cmpci.c revision 1.18 1 /* $NetBSD: cmpci.c,v 1.18 2003/02/01 06:23:38 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <tshiozak (at) netbsd.org> .
9 *
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by ITOH Yasufumi.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 */
35
36 /*
37 * C-Media CMI8x38 Audio Chip Support.
38 *
39 * TODO:
40 * - 4ch / 6ch support.
41 * - Joystick support.
42 *
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.18 2003/02/01 06:23:38 thorpej Exp $");
47
48 #if defined(AUDIO_DEBUG) || defined(DEBUG)
49 #define DPRINTF(x) if (cmpcidebug) printf x
50 int cmpcidebug = 0;
51 #else
52 #define DPRINTF(x)
53 #endif
54
55 #include "mpu.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/proc.h>
63
64 #include <dev/pci/pcidevs.h>
65 #include <dev/pci/pcivar.h>
66
67 #include <sys/audioio.h>
68 #include <dev/audio_if.h>
69 #include <dev/midi_if.h>
70
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/pci/cmpcireg.h>
74 #include <dev/pci/cmpcivar.h>
75
76 #include <dev/ic/mpuvar.h>
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 /*
81 * Low-level HW interface
82 */
83 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
84 uint8_t));
85 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
86 uint8_t, uint8_t));
87 static __inline void cmpci_reg_partial_write_1 __P((struct cmpci_softc *,
88 int, int,
89 unsigned, unsigned));
90 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
91 int, int,
92 uint32_t, uint32_t));
93 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
94 int, uint8_t));
95 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
96 int, uint8_t));
97 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
98 int, uint32_t));
99 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
100 int, uint32_t));
101 static int cmpci_rate_to_index __P((int));
102 static __inline int cmpci_index_to_rate __P((int));
103 static __inline int cmpci_index_to_divider __P((int));
104
105 static int cmpci_adjust __P((int, int));
106 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
107 static void cmpci_set_out_ports __P((struct cmpci_softc *));
108 static int cmpci_set_in_ports __P((struct cmpci_softc *));
109
110
111 /*
112 * autoconf interface
113 */
114 static int cmpci_match __P((struct device *, struct cfdata *, void *));
115 static void cmpci_attach __P((struct device *, struct device *, void *));
116
117 CFATTACH_DECL(cmpci, sizeof (struct cmpci_softc),
118 cmpci_match, cmpci_attach, NULL, NULL);
119
120 /* interrupt */
121 static int cmpci_intr __P((void *));
122
123
124 /*
125 * DMA stuffs
126 */
127 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
128 size_t, struct malloc_type *,
129 int, caddr_t *));
130 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t,
131 struct malloc_type *));
132 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
133 caddr_t));
134
135
136 /*
137 * interface to machine independent layer
138 */
139 static int cmpci_open __P((void *, int));
140 static void cmpci_close __P((void *));
141 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
142 static int cmpci_set_params __P((void *, int, int,
143 struct audio_params *,
144 struct audio_params *));
145 static int cmpci_round_blocksize __P((void *, int));
146 static int cmpci_halt_output __P((void *));
147 static int cmpci_halt_input __P((void *));
148 static int cmpci_getdev __P((void *, struct audio_device *));
149 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
150 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
151 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
152 static void *cmpci_allocm __P((void *, int, size_t, struct malloc_type *, int));
153 static void cmpci_freem __P((void *, void *, struct malloc_type *));
154 static size_t cmpci_round_buffersize __P((void *, int, size_t));
155 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
156 static int cmpci_get_props __P((void *));
157 static int cmpci_trigger_output __P((void *, void *, void *, int,
158 void (*)(void *), void *,
159 struct audio_params *));
160 static int cmpci_trigger_input __P((void *, void *, void *, int,
161 void (*)(void *), void *,
162 struct audio_params *));
163
164 static struct audio_hw_if cmpci_hw_if = {
165 cmpci_open, /* open */
166 cmpci_close, /* close */
167 NULL, /* drain */
168 cmpci_query_encoding, /* query_encoding */
169 cmpci_set_params, /* set_params */
170 cmpci_round_blocksize, /* round_blocksize */
171 NULL, /* commit_settings */
172 NULL, /* init_output */
173 NULL, /* init_input */
174 NULL, /* start_output */
175 NULL, /* start_input */
176 cmpci_halt_output, /* halt_output */
177 cmpci_halt_input, /* halt_input */
178 NULL, /* speaker_ctl */
179 cmpci_getdev, /* getdev */
180 NULL, /* setfd */
181 cmpci_set_port, /* set_port */
182 cmpci_get_port, /* get_port */
183 cmpci_query_devinfo, /* query_devinfo */
184 cmpci_allocm, /* allocm */
185 cmpci_freem, /* freem */
186 cmpci_round_buffersize,/* round_buffersize */
187 cmpci_mappage, /* mappage */
188 cmpci_get_props, /* get_props */
189 cmpci_trigger_output, /* trigger_output */
190 cmpci_trigger_input, /* trigger_input */
191 NULL, /* dev_ioctl */
192 };
193
194
195 /*
196 * Low-level HW interface
197 */
198
199 /* mixer register read/write */
200 static __inline uint8_t
201 cmpci_mixerreg_read(sc, no)
202 struct cmpci_softc *sc;
203 uint8_t no;
204 {
205 uint8_t ret;
206
207 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
208 delay(10);
209 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
210 delay(10);
211 return ret;
212 }
213
214 static __inline void
215 cmpci_mixerreg_write(sc, no, val)
216 struct cmpci_softc *sc;
217 uint8_t no, val;
218 {
219 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
220 delay(10);
221 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
222 delay(10);
223 }
224
225
226 /* register partial write */
227 static __inline void
228 cmpci_reg_partial_write_1(sc, no, shift, mask, val)
229 struct cmpci_softc *sc;
230 int no, shift;
231 unsigned mask, val;
232 {
233 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
234 (val<<shift) |
235 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
236 delay(10);
237 }
238
239 static __inline void
240 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
241 struct cmpci_softc *sc;
242 int no, shift;
243 uint32_t mask, val;
244 {
245 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
246 (val<<shift) |
247 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
248 delay(10);
249 }
250
251 /* register set/clear bit */
252 static __inline void
253 cmpci_reg_set_1(sc, no, mask)
254 struct cmpci_softc *sc;
255 int no;
256 uint8_t mask;
257 {
258 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
259 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
260 delay(10);
261 }
262
263 static __inline void
264 cmpci_reg_clear_1(sc, no, mask)
265 struct cmpci_softc *sc;
266 int no;
267 uint8_t mask;
268 {
269 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
270 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
271 delay(10);
272 }
273
274
275 static __inline void
276 cmpci_reg_set_4(sc, no, mask)
277 struct cmpci_softc *sc;
278 int no;
279 uint32_t mask;
280 {
281 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
282 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
283 delay(10);
284 }
285
286 static __inline void
287 cmpci_reg_clear_4(sc, no, mask)
288 struct cmpci_softc *sc;
289 int no;
290 uint32_t mask;
291 {
292 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
293 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
294 delay(10);
295 }
296
297
298 /* rate */
299 static const struct {
300 int rate;
301 int divider;
302 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
303 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
304 _RATE(5512),
305 _RATE(8000),
306 _RATE(11025),
307 _RATE(16000),
308 _RATE(22050),
309 _RATE(32000),
310 _RATE(44100),
311 _RATE(48000)
312 #undef _RATE
313 };
314
315 static int
316 cmpci_rate_to_index(rate)
317 int rate;
318 {
319 int i;
320
321 for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++)
322 if (rate <=
323 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
324 return i;
325 return i; /* 48000 */
326 }
327
328 static __inline int
329 cmpci_index_to_rate(index)
330 int index;
331 {
332 return cmpci_rate_table[index].rate;
333 }
334
335 static __inline int
336 cmpci_index_to_divider(index)
337 int index;
338 {
339 return cmpci_rate_table[index].divider;
340 }
341
342
343 /*
344 * interface to configure the device.
345 */
346
347 static int
348 cmpci_match(parent, match, aux)
349 struct device *parent;
350 struct cfdata *match;
351 void *aux;
352 {
353 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
354
355 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
356 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
357 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
358 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
359 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
360 return 1;
361
362 return 0;
363 }
364
365 static void
366 cmpci_attach(parent, self, aux)
367 struct device *parent, *self;
368 void *aux;
369 {
370 struct cmpci_softc *sc = (struct cmpci_softc *)self;
371 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
372 struct audio_attach_args aa;
373 pci_intr_handle_t ih;
374 char const *strintr;
375 char devinfo[256];
376 int i, v;
377
378 aprint_naive(": Audio controller\n");
379
380 sc->sc_id = pa->pa_id;
381 sc->sc_class = pa->pa_class;
382 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
383 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
384 PCI_REVISION(sc->sc_class));
385 switch (PCI_PRODUCT(sc->sc_id)) {
386 case PCI_PRODUCT_CMEDIA_CMI8338A:
387 /*FALLTHROUGH*/
388 case PCI_PRODUCT_CMEDIA_CMI8338B:
389 sc->sc_capable = CMPCI_CAP_CMI8338;
390 break;
391 case PCI_PRODUCT_CMEDIA_CMI8738:
392 /*FALLTHROUGH*/
393 case PCI_PRODUCT_CMEDIA_CMI8738B:
394 sc->sc_capable = CMPCI_CAP_CMI8738;
395 break;
396 }
397
398 /* map I/O space */
399 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
400 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
401 aprint_error("%s: failed to map I/O space\n",
402 sc->sc_dev.dv_xname);
403 return;
404 }
405
406 /* interrupt */
407 if (pci_intr_map(pa, &ih)) {
408 aprint_error("%s: failed to map interrupt\n",
409 sc->sc_dev.dv_xname);
410 return;
411 }
412 strintr = pci_intr_string(pa->pa_pc, ih);
413 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
414 if (sc->sc_ih == NULL) {
415 aprint_error("%s: failed to establish interrupt",
416 sc->sc_dev.dv_xname);
417 if (strintr != NULL)
418 aprint_normal(" at %s", strintr);
419 aprint_normal("\n");
420 return;
421 }
422 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
423
424 sc->sc_dmat = pa->pa_dmat;
425
426 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
427
428 /* attach OPL device */
429 aa.type = AUDIODEV_TYPE_OPL;
430 aa.hwif = NULL;
431 aa.hdl = NULL;
432 (void)config_found(&sc->sc_dev, &aa, audioprint);
433
434 /* attach MPU-401 device */
435 aa.type = AUDIODEV_TYPE_MPU;
436 aa.hwif = NULL;
437 aa.hdl = NULL;
438 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
439 CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
440 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
441
442 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
443 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
444 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
445 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
446 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
447 for (i = 0; i < CMPCI_NDEVS; i++) {
448 switch(i) {
449 /*
450 * CMI8738 defaults are
451 * master: 0xe0 (0x00 - 0xf8)
452 * FM, DAC: 0xc0 (0x00 - 0xf8)
453 * PC speaker: 0x80 (0x00 - 0xc0)
454 * others: 0
455 */
456 /* volume */
457 case CMPCI_MASTER_VOL:
458 v = 128; /* 224 */
459 break;
460 case CMPCI_FM_VOL:
461 case CMPCI_DAC_VOL:
462 v = 192;
463 break;
464 case CMPCI_PCSPEAKER:
465 v = 128;
466 break;
467
468 /* booleans, set to true */
469 case CMPCI_CD_MUTE:
470 case CMPCI_MIC_MUTE:
471 case CMPCI_LINE_IN_MUTE:
472 case CMPCI_AUX_IN_MUTE:
473 v = 1;
474 break;
475
476 /* volume with inital value 0 */
477 case CMPCI_CD_VOL:
478 case CMPCI_LINE_IN_VOL:
479 case CMPCI_AUX_IN_VOL:
480 case CMPCI_MIC_VOL:
481 case CMPCI_MIC_RECVOL:
482 /* FALLTHROUGH */
483
484 /* others are cleared */
485 case CMPCI_MIC_PREAMP:
486 case CMPCI_RECORD_SOURCE:
487 case CMPCI_PLAYBACK_MODE:
488 case CMPCI_SPDIF_IN_SELECT:
489 case CMPCI_SPDIF_IN_PHASE:
490 case CMPCI_SPDIF_LOOP:
491 case CMPCI_SPDIF_OUT_PLAYBACK:
492 case CMPCI_SPDIF_OUT_VOLTAGE:
493 case CMPCI_MONITOR_DAC:
494 case CMPCI_REAR:
495 case CMPCI_INDIVIDUAL:
496 case CMPCI_REVERSE:
497 case CMPCI_SURROUND:
498 default:
499 v = 0;
500 break;
501 }
502 sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
503 cmpci_set_mixer_gain(sc, i);
504 }
505 }
506
507
508 static int
509 cmpci_intr(handle)
510 void *handle;
511 {
512 struct cmpci_softc *sc = handle;
513 uint32_t intrstat;
514
515 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
516 CMPCI_REG_INTR_STATUS);
517
518 if (!(intrstat & CMPCI_REG_ANY_INTR))
519 return 0;
520
521 delay(10);
522
523 /* disable and reset intr */
524 if (intrstat & CMPCI_REG_CH0_INTR)
525 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
526 CMPCI_REG_CH0_INTR_ENABLE);
527 if (intrstat & CMPCI_REG_CH1_INTR)
528 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
529 CMPCI_REG_CH1_INTR_ENABLE);
530
531 if (intrstat & CMPCI_REG_CH0_INTR) {
532 if (sc->sc_play.intr != NULL)
533 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
534 }
535 if (intrstat & CMPCI_REG_CH1_INTR) {
536 if (sc->sc_rec.intr != NULL)
537 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
538 }
539
540 /* enable intr */
541 if (intrstat & CMPCI_REG_CH0_INTR)
542 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
543 CMPCI_REG_CH0_INTR_ENABLE);
544 if (intrstat & CMPCI_REG_CH1_INTR)
545 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
546 CMPCI_REG_CH1_INTR_ENABLE);
547
548 #if NMPU > 0
549 if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
550 mpu_intr(sc->sc_mpudev);
551 #endif
552
553 return 1;
554 }
555
556
557 /* open/close */
558 static int
559 cmpci_open(handle, flags)
560 void *handle;
561 int flags;
562 {
563 return 0;
564 }
565
566 static void
567 cmpci_close(handle)
568 void *handle;
569 {
570 }
571
572 static int
573 cmpci_query_encoding(handle, fp)
574 void *handle;
575 struct audio_encoding *fp;
576 {
577 switch (fp->index) {
578 case 0:
579 strcpy(fp->name, AudioEulinear);
580 fp->encoding = AUDIO_ENCODING_ULINEAR;
581 fp->precision = 8;
582 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
583 break;
584 case 1:
585 strcpy(fp->name, AudioEmulaw);
586 fp->encoding = AUDIO_ENCODING_ULAW;
587 fp->precision = 8;
588 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
589 break;
590 case 2:
591 strcpy(fp->name, AudioEalaw);
592 fp->encoding = AUDIO_ENCODING_ALAW;
593 fp->precision = 8;
594 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
595 break;
596 case 3:
597 strcpy(fp->name, AudioEslinear);
598 fp->encoding = AUDIO_ENCODING_SLINEAR;
599 fp->precision = 8;
600 fp->flags = 0;
601 break;
602 case 4:
603 strcpy(fp->name, AudioEslinear_le);
604 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
605 fp->precision = 16;
606 fp->flags = 0;
607 break;
608 case 5:
609 strcpy(fp->name, AudioEulinear_le);
610 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
611 fp->precision = 16;
612 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
613 break;
614 case 6:
615 strcpy(fp->name, AudioEslinear_be);
616 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
617 fp->precision = 16;
618 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
619 break;
620 case 7:
621 strcpy(fp->name, AudioEulinear_be);
622 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
623 fp->precision = 16;
624 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
625 break;
626 default:
627 return EINVAL;
628 }
629 return 0;
630 }
631
632
633 static int
634 cmpci_set_params(handle, setmode, usemode, play, rec)
635 void *handle;
636 int setmode, usemode;
637 struct audio_params *play, *rec;
638 {
639 int i;
640 struct cmpci_softc *sc = handle;
641
642 for (i = 0; i < 2; i++) {
643 int md_format;
644 int md_divide;
645 int md_index;
646 int mode;
647 struct audio_params *p;
648
649 switch (i) {
650 case 0:
651 mode = AUMODE_PLAY;
652 p = play;
653 break;
654 case 1:
655 mode = AUMODE_RECORD;
656 p = rec;
657 break;
658 }
659
660 if (!(setmode & mode))
661 continue;
662
663
664 /* format */
665 p->sw_code = NULL;
666 switch ( p->channels ) {
667 case 1:
668 md_format = CMPCI_REG_FORMAT_MONO;
669 break;
670 case 2:
671 md_format = CMPCI_REG_FORMAT_STEREO;
672 break;
673 default:
674 return (EINVAL);
675 }
676 switch (p->encoding) {
677 case AUDIO_ENCODING_ULAW:
678 if (p->precision != 8)
679 return (EINVAL);
680 if (mode & AUMODE_PLAY) {
681 p->factor = 2;
682 p->sw_code = mulaw_to_slinear16_le;
683 md_format |= CMPCI_REG_FORMAT_16BIT;
684 } else {
685 p->sw_code = ulinear8_to_mulaw;
686 md_format |= CMPCI_REG_FORMAT_8BIT;
687 }
688 break;
689 case AUDIO_ENCODING_ALAW:
690 if (p->precision != 8)
691 return (EINVAL);
692 if (mode & AUMODE_PLAY) {
693 p->factor = 2;
694 p->sw_code = alaw_to_slinear16_le;
695 md_format |= CMPCI_REG_FORMAT_16BIT;
696 } else {
697 p->sw_code = ulinear8_to_alaw;
698 md_format |= CMPCI_REG_FORMAT_8BIT;
699 }
700 break;
701 case AUDIO_ENCODING_SLINEAR_LE:
702 switch (p->precision) {
703 case 8:
704 p->sw_code = change_sign8;
705 md_format |= CMPCI_REG_FORMAT_8BIT;
706 break;
707 case 16:
708 md_format |= CMPCI_REG_FORMAT_16BIT;
709 break;
710 default:
711 return (EINVAL);
712 }
713 break;
714 case AUDIO_ENCODING_SLINEAR_BE:
715 switch (p->precision) {
716 case 8:
717 md_format |= CMPCI_REG_FORMAT_8BIT;
718 p->sw_code = change_sign8;
719 break;
720 case 16:
721 md_format |= CMPCI_REG_FORMAT_16BIT;
722 p->sw_code = swap_bytes;
723 break;
724 default:
725 return (EINVAL);
726 }
727 break;
728 case AUDIO_ENCODING_ULINEAR_LE:
729 switch (p->precision) {
730 case 8:
731 md_format |= CMPCI_REG_FORMAT_8BIT;
732 break;
733 case 16:
734 md_format |= CMPCI_REG_FORMAT_16BIT;
735 p->sw_code = change_sign16_le;
736 break;
737 default:
738 return (EINVAL);
739 }
740 break;
741 case AUDIO_ENCODING_ULINEAR_BE:
742 switch (p->precision) {
743 case 8:
744 md_format |= CMPCI_REG_FORMAT_8BIT;
745 break;
746 case 16:
747 md_format |= CMPCI_REG_FORMAT_16BIT;
748 if (mode & AUMODE_PLAY)
749 p->sw_code =
750 swap_bytes_change_sign16_le;
751 else
752 p->sw_code =
753 change_sign16_swap_bytes_le;
754 break;
755 default:
756 return (EINVAL);
757 }
758 break;
759 default:
760 return (EINVAL);
761 }
762 if (mode & AUMODE_PLAY)
763 cmpci_reg_partial_write_4(sc,
764 CMPCI_REG_CHANNEL_FORMAT,
765 CMPCI_REG_CH0_FORMAT_SHIFT,
766 CMPCI_REG_CH0_FORMAT_MASK, md_format);
767 else
768 cmpci_reg_partial_write_4(sc,
769 CMPCI_REG_CHANNEL_FORMAT,
770 CMPCI_REG_CH1_FORMAT_SHIFT,
771 CMPCI_REG_CH1_FORMAT_MASK, md_format);
772 /* sample rate */
773 md_index = cmpci_rate_to_index(p->sample_rate);
774 md_divide = cmpci_index_to_divider(md_index);
775 p->sample_rate = cmpci_index_to_rate(md_index);
776 DPRINTF(("%s: sample:%d, divider=%d\n",
777 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
778 if (mode & AUMODE_PLAY) {
779 cmpci_reg_partial_write_4(sc,
780 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
781 CMPCI_REG_DAC_FS_MASK, md_divide);
782 sc->sc_play.md_divide = md_divide;
783 } else {
784 cmpci_reg_partial_write_4(sc,
785 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
786 CMPCI_REG_ADC_FS_MASK, md_divide);
787 sc->sc_rec.md_divide = md_divide;
788 }
789 cmpci_set_out_ports(sc);
790 cmpci_set_in_ports(sc);
791 }
792 return 0;
793 }
794
795 /* ARGSUSED */
796 static int
797 cmpci_round_blocksize(handle, block)
798 void *handle;
799 int block;
800 {
801 return (block & -4);
802 }
803
804 static int
805 cmpci_halt_output(handle)
806 void *handle;
807 {
808 struct cmpci_softc *sc = handle;
809 int s;
810
811 s = splaudio();
812 sc->sc_play.intr = NULL;
813 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
814 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
815 /* wait for reset DMA */
816 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
817 delay(10);
818 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
819 splx(s);
820
821 return 0;
822 }
823
824 static int
825 cmpci_halt_input(handle)
826 void *handle;
827 {
828 struct cmpci_softc *sc = handle;
829 int s;
830
831 s = splaudio();
832 sc->sc_rec.intr = NULL;
833 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
834 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
835 /* wait for reset DMA */
836 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
837 delay(10);
838 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
839 splx(s);
840
841 return 0;
842 }
843
844
845 /* get audio device information */
846 static int
847 cmpci_getdev(handle, ad)
848 void *handle;
849 struct audio_device *ad;
850 {
851 struct cmpci_softc *sc = handle;
852
853 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
854 snprintf(ad->version, sizeof(ad->version), "0x%02x",
855 PCI_REVISION(sc->sc_class));
856 switch (PCI_PRODUCT(sc->sc_id)) {
857 case PCI_PRODUCT_CMEDIA_CMI8338A:
858 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
859 break;
860 case PCI_PRODUCT_CMEDIA_CMI8338B:
861 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
862 break;
863 case PCI_PRODUCT_CMEDIA_CMI8738:
864 strncpy(ad->config, "CMI8738", sizeof(ad->config));
865 break;
866 case PCI_PRODUCT_CMEDIA_CMI8738B:
867 strncpy(ad->config, "CMI8738B", sizeof(ad->config));
868 break;
869 default:
870 strncpy(ad->config, "unknown", sizeof(ad->config));
871 }
872
873 return 0;
874 }
875
876
877 /* mixer device information */
878 int
879 cmpci_query_devinfo(handle, dip)
880 void *handle;
881 mixer_devinfo_t *dip;
882 {
883 static const char *const mixer_port_names[] = {
884 AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
885 AudioNmicrophone
886 };
887 static const char *const mixer_classes[] = {
888 AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
889 CmpciCspdif
890 };
891 struct cmpci_softc *sc = handle;
892 int i;
893
894 dip->prev = dip->next = AUDIO_MIXER_LAST;
895
896 switch (dip->index) {
897 case CMPCI_INPUT_CLASS:
898 case CMPCI_OUTPUT_CLASS:
899 case CMPCI_RECORD_CLASS:
900 case CMPCI_PLAYBACK_CLASS:
901 case CMPCI_SPDIF_CLASS:
902 dip->type = AUDIO_MIXER_CLASS;
903 dip->mixer_class = dip->index;
904 strcpy(dip->label.name,
905 mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
906 return 0;
907
908 case CMPCI_AUX_IN_VOL:
909 dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
910 goto vol1;
911 case CMPCI_DAC_VOL:
912 case CMPCI_FM_VOL:
913 case CMPCI_CD_VOL:
914 case CMPCI_LINE_IN_VOL:
915 case CMPCI_MIC_VOL:
916 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
917 vol1: dip->mixer_class = CMPCI_INPUT_CLASS;
918 dip->next = dip->index + 6; /* CMPCI_xxx_MUTE */
919 strcpy(dip->label.name, mixer_port_names[dip->index]);
920 dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
921 vol:
922 dip->type = AUDIO_MIXER_VALUE;
923 strcpy(dip->un.v.units.name, AudioNvolume);
924 return 0;
925
926 case CMPCI_MIC_MUTE:
927 dip->next = CMPCI_MIC_PREAMP;
928 /* FALLTHROUGH */
929 case CMPCI_DAC_MUTE:
930 case CMPCI_FM_MUTE:
931 case CMPCI_CD_MUTE:
932 case CMPCI_LINE_IN_MUTE:
933 case CMPCI_AUX_IN_MUTE:
934 dip->prev = dip->index - 6; /* CMPCI_xxx_VOL */
935 dip->mixer_class = CMPCI_INPUT_CLASS;
936 strcpy(dip->label.name, AudioNmute);
937 goto on_off;
938 on_off:
939 dip->type = AUDIO_MIXER_ENUM;
940 dip->un.e.num_mem = 2;
941 strcpy(dip->un.e.member[0].label.name, AudioNoff);
942 dip->un.e.member[0].ord = 0;
943 strcpy(dip->un.e.member[1].label.name, AudioNon);
944 dip->un.e.member[1].ord = 1;
945 return 0;
946
947 case CMPCI_MIC_PREAMP:
948 dip->mixer_class = CMPCI_INPUT_CLASS;
949 dip->prev = CMPCI_MIC_MUTE;
950 strcpy(dip->label.name, AudioNpreamp);
951 goto on_off;
952 case CMPCI_PCSPEAKER:
953 dip->mixer_class = CMPCI_INPUT_CLASS;
954 strcpy(dip->label.name, AudioNspeaker);
955 dip->un.v.num_channels = 1;
956 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
957 goto vol;
958 case CMPCI_RECORD_SOURCE:
959 dip->mixer_class = CMPCI_RECORD_CLASS;
960 strcpy(dip->label.name, AudioNsource);
961 dip->type = AUDIO_MIXER_SET;
962 dip->un.s.num_mem = 7;
963 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
964 dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
965 strcpy(dip->un.s.member[1].label.name, AudioNcd);
966 dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
967 strcpy(dip->un.s.member[2].label.name, AudioNline);
968 dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
969 strcpy(dip->un.s.member[3].label.name, AudioNaux);
970 dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
971 strcpy(dip->un.s.member[4].label.name, AudioNwave);
972 dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
973 strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
974 dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
975 strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
976 dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
977 return 0;
978 case CMPCI_MIC_RECVOL:
979 dip->mixer_class = CMPCI_RECORD_CLASS;
980 strcpy(dip->label.name, AudioNmicrophone);
981 dip->un.v.num_channels = 1;
982 dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
983 goto vol;
984
985 case CMPCI_PLAYBACK_MODE:
986 dip->mixer_class = CMPCI_PLAYBACK_CLASS;
987 dip->type = AUDIO_MIXER_ENUM;
988 strcpy(dip->label.name, AudioNmode);
989 dip->un.e.num_mem = 2;
990 strcpy(dip->un.e.member[0].label.name, AudioNdac);
991 dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
992 strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
993 dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
994 return 0;
995 case CMPCI_SPDIF_IN_SELECT:
996 dip->mixer_class = CMPCI_SPDIF_CLASS;
997 dip->type = AUDIO_MIXER_ENUM;
998 dip->next = CMPCI_SPDIF_IN_PHASE;
999 strcpy(dip->label.name, AudioNinput);
1000 i = 0;
1001 strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
1002 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
1003 if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
1004 strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
1005 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
1006 }
1007 strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
1008 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
1009 dip->un.e.num_mem = i;
1010 return 0;
1011 case CMPCI_SPDIF_IN_PHASE:
1012 dip->mixer_class = CMPCI_SPDIF_CLASS;
1013 dip->prev = CMPCI_SPDIF_IN_SELECT;
1014 strcpy(dip->label.name, CmpciNphase);
1015 dip->type = AUDIO_MIXER_ENUM;
1016 dip->un.e.num_mem = 2;
1017 strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1018 dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
1019 strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1020 dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
1021 return 0;
1022 case CMPCI_SPDIF_LOOP:
1023 dip->mixer_class = CMPCI_SPDIF_CLASS;
1024 dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
1025 strcpy(dip->label.name, AudioNoutput);
1026 dip->type = AUDIO_MIXER_ENUM;
1027 dip->un.e.num_mem = 2;
1028 strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
1029 dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
1030 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1031 dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
1032 return 0;
1033 case CMPCI_SPDIF_OUT_PLAYBACK:
1034 dip->mixer_class = CMPCI_SPDIF_CLASS;
1035 dip->prev = CMPCI_SPDIF_LOOP;
1036 dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
1037 strcpy(dip->label.name, CmpciNplayback);
1038 dip->type = AUDIO_MIXER_ENUM;
1039 dip->un.e.num_mem = 2;
1040 strcpy(dip->un.e.member[0].label.name, AudioNwave);
1041 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
1042 strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
1043 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
1044 return 0;
1045 case CMPCI_SPDIF_OUT_VOLTAGE:
1046 dip->mixer_class = CMPCI_SPDIF_CLASS;
1047 dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
1048 strcpy(dip->label.name, CmpciNvoltage);
1049 dip->type = AUDIO_MIXER_ENUM;
1050 dip->un.e.num_mem = 2;
1051 strcpy(dip->un.e.member[0].label.name, CmpciNlow_v);
1052 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
1053 strcpy(dip->un.e.member[1].label.name, CmpciNhigh_v);
1054 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
1055 return 0;
1056 case CMPCI_MONITOR_DAC:
1057 dip->mixer_class = CMPCI_SPDIF_CLASS;
1058 strcpy(dip->label.name, AudioNmonitor);
1059 dip->type = AUDIO_MIXER_ENUM;
1060 dip->un.e.num_mem = 3;
1061 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1062 dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
1063 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1064 dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
1065 strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
1066 dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
1067 return 0;
1068
1069 case CMPCI_MASTER_VOL:
1070 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1071 strcpy(dip->label.name, AudioNmaster);
1072 dip->un.v.num_channels = 2;
1073 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
1074 goto vol;
1075 case CMPCI_REAR:
1076 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1077 dip->next = CMPCI_INDIVIDUAL;
1078 strcpy(dip->label.name, CmpciNrear);
1079 goto on_off;
1080 case CMPCI_INDIVIDUAL:
1081 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1082 dip->prev = CMPCI_REAR;
1083 dip->next = CMPCI_REVERSE;
1084 strcpy(dip->label.name, CmpciNindividual);
1085 goto on_off;
1086 case CMPCI_REVERSE:
1087 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1088 dip->prev = CMPCI_INDIVIDUAL;
1089 strcpy(dip->label.name, CmpciNreverse);
1090 goto on_off;
1091 case CMPCI_SURROUND:
1092 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1093 strcpy(dip->label.name, CmpciNsurround);
1094 goto on_off;
1095 }
1096
1097 return ENXIO;
1098 }
1099
1100 static int
1101 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1102 struct cmpci_softc *sc;
1103 size_t size;
1104 struct malloc_type *type;
1105 int flags;
1106 caddr_t *r_addr;
1107 {
1108 int error = 0;
1109 struct cmpci_dmanode *n;
1110 int w;
1111
1112 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1113 if (n == NULL) {
1114 error = ENOMEM;
1115 goto quit;
1116 }
1117
1118 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1119 #define CMPCI_DMABUF_ALIGN 0x4
1120 #define CMPCI_DMABUF_BOUNDARY 0x0
1121 n->cd_tag = sc->sc_dmat;
1122 n->cd_size = size;
1123 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1124 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1125 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1126 if (error)
1127 goto mfree;
1128 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1129 &n->cd_addr, w | BUS_DMA_COHERENT);
1130 if (error)
1131 goto dmafree;
1132 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1133 w, &n->cd_map);
1134 if (error)
1135 goto unmap;
1136 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1137 NULL, w);
1138 if (error)
1139 goto destroy;
1140
1141 n->cd_next = sc->sc_dmap;
1142 sc->sc_dmap = n;
1143 *r_addr = KVADDR(n);
1144 return 0;
1145
1146 destroy:
1147 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1148 unmap:
1149 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1150 dmafree:
1151 bus_dmamem_free(n->cd_tag,
1152 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1153 mfree:
1154 free(n, type);
1155 quit:
1156 return error;
1157 }
1158
1159 static int
1160 cmpci_free_dmamem(sc, addr, type)
1161 struct cmpci_softc *sc;
1162 caddr_t addr;
1163 struct malloc_type *type;
1164 {
1165 struct cmpci_dmanode **nnp;
1166
1167 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1168 if ((*nnp)->cd_addr == addr) {
1169 struct cmpci_dmanode *n = *nnp;
1170 bus_dmamap_unload(n->cd_tag, n->cd_map);
1171 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1172 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1173 bus_dmamem_free(n->cd_tag, n->cd_segs,
1174 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1175 free(n, type);
1176 return 0;
1177 }
1178 }
1179 return -1;
1180 }
1181
1182 static struct cmpci_dmanode *
1183 cmpci_find_dmamem(sc, addr)
1184 struct cmpci_softc *sc;
1185 caddr_t addr;
1186 {
1187 struct cmpci_dmanode *p;
1188
1189 for (p=sc->sc_dmap; p; p=p->cd_next)
1190 if ( KVADDR(p) == (void *)addr )
1191 break;
1192 return p;
1193 }
1194
1195
1196 #if 0
1197 static void
1198 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1199 static void
1200 cmpci_print_dmamem(p)
1201 struct cmpci_dmanode *p;
1202 {
1203 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1204 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1205 (void *)DMAADDR(p), (void *)p->cd_size));
1206 }
1207 #endif /* DEBUG */
1208
1209
1210 static void *
1211 cmpci_allocm(handle, direction, size, type, flags)
1212 void *handle;
1213 int direction;
1214 size_t size;
1215 struct malloc_type *type;
1216 int flags;
1217 {
1218 struct cmpci_softc *sc = handle;
1219 caddr_t addr;
1220
1221 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1222 return NULL;
1223 return addr;
1224 }
1225
1226 static void
1227 cmpci_freem(handle, addr, type)
1228 void *handle;
1229 void *addr;
1230 struct malloc_type *type;
1231 {
1232 struct cmpci_softc *sc = handle;
1233
1234 cmpci_free_dmamem(sc, addr, type);
1235 }
1236
1237
1238 #define MAXVAL 256
1239 static int
1240 cmpci_adjust(val, mask)
1241 int val, mask;
1242 {
1243 val += (MAXVAL - mask) >> 1;
1244 if (val >= MAXVAL)
1245 val = MAXVAL-1;
1246 return val & mask;
1247 }
1248
1249 static void
1250 cmpci_set_mixer_gain(sc, port)
1251 struct cmpci_softc *sc;
1252 int port;
1253 {
1254 int src;
1255 int bits, mask;
1256
1257 switch (port) {
1258 case CMPCI_MIC_VOL:
1259 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
1260 CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1261 break;
1262 case CMPCI_MASTER_VOL:
1263 src = CMPCI_SB16_MIXER_MASTER_L;
1264 break;
1265 case CMPCI_LINE_IN_VOL:
1266 src = CMPCI_SB16_MIXER_LINE_L;
1267 break;
1268 case CMPCI_AUX_IN_VOL:
1269 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
1270 CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
1271 sc->sc_gain[port][CMPCI_RIGHT]));
1272 return;
1273 case CMPCI_MIC_RECVOL:
1274 cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
1275 CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
1276 CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1277 return;
1278 case CMPCI_DAC_VOL:
1279 src = CMPCI_SB16_MIXER_VOICE_L;
1280 break;
1281 case CMPCI_FM_VOL:
1282 src = CMPCI_SB16_MIXER_FM_L;
1283 break;
1284 case CMPCI_CD_VOL:
1285 src = CMPCI_SB16_MIXER_CDDA_L;
1286 break;
1287 case CMPCI_PCSPEAKER:
1288 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1289 CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1290 return;
1291 case CMPCI_MIC_PREAMP:
1292 if (sc->sc_gain[port][CMPCI_LR])
1293 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1294 CMPCI_REG_MICGAINZ);
1295 else
1296 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1297 CMPCI_REG_MICGAINZ);
1298 return;
1299
1300 case CMPCI_DAC_MUTE:
1301 if (sc->sc_gain[port][CMPCI_LR])
1302 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1303 CMPCI_REG_WSMUTE);
1304 else
1305 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1306 CMPCI_REG_WSMUTE);
1307 return;
1308 case CMPCI_FM_MUTE:
1309 if (sc->sc_gain[port][CMPCI_LR])
1310 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1311 CMPCI_REG_FMMUTE);
1312 else
1313 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1314 CMPCI_REG_FMMUTE);
1315 return;
1316 case CMPCI_AUX_IN_MUTE:
1317 if (sc->sc_gain[port][CMPCI_LR])
1318 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1319 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1320 else
1321 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1322 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1323 return;
1324 case CMPCI_CD_MUTE:
1325 mask = CMPCI_SB16_SW_CD;
1326 goto sbmute;
1327 case CMPCI_MIC_MUTE:
1328 mask = CMPCI_SB16_SW_MIC;
1329 goto sbmute;
1330 case CMPCI_LINE_IN_MUTE:
1331 mask = CMPCI_SB16_SW_LINE;
1332 sbmute:
1333 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1334 if (sc->sc_gain[port][CMPCI_LR])
1335 bits = bits & ~mask;
1336 else
1337 bits = bits | mask;
1338 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1339 return;
1340
1341 case CMPCI_SPDIF_IN_SELECT:
1342 case CMPCI_MONITOR_DAC:
1343 case CMPCI_PLAYBACK_MODE:
1344 case CMPCI_SPDIF_LOOP:
1345 case CMPCI_SPDIF_OUT_PLAYBACK:
1346 cmpci_set_out_ports(sc);
1347 return;
1348 case CMPCI_SPDIF_OUT_VOLTAGE:
1349 if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1350 if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
1351 == CMPCI_SPDIF_OUT_VOLTAGE_LOW)
1352 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1353 CMPCI_REG_5V);
1354 else
1355 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1356 CMPCI_REG_5V);
1357 }
1358 return;
1359 case CMPCI_SURROUND:
1360 if (CMPCI_ISCAP(sc, SURROUND)) {
1361 if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1362 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1363 CMPCI_REG_SURROUND);
1364 else
1365 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1366 CMPCI_REG_SURROUND);
1367 }
1368 return;
1369 case CMPCI_REAR:
1370 if (CMPCI_ISCAP(sc, REAR)) {
1371 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1372 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1373 CMPCI_REG_N4SPK3D);
1374 else
1375 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1376 CMPCI_REG_N4SPK3D);
1377 }
1378 return;
1379 case CMPCI_INDIVIDUAL:
1380 if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1381 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1382 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1383 CMPCI_REG_INDIVIDUAL);
1384 else
1385 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1386 CMPCI_REG_INDIVIDUAL);
1387 }
1388 return;
1389 case CMPCI_REVERSE:
1390 if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1391 if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1392 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1393 CMPCI_REG_REVERSE_FR);
1394 else
1395 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1396 CMPCI_REG_REVERSE_FR);
1397 }
1398 return;
1399 case CMPCI_SPDIF_IN_PHASE:
1400 if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1401 if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
1402 == CMPCI_SPDIF_IN_PHASE_POSITIVE)
1403 cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1404 CMPCI_REG_SPDIN_PHASE);
1405 else
1406 cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1407 CMPCI_REG_SPDIN_PHASE);
1408 }
1409 return;
1410 default:
1411 return;
1412 }
1413
1414 cmpci_mixerreg_write(sc, src,
1415 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
1416 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1417 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
1418 }
1419
1420 static void
1421 cmpci_set_out_ports(sc)
1422 struct cmpci_softc *sc;
1423 {
1424 u_int8_t v;
1425 int enspdout = 0;
1426
1427 if (!CMPCI_ISCAP(sc, SPDLOOP))
1428 return;
1429
1430 /* SPDIF/out select */
1431 if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
1432 /* playback */
1433 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1434 } else {
1435 /* monitor SPDIF/in */
1436 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1437 }
1438
1439 /* SPDIF in select */
1440 v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
1441 if (v & CMPCI_SPDIFIN_SPDIFIN2)
1442 cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1443 else
1444 cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1445 if (v & CMPCI_SPDIFIN_SPDIFOUT)
1446 cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1447 else
1448 cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1449
1450 /* playback to ... */
1451 if (CMPCI_ISCAP(sc, SPDOUT) &&
1452 sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
1453 == CMPCI_PLAYBACK_MODE_SPDIF &&
1454 (sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
1455 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1456 sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1457 /* playback to SPDIF */
1458 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
1459 enspdout = 1;
1460 if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1461 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1462 CMPCI_REG_SPDIF_48K);
1463 else
1464 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1465 CMPCI_REG_SPDIF_48K);
1466 } else {
1467 /* playback to DAC */
1468 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1469 CMPCI_REG_SPDIF0_ENABLE);
1470 if (CMPCI_ISCAP(sc, SPDOUT_48K))
1471 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1472 CMPCI_REG_SPDIF_48K);
1473 }
1474
1475 /* legacy to SPDIF/out or not */
1476 if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1477 if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
1478 == CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
1479 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1480 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1481 else {
1482 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1483 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1484 enspdout = 1;
1485 }
1486 }
1487
1488 /* enable/disable SPDIF/out */
1489 if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
1490 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1491 CMPCI_REG_XSPDIF_ENABLE);
1492 else
1493 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1494 CMPCI_REG_XSPDIF_ENABLE);
1495
1496 /* SPDIF monitor (digital to alalog output) */
1497 if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1498 v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
1499 if (!(v & CMPCI_MONDAC_ENABLE))
1500 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1501 CMPCI_REG_SPDIN_MONITOR);
1502 if (v & CMPCI_MONDAC_SPDOUT)
1503 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1504 CMPCI_REG_SPDIFOUT_DAC);
1505 else
1506 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1507 CMPCI_REG_SPDIFOUT_DAC);
1508 if (v & CMPCI_MONDAC_ENABLE)
1509 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1510 CMPCI_REG_SPDIN_MONITOR);
1511 }
1512 }
1513
1514 static int
1515 cmpci_set_in_ports(sc)
1516 struct cmpci_softc *sc;
1517 {
1518 int mask;
1519 int bitsl, bitsr;
1520
1521 mask = sc->sc_in_mask;
1522
1523 /*
1524 * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
1525 * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
1526 * of the mixer register.
1527 */
1528 bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1529 CMPCI_RECORD_SOURCE_FM);
1530
1531 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1532 if (mask & CMPCI_RECORD_SOURCE_MIC) {
1533 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1534 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1535 }
1536 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1537 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1538
1539 if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
1540 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1541 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1542 else
1543 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1544 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1545
1546 if (mask & CMPCI_RECORD_SOURCE_WAVE)
1547 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1548 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1549 else
1550 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1551 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1552
1553 if (CMPCI_ISCAP(sc, SPDIN) &&
1554 (sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
1555 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1556 sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
1557 if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1558 /* enable SPDIF/in */
1559 cmpci_reg_set_4(sc,
1560 CMPCI_REG_FUNC_1,
1561 CMPCI_REG_SPDIF1_ENABLE);
1562 } else {
1563 cmpci_reg_clear_4(sc,
1564 CMPCI_REG_FUNC_1,
1565 CMPCI_REG_SPDIF1_ENABLE);
1566 }
1567 }
1568
1569 return 0;
1570 }
1571
1572 static int
1573 cmpci_set_port(handle, cp)
1574 void *handle;
1575 mixer_ctrl_t *cp;
1576 {
1577 struct cmpci_softc *sc = handle;
1578 int lgain, rgain;
1579
1580 switch (cp->dev) {
1581 case CMPCI_MIC_VOL:
1582 case CMPCI_PCSPEAKER:
1583 case CMPCI_MIC_RECVOL:
1584 if (cp->un.value.num_channels != 1)
1585 return EINVAL;
1586 /* FALLTHROUGH */
1587 case CMPCI_DAC_VOL:
1588 case CMPCI_FM_VOL:
1589 case CMPCI_CD_VOL:
1590 case CMPCI_LINE_IN_VOL:
1591 case CMPCI_AUX_IN_VOL:
1592 case CMPCI_MASTER_VOL:
1593 if (cp->type != AUDIO_MIXER_VALUE)
1594 return EINVAL;
1595 switch (cp->un.value.num_channels) {
1596 case 1:
1597 lgain = rgain =
1598 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1599 break;
1600 case 2:
1601 lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1602 rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1603 break;
1604 default:
1605 return EINVAL;
1606 }
1607 sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
1608 sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1609
1610 cmpci_set_mixer_gain(sc, cp->dev);
1611 break;
1612
1613 case CMPCI_RECORD_SOURCE:
1614 if (cp->type != AUDIO_MIXER_SET)
1615 return EINVAL;
1616
1617 if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
1618 CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1619 CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
1620 CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
1621 return EINVAL;
1622
1623 if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1624 cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1625
1626 sc->sc_in_mask = cp->un.mask;
1627 return cmpci_set_in_ports(sc);
1628
1629 /* boolean */
1630 case CMPCI_DAC_MUTE:
1631 case CMPCI_FM_MUTE:
1632 case CMPCI_CD_MUTE:
1633 case CMPCI_LINE_IN_MUTE:
1634 case CMPCI_AUX_IN_MUTE:
1635 case CMPCI_MIC_MUTE:
1636 case CMPCI_MIC_PREAMP:
1637 case CMPCI_PLAYBACK_MODE:
1638 case CMPCI_SPDIF_IN_PHASE:
1639 case CMPCI_SPDIF_LOOP:
1640 case CMPCI_SPDIF_OUT_PLAYBACK:
1641 case CMPCI_SPDIF_OUT_VOLTAGE:
1642 case CMPCI_REAR:
1643 case CMPCI_INDIVIDUAL:
1644 case CMPCI_REVERSE:
1645 case CMPCI_SURROUND:
1646 if (cp->type != AUDIO_MIXER_ENUM)
1647 return EINVAL;
1648 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1649 cmpci_set_mixer_gain(sc, cp->dev);
1650 break;
1651
1652 case CMPCI_SPDIF_IN_SELECT:
1653 switch (cp->un.ord) {
1654 case CMPCI_SPDIF_IN_SPDIN1:
1655 case CMPCI_SPDIF_IN_SPDIN2:
1656 case CMPCI_SPDIF_IN_SPDOUT:
1657 break;
1658 default:
1659 return EINVAL;
1660 }
1661 goto xenum;
1662 case CMPCI_MONITOR_DAC:
1663 switch (cp->un.ord) {
1664 case CMPCI_MONITOR_DAC_OFF:
1665 case CMPCI_MONITOR_DAC_SPDIN:
1666 case CMPCI_MONITOR_DAC_SPDOUT:
1667 break;
1668 default:
1669 return EINVAL;
1670 }
1671 xenum:
1672 if (cp->type != AUDIO_MIXER_ENUM)
1673 return EINVAL;
1674 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1675 cmpci_set_mixer_gain(sc, cp->dev);
1676 break;
1677
1678 default:
1679 return EINVAL;
1680 }
1681
1682 return 0;
1683 }
1684
1685 static int
1686 cmpci_get_port(handle, cp)
1687 void *handle;
1688 mixer_ctrl_t *cp;
1689 {
1690 struct cmpci_softc *sc = handle;
1691
1692 switch (cp->dev) {
1693 case CMPCI_MIC_VOL:
1694 case CMPCI_PCSPEAKER:
1695 case CMPCI_MIC_RECVOL:
1696 if (cp->un.value.num_channels != 1)
1697 return EINVAL;
1698 /*FALLTHROUGH*/
1699 case CMPCI_DAC_VOL:
1700 case CMPCI_FM_VOL:
1701 case CMPCI_CD_VOL:
1702 case CMPCI_LINE_IN_VOL:
1703 case CMPCI_AUX_IN_VOL:
1704 case CMPCI_MASTER_VOL:
1705 switch (cp->un.value.num_channels) {
1706 case 1:
1707 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1708 sc->sc_gain[cp->dev][CMPCI_LEFT];
1709 break;
1710 case 2:
1711 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1712 sc->sc_gain[cp->dev][CMPCI_LEFT];
1713 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1714 sc->sc_gain[cp->dev][CMPCI_RIGHT];
1715 break;
1716 default:
1717 return EINVAL;
1718 }
1719 break;
1720
1721 case CMPCI_RECORD_SOURCE:
1722 cp->un.mask = sc->sc_in_mask;
1723 break;
1724
1725 case CMPCI_DAC_MUTE:
1726 case CMPCI_FM_MUTE:
1727 case CMPCI_CD_MUTE:
1728 case CMPCI_LINE_IN_MUTE:
1729 case CMPCI_AUX_IN_MUTE:
1730 case CMPCI_MIC_MUTE:
1731 case CMPCI_MIC_PREAMP:
1732 case CMPCI_PLAYBACK_MODE:
1733 case CMPCI_SPDIF_IN_SELECT:
1734 case CMPCI_SPDIF_IN_PHASE:
1735 case CMPCI_SPDIF_LOOP:
1736 case CMPCI_SPDIF_OUT_PLAYBACK:
1737 case CMPCI_SPDIF_OUT_VOLTAGE:
1738 case CMPCI_MONITOR_DAC:
1739 case CMPCI_REAR:
1740 case CMPCI_INDIVIDUAL:
1741 case CMPCI_REVERSE:
1742 case CMPCI_SURROUND:
1743 cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1744 break;
1745
1746 default:
1747 return EINVAL;
1748 }
1749
1750 return 0;
1751 }
1752
1753 /* ARGSUSED */
1754 static size_t
1755 cmpci_round_buffersize(handle, direction, bufsize)
1756 void *handle;
1757 int direction;
1758 size_t bufsize;
1759 {
1760 if (bufsize > 0x10000)
1761 bufsize = 0x10000;
1762
1763 return bufsize;
1764 }
1765
1766
1767 static paddr_t
1768 cmpci_mappage(handle, addr, offset, prot)
1769 void *handle;
1770 void *addr;
1771 off_t offset;
1772 int prot;
1773 {
1774 struct cmpci_softc *sc = handle;
1775 struct cmpci_dmanode *p;
1776
1777 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1778 return -1;
1779
1780 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1781 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1782 offset, prot, BUS_DMA_WAITOK);
1783 }
1784
1785
1786 /* ARGSUSED */
1787 static int
1788 cmpci_get_props(handle)
1789 void *handle;
1790 {
1791 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1792 }
1793
1794
1795 static int
1796 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1797 void *handle;
1798 void *start, *end;
1799 int blksize;
1800 void (*intr) __P((void *));
1801 void *arg;
1802 struct audio_params *param;
1803 {
1804 struct cmpci_softc *sc = handle;
1805 struct cmpci_dmanode *p;
1806 int bps;
1807
1808 sc->sc_play.intr = intr;
1809 sc->sc_play.intr_arg = arg;
1810 bps = param->channels*param->precision*param->factor / 8;
1811 if (!bps)
1812 return EINVAL;
1813
1814 /* set DMA frame */
1815 if (!(p = cmpci_find_dmamem(sc, start)))
1816 return EINVAL;
1817 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1818 DMAADDR(p));
1819 delay(10);
1820 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1821 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1822 delay(10);
1823
1824 /* set interrupt count */
1825 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1826 (blksize + bps - 1) / bps - 1);
1827 delay(10);
1828
1829 /* start DMA */
1830 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1831 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1832 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1833
1834 return 0;
1835 }
1836
1837 static int
1838 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1839 void *handle;
1840 void *start, *end;
1841 int blksize;
1842 void (*intr) __P((void *));
1843 void *arg;
1844 struct audio_params *param;
1845 {
1846 struct cmpci_softc *sc = handle;
1847 struct cmpci_dmanode *p;
1848 int bps;
1849
1850 sc->sc_rec.intr = intr;
1851 sc->sc_rec.intr_arg = arg;
1852 bps = param->channels*param->precision*param->factor/8;
1853 if (!bps)
1854 return EINVAL;
1855
1856 /* set DMA frame */
1857 if (!(p=cmpci_find_dmamem(sc, start)))
1858 return EINVAL;
1859 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1860 DMAADDR(p));
1861 delay(10);
1862 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1863 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1864 delay(10);
1865
1866 /* set interrupt count */
1867 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1868 (blksize + bps - 1) / bps - 1);
1869 delay(10);
1870
1871 /* start DMA */
1872 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1873 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1874 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1875
1876 return 0;
1877 }
1878
1879
1880 /* end of file */
1881