_to_linear16_le;
777 else
778 p->sw_code = linear16_to_linear8_le;
779 }
780 break;
781
782 case AUDIO_ENCODING_ULINEAR_BE:
783 if (p->precision == 16) {
784 if (mode == AUMODE_PLAY)
785 p->sw_code =
786 swap_bytes_change_sign16_le;
787 else
788 p->sw_code =
789 change_sign16_swap_bytes_le;
790 } else {
791 if (mode == AUMODE_PLAY)
792 p->sw_code =
793 ulinear8_to_slinear16_le;
794 else
795 p->sw_code =
796 slinear16_to_ulinear8_le;
797 }
798 break;
799
800 case AUDIO_ENCODING_ULINEAR_LE:
801 if (p->precision == 16) {
802 p->sw_code = change_sign16_le;
803 } else {
804 if (mode == AUMODE_PLAY)
805 p->sw_code =
806 ulinear8_to_slinear16_le;
807 else
808 p->sw_code =
809 slinear16_to_ulinear8_le;
810 }
811 break;
812
813 case AUDIO_ENCODING_ULAW:
814 if (mode == AUMODE_PLAY) {
815 p->sw_code = mulaw_to_slinear16_le;
816 } else {
817 p->sw_code = slinear16_to_mulaw_le;
818 }
819 break;
820
821 case AUDIO_ENCODING_ALAW:
822 if (mode == AUMODE_PLAY) {
823 p->sw_code = alaw_to_slinear16_le;
824 } else {
825 p->sw_code = slinear16_to_alaw_le;
826 }
827 break;
828
829 default:
830 return (EINVAL);
831 }
832
833 if (IS_FIXED_RATE(sc->codec_if)) {
834 p->hw_sample_rate = AC97_SINGLE_RATE;
835 /* If hw_sample_rate is changed, aurateconv works. */
836 } else {
837 if (auich_set_rate(sc, mode, p->sample_rate))
838 return EINVAL;
839 }
840 if (mode == AUMODE_PLAY) {
841 control = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GCTRL);
842 control &= ~ICH_PCM246_MASK;
843 if (p->channels == 4) {
844 control |= ICH_PCM4;
845 } else if (p->channels == 6) {
846 control |= ICH_PCM6;
847 }
848 bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GCTRL, control);
849 }
850 }
851
852 return (0);
853 }
854
855 int
856 auich_round_blocksize(void *v, int blk)
857 {
858
859 return (blk & ~0x3f); /* keep good alignment */
860 }
861
862 int
863 auich_halt_output(void *v)
864 {
865 struct auich_softc *sc = v;
866
867 DPRINTF(ICH_DEBUG_DMA, ("%s: halt_output\n", sc->sc_dev.dv_xname));
868
869 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CTRL, ICH_RR);
870
871 return (0);
872 }
873
874 int
875 auich_halt_input(void *v)
876 {
877 struct auich_softc *sc = v;
878
879 DPRINTF(ICH_DEBUG_DMA,
880 ("%s: halt_input\n", sc->sc_dev.dv_xname));
881
882 /* XXX halt both unless known otherwise */
883
884 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RR);
885 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_MICI + ICH_CTRL, ICH_RR);
886
887 return (0);
888 }
889
890 int
891 auich_getdev(void *v, struct audio_device *adp)
892 {
893 struct auich_softc *sc = v;
894
895 *adp = sc->sc_audev;
896 return (0);
897 }
898
899 int
900 auich_set_port(void *v, mixer_ctrl_t *cp)
901 {
902 struct auich_softc *sc = v;
903
904 return (sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp));
905 }
906
907 int
908 auich_get_port(void *v, mixer_ctrl_t *cp)
909 {
910 struct auich_softc *sc = v;
911
912 return (sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp));
913 }
914
915 int
916 auich_query_devinfo(void *v, mixer_devinfo_t *dp)
917 {
918 struct auich_softc *sc = v;
919
920 return (sc->codec_if->vtbl->query_devinfo(sc->codec_if, dp));
921 }
922
923 void *
924 auich_allocm(void *v, int direction, size_t size, struct malloc_type *pool,
925 int flags)
926 {
927 struct auich_softc *sc = v;
928 struct auich_dma *p;
929 int error;
930
931 if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX))
932 return (NULL);
933
934 p = malloc(sizeof(*p), pool, flags|M_ZERO);
935 if (p == NULL)
936 return (NULL);
937
938 error = auich_allocmem(sc, size, 0, p);
939 if (error) {
940 free(p, pool);
941 return (NULL);
942 }
943
944 p->next = sc->sc_dmas;
945 sc->sc_dmas = p;
946
947 return (KERNADDR(p));
948 }
949
950 void
951 auich_freem(void *v, void *ptr, struct malloc_type *pool)
952 {
953 struct auich_softc *sc = v;
954 struct auich_dma *p, **pp;
955
956 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
957 if (KERNADDR(p) == ptr) {
958 auich_freemem(sc, p);
959 *pp = p->next;
960 free(p, pool);
961 return;
962 }
963 }
964 }
965
966 size_t
967 auich_round_buffersize(void *v, int direction, size_t size)
968 {
969
970 if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX))
971 size = ICH_DMALIST_MAX * ICH_DMASEG_MAX;
972
973 return size;
974 }
975
976 paddr_t
977 auich_mappage(void *v, void *mem, off_t off, int prot)
978 {
979 struct auich_softc *sc = v;
980 struct auich_dma *p;
981
982 if (off < 0)
983 return (-1);
984
985 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
986 ;
987 if (!p)
988 return (-1);
989 return (bus_dmamem_mmap(sc->dmat, p->segs, p->nsegs,
990 off, prot, BUS_DMA_WAITOK));
991 }
992
993 int
994 auich_get_props(void *v)
995 {
996 struct auich_softc *sc = v;
997 int props;
998
999 props = AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1000 /*
1001 * Even if the codec is fixed-rate, set_param() succeeds for any sample
1002 * rate because of aurateconv. Applications can't know what rate the
1003 * device can process in the case of mmap().
1004 */
1005 if (!IS_FIXED_RATE(sc->codec_if))
1006 props |= AUDIO_PROP_MMAP;
1007 return props;
1008 }
1009
1010 int
1011 auich_intr(void *v)
1012 {
1013 struct auich_softc *sc = v;
1014 int ret = 0, sts, gsts, i, qptr;
1015
1016 #ifdef DIAGNOSTIC
1017 int csts;
1018 #endif
1019
1020 #ifdef DIAGNOSTIC
1021 csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG);
1022 if (csts & PCI_STATUS_MASTER_ABORT) {
1023 printf("auich_intr: PCI master abort\n");
1024 }
1025 #endif
1026
1027 gsts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_GSTS);
1028 DPRINTF(ICH_DEBUG_DMA, ("auich_intr: gsts=0x%x\n", gsts));
1029
1030 if (gsts & ICH_POINT) {
1031 sts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_PCMO+sc->sc_sts_reg);
1032 DPRINTF(ICH_DEBUG_DMA,
1033 ("auich_intr: osts=0x%x\n", sts));
1034
1035 if (sts & ICH_FIFOE) {
1036 printf("%s: fifo underrun # %u\n",
1037 sc->sc_dev.dv_xname, ++sc->pcmo_fifoe);
1038 }
1039
1040 i = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CIV);
1041 if (sts & (ICH_LVBCI | ICH_CELV)) {
1042 struct auich_dmalist *q;
1043
1044 qptr = sc->ptr_pcmo;
1045
1046 while (qptr != i) {
1047 q = &sc->dmalist_pcmo[qptr];
1048
1049 q->base = sc->pcmo_p;
1050 q->len = (sc->pcmo_blksize / sc->sc_sample_size) | ICH_DMAF_IOC;
1051 DPRINTF(ICH_DEBUG_DMA,
1052 ("auich_intr: %p, %p = %x @ 0x%x\n",
1053 &sc->dmalist_pcmo[i], q,
1054 sc->pcmo_blksize / 2, sc->pcmo_p));
1055
1056 sc->pcmo_p += sc->pcmo_blksize;
1057 if (sc->pcmo_p >= sc->pcmo_end)
1058 sc->pcmo_p = sc->pcmo_start;
1059
1060 if (++qptr == ICH_DMALIST_MAX)
1061 qptr = 0;
1062 }
1063
1064 sc->ptr_pcmo = qptr;
1065 bus_space_write_1(sc->iot, sc->aud_ioh,
1066 ICH_PCMO + ICH_LVI,
1067 (sc->ptr_pcmo - 1) & ICH_LVI_MASK);
1068 }
1069
1070 if (sts & ICH_BCIS && sc->sc_pintr)
1071 sc->sc_pintr(sc->sc_parg);
1072
1073 /* int ack */
1074 bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMO + sc->sc_sts_reg,
1075 sts & (ICH_LVBCI | ICH_CELV | ICH_BCIS | ICH_FIFOE));
1076 bus_space_write_2(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_POINT);
1077 ret++;
1078 }
1079
1080 if (gsts & ICH_PIINT) {
1081 sts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_PCMI+sc->sc_sts_reg);
1082 DPRINTF(ICH_DEBUG_DMA,
1083 ("auich_intr: ists=0x%x\n", sts));
1084
1085 if (sts & ICH_FIFOE) {
1086 printf("%s: fifo overrun # %u\n",
1087 sc->sc_dev.dv_xname, ++sc->pcmi_fifoe);
1088 }
1089
1090 i = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CIV);
1091 if (sts & (ICH_LVBCI | ICH_CELV)) {
1092 struct auich_dmalist *q;
1093
1094 qptr = sc->ptr_pcmi;
1095
1096 while (qptr != i) {
1097 q = &sc->dmalist_pcmi[qptr];
1098
1099 q->base = sc->pcmi_p;
1100 q->len = (sc->pcmi_blksize / sc->sc_sample_size) | ICH_DMAF_IOC;
1101 DPRINTF(ICH_DEBUG_DMA,
1102 ("auich_intr: %p, %p = %x @ 0x%x\n",
1103 &sc->dmalist_pcmi[i], q,
1104 sc->pcmi_blksize / 2, sc->pcmi_p));
1105
1106 sc->pcmi_p += sc->pcmi_blksize;
1107 if (sc->pcmi_p >= sc->pcmi_end)
1108 sc->pcmi_p = sc->pcmi_start;
1109
1110 if (++qptr == ICH_DMALIST_MAX)
1111 qptr = 0;
1112 }
1113
1114 sc->ptr_pcmi = qptr;
1115 bus_space_write_1(sc->iot, sc->aud_ioh,
1116 ICH_PCMI + ICH_LVI,
1117 (sc->ptr_pcmi - 1) & ICH_LVI_MASK);
1118 }
1119
1120 if (sts & ICH_BCIS && sc->sc_rintr)
1121 sc->sc_rintr(sc->sc_rarg);
1122
1123 /* int ack */
1124 bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMI + sc->sc_sts_reg,
1125 sts & (ICH_LVBCI | ICH_CELV | ICH_BCIS | ICH_FIFOE));
1126 bus_space_write_2(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_PIINT);
1127 ret++;
1128 }
1129
1130 if (gsts & ICH_MIINT) {
1131 sts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_MICI+sc->sc_sts_reg);
1132 DPRINTF(ICH_DEBUG_DMA,
1133 ("auich_intr: ists=0x%x\n", sts));
1134 if (sts & ICH_FIFOE)
1135 printf("%s: fifo overrun\n", sc->sc_dev.dv_xname);
1136
1137 /* TODO mic input DMA */
1138
1139 bus_space_write_2(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_MIINT);
1140 }
1141
1142 return ret;
1143 }
1144
1145 int
1146 auich_trigger_output(void *v, void *start, void *end, int blksize,
1147 void (*intr)(void *), void *arg, struct audio_params *param)
1148 {
1149 struct auich_softc *sc = v;
1150 struct auich_dmalist *q;
1151 struct auich_dma *p;
1152 size_t size;
1153 #ifdef DIAGNOSTIC
1154 int csts;
1155 #endif
1156
1157 DPRINTF(ICH_DEBUG_DMA,
1158 ("auich_trigger_output(%p, %p, %d, %p, %p, %p)\n",
1159 start, end, blksize, intr, arg, param));
1160
1161 sc->sc_pintr = intr;
1162 sc->sc_parg = arg;
1163 #ifdef DIAGNOSTIC
1164 csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG);
1165 if (csts & PCI_STATUS_MASTER_ABORT) {
1166 printf("auich_trigger_output: PCI master abort\n");
1167 }
1168 #endif
1169
1170 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1171 ;
1172 if (!p) {
1173 printf("auich_trigger_output: bad addr %p\n", start);
1174 return (EINVAL);
1175 }
1176
1177 size = (size_t)((caddr_t)end - (caddr_t)start);
1178
1179 /*
1180 * The logic behind this is:
1181 * setup one buffer to play, then LVI dump out the rest
1182 * to the scatter-gather chain.
1183 */
1184 sc->pcmo_start = DMAADDR(p);
1185 sc->pcmo_p = sc->pcmo_start + blksize;
1186 sc->pcmo_end = sc->pcmo_start + size;
1187 sc->pcmo_blksize = blksize;
1188
1189 sc->ptr_pcmo = 0;
1190 q = &sc->dmalist_pcmo[sc->ptr_pcmo];
1191 q->base = sc->pcmo_start;
1192 q->len = (blksize / sc->sc_sample_size) | ICH_DMAF_IOC;
1193 if (++sc->ptr_pcmo == ICH_DMALIST_MAX)
1194 sc->ptr_pcmo = 0;
1195
1196 bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_BDBAR,
1197 sc->sc_cddma + ICH_PCMO_OFF(0));
1198 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CTRL,
1199 ICH_IOCE | ICH_FEIE | ICH_LVBIE | ICH_RPBM);
1200 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_LVI,
1201 (sc->ptr_pcmo - 1) & ICH_LVI_MASK);
1202
1203 return (0);
1204 }
1205
1206 int
1207 auich_trigger_input(v, start, end, blksize, intr, arg, param)
1208 void *v;
1209 void *start, *end;
1210 int blksize;
1211 void (*intr)(void *);
1212 void *arg;
1213 struct audio_params *param;
1214 {
1215 struct auich_softc *sc = v;
1216 struct auich_dmalist *q;
1217 struct auich_dma *p;
1218 size_t size;
1219 #ifdef DIAGNOSTIC
1220 int csts;
1221 #endif
1222
1223 DPRINTF(ICH_DEBUG_DMA,
1224 ("auich_trigger_input(%p, %p, %d, %p, %p, %p)\n",
1225 start, end, blksize, intr, arg, param));
1226
1227 sc->sc_rintr = intr;
1228 sc->sc_rarg = arg;
1229
1230 #ifdef DIAGNOSTIC
1231 csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG);
1232 if (csts & PCI_STATUS_MASTER_ABORT) {
1233 printf("auich_trigger_input: PCI master abort\n");
1234 }
1235 #endif
1236
1237 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1238 ;
1239 if (!p) {
1240 printf("auich_trigger_input: bad addr %p\n", start);
1241 return (EINVAL);
1242 }
1243
1244 size = (size_t)((caddr_t)end - (caddr_t)start);
1245
1246 /*
1247 * The logic behind this is:
1248 * setup one buffer to play, then LVI dump out the rest
1249 * to the scatter-gather chain.
1250 */
1251 sc->pcmi_start = DMAADDR(p);
1252 sc->pcmi_p = sc->pcmi_start + blksize;
1253 sc->pcmi_end = sc->pcmi_start + size;
1254 sc->pcmi_blksize = blksize;
1255
1256 sc->ptr_pcmi = 0;
1257 q = &sc->dmalist_pcmi[sc->ptr_pcmi];
1258 q->base = sc->pcmi_start;
1259 q->len = (blksize / sc->sc_sample_size) | ICH_DMAF_IOC;
1260 if (++sc->ptr_pcmi == ICH_DMALIST_MAX)
1261 sc->ptr_pcmi = 0;
1262
1263 bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR,
1264 sc->sc_cddma + ICH_PCMI_OFF(0));
1265 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL,
1266 ICH_IOCE | ICH_FEIE | ICH_LVBIE | ICH_RPBM);
1267 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI,
1268 (sc->ptr_pcmi - 1) & ICH_LVI_MASK);
1269
1270 return (0);
1271 }
1272
1273 int
1274 auich_allocmem(struct auich_softc *sc, size_t size, size_t align,
1275 struct auich_dma *p)
1276 {
1277 int error;
1278
1279 p->size = size;
1280 error = bus_dmamem_alloc(sc->dmat, p->size, align, 0,
1281 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
1282 &p->nsegs, BUS_DMA_NOWAIT);
1283 if (error)
1284 return (error);
1285
1286 error = bus_dmamem_map(sc->dmat, p->segs, p->nsegs, p->size,
1287 &p->addr, BUS_DMA_NOWAIT|sc->sc_dmamap_flags);
1288 if (error)
1289 goto free;
1290
1291 error = bus_dmamap_create(sc->dmat, p->size, 1, p->size,
1292 0, BUS_DMA_NOWAIT, &p->map);
1293 if (error)
1294 goto unmap;
1295
1296 error = bus_dmamap_load(sc->dmat, p->map, p->addr, p->size, NULL,
1297 BUS_DMA_NOWAIT);
1298 if (error)
1299 goto destroy;
1300 return (0);
1301
1302 destroy:
1303 bus_dmamap_destroy(sc->dmat, p->map);
1304 unmap:
1305 bus_dmamem_unmap(sc->dmat, p->addr, p->size);
1306 free:
1307 bus_dmamem_free(sc->dmat, p->segs, p->nsegs);
1308 return (error);
1309 }
1310
1311 int
1312 auich_freemem(struct auich_softc *sc, struct auich_dma *p)
1313 {
1314
1315 bus_dmamap_unload(sc->dmat, p->map);
1316 bus_dmamap_destroy(sc->dmat, p->map);
1317 bus_dmamem_unmap(sc->dmat, p->addr, p->size);
1318 bus_dmamem_free(sc->dmat, p->segs, p->nsegs);
1319 return (0);
1320 }
1321
1322 int
1323 auich_alloc_cdata(struct auich_softc *sc)
1324 {
1325 bus_dma_segment_t seg;
1326 int error, rseg;
1327
1328 /*
1329 * Allocate the control data structure, and create and load the
1330 * DMA map for it.
1331 */
1332 if ((error = bus_dmamem_alloc(sc->dmat,
1333 sizeof(struct auich_cdata),
1334 PAGE_SIZE, 0, &seg, 1, &rseg, 0)) != 0) {
1335 printf("%s: unable to allocate control data, error = %d\n",
1336 sc->sc_dev.dv_xname, error);
1337 goto fail_0;
1338 }
1339
1340 if ((error = bus_dmamem_map(sc->dmat, &seg, rseg,
1341 sizeof(struct auich_cdata),
1342 (caddr_t *) &sc->sc_cdata,
1343 sc->sc_dmamap_flags)) != 0) {
1344 printf("%s: unable to map control data, error = %d\n",
1345 sc->sc_dev.dv_xname, error);
1346 goto fail_1;
1347 }
1348
1349 if ((error = bus_dmamap_create(sc->dmat, sizeof(struct auich_cdata), 1,
1350 sizeof(struct auich_cdata), 0, 0,
1351 &sc->sc_cddmamap)) != 0) {
1352 printf("%s: unable to create control data DMA map, "
1353 "error = %d\n", sc->sc_dev.dv_xname, error);
1354 goto fail_2;
1355 }
1356
1357 if ((error = bus_dmamap_load(sc->dmat, sc->sc_cddmamap,
1358 sc->sc_cdata, sizeof(struct auich_cdata),
1359 NULL, 0)) != 0) {
1360 printf("%s: unable tp load control data DMA map, "
1361 "error = %d\n", sc->sc_dev.dv_xname, error);
1362 goto fail_3;
1363 }
1364
1365 return (0);
1366
1367 fail_3:
1368 bus_dmamap_destroy(sc->dmat, sc->sc_cddmamap);
1369 fail_2:
1370 bus_dmamem_unmap(sc->dmat, (caddr_t) sc->sc_cdata,
1371 sizeof(struct auich_cdata));
1372 fail_1:
1373 bus_dmamem_free(sc->dmat, &seg, rseg);
1374 fail_0:
1375 return (error);
1376 }
1377
1378 void
1379 auich_powerhook(int why, void *addr)
1380 {
1381 struct auich_softc *sc = (struct auich_softc *)addr;
1382
1383 switch (why) {
1384 case PWR_SUSPEND:
1385 case PWR_STANDBY:
1386 /* Power down */
1387 DPRINTF(1, ("%s: power down\n", sc->sc_dev.dv_xname));
1388 sc->sc_suspend = why;
1389 auich_read_codec(sc, AC97_REG_EXT_AUDIO_CTRL, &sc->ext_status);
1390 break;
1391
1392 case PWR_RESUME:
1393 /* Wake up */
1394 DPRINTF(1, ("%s: power resume\n", sc->sc_dev.dv_xname));
1395 if (sc->sc_suspend == PWR_RESUME) {
1396 printf("%s: resume without suspend.\n",
1397 sc->sc_dev.dv_xname);
1398 sc->sc_suspend = why;
1399 return;
1400 }
1401 sc->sc_suspend = why;
1402 auich_reset_codec(sc);
1403 DELAY(1000);
1404 (sc->codec_if->vtbl->restore_ports)(sc->codec_if);
1405 auich_write_codec(sc, AC97_REG_EXT_AUDIO_CTRL, sc->ext_status);
1406 break;
1407
1408 case PWR_SOFTSUSPEND:
1409 case PWR_SOFTSTANDBY:
1410 case PWR_SOFTRESUME:
1411 break;
1412 }
1413 }
1414
1415
1416 /* -------------------------------------------------------------------- */
1417 /* Calibrate card (some boards are overclocked and need scaling) */
1418
1419 void
1420 auich_calibrate(struct auich_softc *sc)
1421 {
1422 struct timeval t1, t2;
1423 u_int8_t ociv, nciv = 0;
1424 u_int32_t wait_us, actual_48k_rate, bytes, ac97rate;
1425 void *temp_buffer;
1426 struct auich_dma *p;
1427
1428 /*
1429 * Grab audio from input for fixed interval and compare how
1430 * much we actually get with what we expect. Interval needs
1431 * to be sufficiently short that no interrupts are
1432 * generated.
1433 */
1434
1435 /* Setup a buffer */
1436 bytes = 16000;
1437 temp_buffer = auich_allocm(sc, AUMODE_RECORD, bytes, M_DEVBUF, M_WAITOK);
1438 for (p = sc->sc_dmas; p && KERNADDR(p) != temp_buffer; p = p->next)
1439 ;
1440 if (p == NULL) {
1441 printf("auich_calibrate: bad address %p\n", temp_buffer);
1442 return;
1443 }
1444 sc->dmalist_pcmi[0].base = DMAADDR(p);
1445 sc->dmalist_pcmi[0].len = (bytes / sc->sc_sample_size);
1446
1447 /*
1448 * our data format is stereo, 16 bit so each sample is 4 bytes.
1449 * assuming we get 48000 samples per second, we get 192000 bytes/sec.
1450 * we're going to start recording with interrupts disabled and measure
1451 * the time taken for one block to complete. we know the block size,
1452 * we know the time in microseconds, we calculate the sample rate:
1453 *
1454 * actual_rate [bps] = bytes / (time [s] * 4)
1455 * actual_rate [bps] = (bytes * 1000000) / (time [us] * 4)
1456 * actual_rate [Hz] = (bytes * 250000) / time [us]
1457 */
1458
1459 /* prepare */
1460 ociv = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CIV);
1461 bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR,
1462 sc->sc_cddma + ICH_PCMI_OFF(0));
1463 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI,
1464 (0 - 1) & ICH_LVI_MASK);
1465
1466 /* start */
1467 microtime(&t1);
1468 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RPBM);
1469
1470 /* wait */
1471 do {
1472 microtime(&t2);
1473 if (t2.tv_sec - t1.tv_sec > 1)
1474 break;
1475 nciv = bus_space_read_1(sc->iot, sc->aud_ioh,
1476 ICH_PCMI + ICH_CIV);
1477 } while (nciv == ociv);
1478
1479 /* stop */
1480 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, 0);
1481
1482 /* reset */
1483 DELAY(100);
1484 bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RR);
1485
1486 /* turn time delta into us */
1487 wait_us = ((t2.tv_sec - t1.tv_sec) * 1000000) + t2.tv_usec - t1.tv_usec;
1488
1489 auich_freem(sc, temp_buffer, M_DEVBUF);
1490
1491 if (nciv == ociv) {
1492 printf("%s: ac97 link rate calibration timed out after %d us\n",
1493 sc->sc_dev.dv_xname, wait_us);
1494 return;
1495 }
1496
1497 actual_48k_rate = (bytes * 250000U) / wait_us;
1498
1499 if (actual_48k_rate <= 48500)
1500 ac97rate = 48000;
1501 else
1502 ac97rate = actual_48k_rate;
1503
1504 printf("%s: measured ac97 link rate at %d Hz",
1505 sc->sc_dev.dv_xname, actual_48k_rate);
1506 if (ac97rate != actual_48k_rate)
1507 printf(", will use %d Hz", ac97rate);
1508 printf("\n");
1509
1510 sc->codec_if->vtbl->set_clock(sc->codec_if, ac97rate);
1511 }
1512