cmpci.c revision 1.19 1 /* $NetBSD: cmpci.c,v 1.19 2003/10/25 18:31:11 christos Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <tshiozak (at) netbsd.org> .
9 *
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by ITOH Yasufumi.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 */
35
36 /*
37 * C-Media CMI8x38 Audio Chip Support.
38 *
39 * TODO:
40 * - 4ch / 6ch support.
41 * - Joystick support.
42 *
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.19 2003/10/25 18:31:11 christos Exp $");
47
48 #if defined(AUDIO_DEBUG) || defined(DEBUG)
49 #define DPRINTF(x) if (cmpcidebug) printf x
50 int cmpcidebug = 0;
51 #else
52 #define DPRINTF(x)
53 #endif
54
55 #include "mpu.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/proc.h>
63
64 #include <dev/pci/pcidevs.h>
65 #include <dev/pci/pcivar.h>
66
67 #include <sys/audioio.h>
68 #include <dev/audio_if.h>
69 #include <dev/midi_if.h>
70
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/pci/cmpcireg.h>
74 #include <dev/pci/cmpcivar.h>
75
76 #include <dev/ic/mpuvar.h>
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 /*
81 * Low-level HW interface
82 */
83 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
84 uint8_t));
85 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
86 uint8_t, uint8_t));
87 static __inline void cmpci_reg_partial_write_1 __P((struct cmpci_softc *,
88 int, int,
89 unsigned, unsigned));
90 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
91 int, int,
92 uint32_t, uint32_t));
93 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
94 int, uint8_t));
95 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
96 int, uint8_t));
97 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
98 int, uint32_t));
99 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
100 int, uint32_t));
101 static int cmpci_rate_to_index __P((int));
102 static __inline int cmpci_index_to_rate __P((int));
103 static __inline int cmpci_index_to_divider __P((int));
104
105 static int cmpci_adjust __P((int, int));
106 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
107 static void cmpci_set_out_ports __P((struct cmpci_softc *));
108 static int cmpci_set_in_ports __P((struct cmpci_softc *));
109
110
111 /*
112 * autoconf interface
113 */
114 static int cmpci_match __P((struct device *, struct cfdata *, void *));
115 static void cmpci_attach __P((struct device *, struct device *, void *));
116
117 CFATTACH_DECL(cmpci, sizeof (struct cmpci_softc),
118 cmpci_match, cmpci_attach, NULL, NULL);
119
120 /* interrupt */
121 static int cmpci_intr __P((void *));
122
123
124 /*
125 * DMA stuffs
126 */
127 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
128 size_t, struct malloc_type *,
129 int, caddr_t *));
130 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t,
131 struct malloc_type *));
132 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
133 caddr_t));
134
135
136 /*
137 * interface to machine independent layer
138 */
139 static int cmpci_open __P((void *, int));
140 static void cmpci_close __P((void *));
141 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
142 static int cmpci_set_params __P((void *, int, int,
143 struct audio_params *,
144 struct audio_params *));
145 static int cmpci_round_blocksize __P((void *, int));
146 static int cmpci_halt_output __P((void *));
147 static int cmpci_halt_input __P((void *));
148 static int cmpci_getdev __P((void *, struct audio_device *));
149 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
150 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
151 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
152 static void *cmpci_allocm __P((void *, int, size_t, struct malloc_type *, int));
153 static void cmpci_freem __P((void *, void *, struct malloc_type *));
154 static size_t cmpci_round_buffersize __P((void *, int, size_t));
155 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
156 static int cmpci_get_props __P((void *));
157 static int cmpci_trigger_output __P((void *, void *, void *, int,
158 void (*)(void *), void *,
159 struct audio_params *));
160 static int cmpci_trigger_input __P((void *, void *, void *, int,
161 void (*)(void *), void *,
162 struct audio_params *));
163
164 static struct audio_hw_if cmpci_hw_if = {
165 cmpci_open, /* open */
166 cmpci_close, /* close */
167 NULL, /* drain */
168 cmpci_query_encoding, /* query_encoding */
169 cmpci_set_params, /* set_params */
170 cmpci_round_blocksize, /* round_blocksize */
171 NULL, /* commit_settings */
172 NULL, /* init_output */
173 NULL, /* init_input */
174 NULL, /* start_output */
175 NULL, /* start_input */
176 cmpci_halt_output, /* halt_output */
177 cmpci_halt_input, /* halt_input */
178 NULL, /* speaker_ctl */
179 cmpci_getdev, /* getdev */
180 NULL, /* setfd */
181 cmpci_set_port, /* set_port */
182 cmpci_get_port, /* get_port */
183 cmpci_query_devinfo, /* query_devinfo */
184 cmpci_allocm, /* allocm */
185 cmpci_freem, /* freem */
186 cmpci_round_buffersize,/* round_buffersize */
187 cmpci_mappage, /* mappage */
188 cmpci_get_props, /* get_props */
189 cmpci_trigger_output, /* trigger_output */
190 cmpci_trigger_input, /* trigger_input */
191 NULL, /* dev_ioctl */
192 };
193
194
195 /*
196 * Low-level HW interface
197 */
198
199 /* mixer register read/write */
200 static __inline uint8_t
201 cmpci_mixerreg_read(sc, no)
202 struct cmpci_softc *sc;
203 uint8_t no;
204 {
205 uint8_t ret;
206
207 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
208 delay(10);
209 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
210 delay(10);
211 return ret;
212 }
213
214 static __inline void
215 cmpci_mixerreg_write(sc, no, val)
216 struct cmpci_softc *sc;
217 uint8_t no, val;
218 {
219 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
220 delay(10);
221 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
222 delay(10);
223 }
224
225
226 /* register partial write */
227 static __inline void
228 cmpci_reg_partial_write_1(sc, no, shift, mask, val)
229 struct cmpci_softc *sc;
230 int no, shift;
231 unsigned mask, val;
232 {
233 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
234 (val<<shift) |
235 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
236 delay(10);
237 }
238
239 static __inline void
240 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
241 struct cmpci_softc *sc;
242 int no, shift;
243 uint32_t mask, val;
244 {
245 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
246 (val<<shift) |
247 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
248 delay(10);
249 }
250
251 /* register set/clear bit */
252 static __inline void
253 cmpci_reg_set_1(sc, no, mask)
254 struct cmpci_softc *sc;
255 int no;
256 uint8_t mask;
257 {
258 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
259 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
260 delay(10);
261 }
262
263 static __inline void
264 cmpci_reg_clear_1(sc, no, mask)
265 struct cmpci_softc *sc;
266 int no;
267 uint8_t mask;
268 {
269 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
270 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
271 delay(10);
272 }
273
274
275 static __inline void
276 cmpci_reg_set_4(sc, no, mask)
277 struct cmpci_softc *sc;
278 int no;
279 uint32_t mask;
280 {
281 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
282 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
283 delay(10);
284 }
285
286 static __inline void
287 cmpci_reg_clear_4(sc, no, mask)
288 struct cmpci_softc *sc;
289 int no;
290 uint32_t mask;
291 {
292 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
293 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
294 delay(10);
295 }
296
297
298 /* rate */
299 static const struct {
300 int rate;
301 int divider;
302 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
303 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
304 _RATE(5512),
305 _RATE(8000),
306 _RATE(11025),
307 _RATE(16000),
308 _RATE(22050),
309 _RATE(32000),
310 _RATE(44100),
311 _RATE(48000)
312 #undef _RATE
313 };
314
315 static int
316 cmpci_rate_to_index(rate)
317 int rate;
318 {
319 int i;
320
321 for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++)
322 if (rate <=
323 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
324 return i;
325 return i; /* 48000 */
326 }
327
328 static __inline int
329 cmpci_index_to_rate(index)
330 int index;
331 {
332 return cmpci_rate_table[index].rate;
333 }
334
335 static __inline int
336 cmpci_index_to_divider(index)
337 int index;
338 {
339 return cmpci_rate_table[index].divider;
340 }
341
342
343 /*
344 * interface to configure the device.
345 */
346
347 static int
348 cmpci_match(parent, match, aux)
349 struct device *parent;
350 struct cfdata *match;
351 void *aux;
352 {
353 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
354
355 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
356 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
357 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
358 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
359 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
360 return 1;
361
362 return 0;
363 }
364
365 static void
366 cmpci_attach(parent, self, aux)
367 struct device *parent, *self;
368 void *aux;
369 {
370 struct cmpci_softc *sc = (struct cmpci_softc *)self;
371 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
372 struct audio_attach_args aa;
373 pci_intr_handle_t ih;
374 char const *strintr;
375 char devinfo[256];
376 int i, v;
377
378 aprint_naive(": Audio controller\n");
379
380 sc->sc_id = pa->pa_id;
381 sc->sc_class = pa->pa_class;
382 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
383 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
384 PCI_REVISION(sc->sc_class));
385 switch (PCI_PRODUCT(sc->sc_id)) {
386 case PCI_PRODUCT_CMEDIA_CMI8338A:
387 /*FALLTHROUGH*/
388 case PCI_PRODUCT_CMEDIA_CMI8338B:
389 sc->sc_capable = CMPCI_CAP_CMI8338;
390 break;
391 case PCI_PRODUCT_CMEDIA_CMI8738:
392 /*FALLTHROUGH*/
393 case PCI_PRODUCT_CMEDIA_CMI8738B:
394 sc->sc_capable = CMPCI_CAP_CMI8738;
395 break;
396 }
397
398 /* map I/O space */
399 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
400 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
401 aprint_error("%s: failed to map I/O space\n",
402 sc->sc_dev.dv_xname);
403 return;
404 }
405
406 /* interrupt */
407 if (pci_intr_map(pa, &ih)) {
408 aprint_error("%s: failed to map interrupt\n",
409 sc->sc_dev.dv_xname);
410 return;
411 }
412 strintr = pci_intr_string(pa->pa_pc, ih);
413 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
414 if (sc->sc_ih == NULL) {
415 aprint_error("%s: failed to establish interrupt",
416 sc->sc_dev.dv_xname);
417 if (strintr != NULL)
418 aprint_normal(" at %s", strintr);
419 aprint_normal("\n");
420 return;
421 }
422 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
423
424 sc->sc_dmat = pa->pa_dmat;
425
426 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
427
428 /* attach OPL device */
429 aa.type = AUDIODEV_TYPE_OPL;
430 aa.hwif = NULL;
431 aa.hdl = NULL;
432 (void)config_found(&sc->sc_dev, &aa, audioprint);
433
434 /* attach MPU-401 device */
435 aa.type = AUDIODEV_TYPE_MPU;
436 aa.hwif = NULL;
437 aa.hdl = NULL;
438 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
439 CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
440 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
441
442 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
443 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
444 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
445 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
446 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
447 for (i = 0; i < CMPCI_NDEVS; i++) {
448 switch(i) {
449 /*
450 * CMI8738 defaults are
451 * master: 0xe0 (0x00 - 0xf8)
452 * FM, DAC: 0xc0 (0x00 - 0xf8)
453 * PC speaker: 0x80 (0x00 - 0xc0)
454 * others: 0
455 */
456 /* volume */
457 case CMPCI_MASTER_VOL:
458 v = 128; /* 224 */
459 break;
460 case CMPCI_FM_VOL:
461 case CMPCI_DAC_VOL:
462 v = 192;
463 break;
464 case CMPCI_PCSPEAKER:
465 v = 128;
466 break;
467
468 /* booleans, set to true */
469 case CMPCI_CD_MUTE:
470 case CMPCI_MIC_MUTE:
471 case CMPCI_LINE_IN_MUTE:
472 case CMPCI_AUX_IN_MUTE:
473 v = 1;
474 break;
475
476 /* volume with inital value 0 */
477 case CMPCI_CD_VOL:
478 case CMPCI_LINE_IN_VOL:
479 case CMPCI_AUX_IN_VOL:
480 case CMPCI_MIC_VOL:
481 case CMPCI_MIC_RECVOL:
482 /* FALLTHROUGH */
483
484 /* others are cleared */
485 case CMPCI_MIC_PREAMP:
486 case CMPCI_RECORD_SOURCE:
487 case CMPCI_PLAYBACK_MODE:
488 case CMPCI_SPDIF_IN_SELECT:
489 case CMPCI_SPDIF_IN_PHASE:
490 case CMPCI_SPDIF_LOOP:
491 case CMPCI_SPDIF_OUT_PLAYBACK:
492 case CMPCI_SPDIF_OUT_VOLTAGE:
493 case CMPCI_MONITOR_DAC:
494 case CMPCI_REAR:
495 case CMPCI_INDIVIDUAL:
496 case CMPCI_REVERSE:
497 case CMPCI_SURROUND:
498 default:
499 v = 0;
500 break;
501 }
502 sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
503 cmpci_set_mixer_gain(sc, i);
504 }
505 }
506
507
508 static int
509 cmpci_intr(handle)
510 void *handle;
511 {
512 struct cmpci_softc *sc = handle;
513 uint32_t intrstat;
514
515 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
516 CMPCI_REG_INTR_STATUS);
517
518 if (!(intrstat & CMPCI_REG_ANY_INTR))
519 return 0;
520
521 delay(10);
522
523 /* disable and reset intr */
524 if (intrstat & CMPCI_REG_CH0_INTR)
525 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
526 CMPCI_REG_CH0_INTR_ENABLE);
527 if (intrstat & CMPCI_REG_CH1_INTR)
528 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
529 CMPCI_REG_CH1_INTR_ENABLE);
530
531 if (intrstat & CMPCI_REG_CH0_INTR) {
532 if (sc->sc_play.intr != NULL)
533 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
534 }
535 if (intrstat & CMPCI_REG_CH1_INTR) {
536 if (sc->sc_rec.intr != NULL)
537 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
538 }
539
540 /* enable intr */
541 if (intrstat & CMPCI_REG_CH0_INTR)
542 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
543 CMPCI_REG_CH0_INTR_ENABLE);
544 if (intrstat & CMPCI_REG_CH1_INTR)
545 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
546 CMPCI_REG_CH1_INTR_ENABLE);
547
548 #if NMPU > 0
549 if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
550 mpu_intr(sc->sc_mpudev);
551 #endif
552
553 return 1;
554 }
555
556
557 /* open/close */
558 static int
559 cmpci_open(handle, flags)
560 void *handle;
561 int flags;
562 {
563 return 0;
564 }
565
566 static void
567 cmpci_close(handle)
568 void *handle;
569 {
570 }
571
572 static int
573 cmpci_query_encoding(handle, fp)
574 void *handle;
575 struct audio_encoding *fp;
576 {
577 switch (fp->index) {
578 case 0:
579 strcpy(fp->name, AudioEulinear);
580 fp->encoding = AUDIO_ENCODING_ULINEAR;
581 fp->precision = 8;
582 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
583 break;
584 case 1:
585 strcpy(fp->name, AudioEmulaw);
586 fp->encoding = AUDIO_ENCODING_ULAW;
587 fp->precision = 8;
588 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
589 break;
590 case 2:
591 strcpy(fp->name, AudioEalaw);
592 fp->encoding = AUDIO_ENCODING_ALAW;
593 fp->precision = 8;
594 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
595 break;
596 case 3:
597 strcpy(fp->name, AudioEslinear);
598 fp->encoding = AUDIO_ENCODING_SLINEAR;
599 fp->precision = 8;
600 fp->flags = 0;
601 break;
602 case 4:
603 strcpy(fp->name, AudioEslinear_le);
604 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
605 fp->precision = 16;
606 fp->flags = 0;
607 break;
608 case 5:
609 strcpy(fp->name, AudioEulinear_le);
610 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
611 fp->precision = 16;
612 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
613 break;
614 case 6:
615 strcpy(fp->name, AudioEslinear_be);
616 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
617 fp->precision = 16;
618 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
619 break;
620 case 7:
621 strcpy(fp->name, AudioEulinear_be);
622 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
623 fp->precision = 16;
624 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
625 break;
626 default:
627 return EINVAL;
628 }
629 return 0;
630 }
631
632
633 static int
634 cmpci_set_params(handle, setmode, usemode, play, rec)
635 void *handle;
636 int setmode, usemode;
637 struct audio_params *play, *rec;
638 {
639 int i;
640 struct cmpci_softc *sc = handle;
641
642 for (i = 0; i < 2; i++) {
643 int md_format;
644 int md_divide;
645 int md_index;
646 int mode;
647 struct audio_params *p;
648
649 switch (i) {
650 case 0:
651 mode = AUMODE_PLAY;
652 p = play;
653 break;
654 case 1:
655 mode = AUMODE_RECORD;
656 p = rec;
657 break;
658 default:
659 return EINVAL;
660 }
661
662 if (!(setmode & mode))
663 continue;
664
665
666 /* format */
667 p->sw_code = NULL;
668 switch ( p->channels ) {
669 case 1:
670 md_format = CMPCI_REG_FORMAT_MONO;
671 break;
672 case 2:
673 md_format = CMPCI_REG_FORMAT_STEREO;
674 break;
675 default:
676 return (EINVAL);
677 }
678 switch (p->encoding) {
679 case AUDIO_ENCODING_ULAW:
680 if (p->precision != 8)
681 return (EINVAL);
682 if (mode & AUMODE_PLAY) {
683 p->factor = 2;
684 p->sw_code = mulaw_to_slinear16_le;
685 md_format |= CMPCI_REG_FORMAT_16BIT;
686 } else {
687 p->sw_code = ulinear8_to_mulaw;
688 md_format |= CMPCI_REG_FORMAT_8BIT;
689 }
690 break;
691 case AUDIO_ENCODING_ALAW:
692 if (p->precision != 8)
693 return (EINVAL);
694 if (mode & AUMODE_PLAY) {
695 p->factor = 2;
696 p->sw_code = alaw_to_slinear16_le;
697 md_format |= CMPCI_REG_FORMAT_16BIT;
698 } else {
699 p->sw_code = ulinear8_to_alaw;
700 md_format |= CMPCI_REG_FORMAT_8BIT;
701 }
702 break;
703 case AUDIO_ENCODING_SLINEAR_LE:
704 switch (p->precision) {
705 case 8:
706 p->sw_code = change_sign8;
707 md_format |= CMPCI_REG_FORMAT_8BIT;
708 break;
709 case 16:
710 md_format |= CMPCI_REG_FORMAT_16BIT;
711 break;
712 default:
713 return (EINVAL);
714 }
715 break;
716 case AUDIO_ENCODING_SLINEAR_BE:
717 switch (p->precision) {
718 case 8:
719 md_format |= CMPCI_REG_FORMAT_8BIT;
720 p->sw_code = change_sign8;
721 break;
722 case 16:
723 md_format |= CMPCI_REG_FORMAT_16BIT;
724 p->sw_code = swap_bytes;
725 break;
726 default:
727 return (EINVAL);
728 }
729 break;
730 case AUDIO_ENCODING_ULINEAR_LE:
731 switch (p->precision) {
732 case 8:
733 md_format |= CMPCI_REG_FORMAT_8BIT;
734 break;
735 case 16:
736 md_format |= CMPCI_REG_FORMAT_16BIT;
737 p->sw_code = change_sign16_le;
738 break;
739 default:
740 return (EINVAL);
741 }
742 break;
743 case AUDIO_ENCODING_ULINEAR_BE:
744 switch (p->precision) {
745 case 8:
746 md_format |= CMPCI_REG_FORMAT_8BIT;
747 break;
748 case 16:
749 md_format |= CMPCI_REG_FORMAT_16BIT;
750 if (mode & AUMODE_PLAY)
751 p->sw_code =
752 swap_bytes_change_sign16_le;
753 else
754 p->sw_code =
755 change_sign16_swap_bytes_le;
756 break;
757 default:
758 return (EINVAL);
759 }
760 break;
761 default:
762 return (EINVAL);
763 }
764 if (mode & AUMODE_PLAY)
765 cmpci_reg_partial_write_4(sc,
766 CMPCI_REG_CHANNEL_FORMAT,
767 CMPCI_REG_CH0_FORMAT_SHIFT,
768 CMPCI_REG_CH0_FORMAT_MASK, md_format);
769 else
770 cmpci_reg_partial_write_4(sc,
771 CMPCI_REG_CHANNEL_FORMAT,
772 CMPCI_REG_CH1_FORMAT_SHIFT,
773 CMPCI_REG_CH1_FORMAT_MASK, md_format);
774 /* sample rate */
775 md_index = cmpci_rate_to_index(p->sample_rate);
776 md_divide = cmpci_index_to_divider(md_index);
777 p->sample_rate = cmpci_index_to_rate(md_index);
778 DPRINTF(("%s: sample:%d, divider=%d\n",
779 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
780 if (mode & AUMODE_PLAY) {
781 cmpci_reg_partial_write_4(sc,
782 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
783 CMPCI_REG_DAC_FS_MASK, md_divide);
784 sc->sc_play.md_divide = md_divide;
785 } else {
786 cmpci_reg_partial_write_4(sc,
787 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
788 CMPCI_REG_ADC_FS_MASK, md_divide);
789 sc->sc_rec.md_divide = md_divide;
790 }
791 cmpci_set_out_ports(sc);
792 cmpci_set_in_ports(sc);
793 }
794 return 0;
795 }
796
797 /* ARGSUSED */
798 static int
799 cmpci_round_blocksize(handle, block)
800 void *handle;
801 int block;
802 {
803 return (block & -4);
804 }
805
806 static int
807 cmpci_halt_output(handle)
808 void *handle;
809 {
810 struct cmpci_softc *sc = handle;
811 int s;
812
813 s = splaudio();
814 sc->sc_play.intr = NULL;
815 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
816 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
817 /* wait for reset DMA */
818 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
819 delay(10);
820 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
821 splx(s);
822
823 return 0;
824 }
825
826 static int
827 cmpci_halt_input(handle)
828 void *handle;
829 {
830 struct cmpci_softc *sc = handle;
831 int s;
832
833 s = splaudio();
834 sc->sc_rec.intr = NULL;
835 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
836 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
837 /* wait for reset DMA */
838 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
839 delay(10);
840 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
841 splx(s);
842
843 return 0;
844 }
845
846
847 /* get audio device information */
848 static int
849 cmpci_getdev(handle, ad)
850 void *handle;
851 struct audio_device *ad;
852 {
853 struct cmpci_softc *sc = handle;
854
855 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
856 snprintf(ad->version, sizeof(ad->version), "0x%02x",
857 PCI_REVISION(sc->sc_class));
858 switch (PCI_PRODUCT(sc->sc_id)) {
859 case PCI_PRODUCT_CMEDIA_CMI8338A:
860 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
861 break;
862 case PCI_PRODUCT_CMEDIA_CMI8338B:
863 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
864 break;
865 case PCI_PRODUCT_CMEDIA_CMI8738:
866 strncpy(ad->config, "CMI8738", sizeof(ad->config));
867 break;
868 case PCI_PRODUCT_CMEDIA_CMI8738B:
869 strncpy(ad->config, "CMI8738B", sizeof(ad->config));
870 break;
871 default:
872 strncpy(ad->config, "unknown", sizeof(ad->config));
873 }
874
875 return 0;
876 }
877
878
879 /* mixer device information */
880 int
881 cmpci_query_devinfo(handle, dip)
882 void *handle;
883 mixer_devinfo_t *dip;
884 {
885 static const char *const mixer_port_names[] = {
886 AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
887 AudioNmicrophone
888 };
889 static const char *const mixer_classes[] = {
890 AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
891 CmpciCspdif
892 };
893 struct cmpci_softc *sc = handle;
894 int i;
895
896 dip->prev = dip->next = AUDIO_MIXER_LAST;
897
898 switch (dip->index) {
899 case CMPCI_INPUT_CLASS:
900 case CMPCI_OUTPUT_CLASS:
901 case CMPCI_RECORD_CLASS:
902 case CMPCI_PLAYBACK_CLASS:
903 case CMPCI_SPDIF_CLASS:
904 dip->type = AUDIO_MIXER_CLASS;
905 dip->mixer_class = dip->index;
906 strcpy(dip->label.name,
907 mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
908 return 0;
909
910 case CMPCI_AUX_IN_VOL:
911 dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
912 goto vol1;
913 case CMPCI_DAC_VOL:
914 case CMPCI_FM_VOL:
915 case CMPCI_CD_VOL:
916 case CMPCI_LINE_IN_VOL:
917 case CMPCI_MIC_VOL:
918 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
919 vol1: dip->mixer_class = CMPCI_INPUT_CLASS;
920 dip->next = dip->index + 6; /* CMPCI_xxx_MUTE */
921 strcpy(dip->label.name, mixer_port_names[dip->index]);
922 dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
923 vol:
924 dip->type = AUDIO_MIXER_VALUE;
925 strcpy(dip->un.v.units.name, AudioNvolume);
926 return 0;
927
928 case CMPCI_MIC_MUTE:
929 dip->next = CMPCI_MIC_PREAMP;
930 /* FALLTHROUGH */
931 case CMPCI_DAC_MUTE:
932 case CMPCI_FM_MUTE:
933 case CMPCI_CD_MUTE:
934 case CMPCI_LINE_IN_MUTE:
935 case CMPCI_AUX_IN_MUTE:
936 dip->prev = dip->index - 6; /* CMPCI_xxx_VOL */
937 dip->mixer_class = CMPCI_INPUT_CLASS;
938 strcpy(dip->label.name, AudioNmute);
939 goto on_off;
940 on_off:
941 dip->type = AUDIO_MIXER_ENUM;
942 dip->un.e.num_mem = 2;
943 strcpy(dip->un.e.member[0].label.name, AudioNoff);
944 dip->un.e.member[0].ord = 0;
945 strcpy(dip->un.e.member[1].label.name, AudioNon);
946 dip->un.e.member[1].ord = 1;
947 return 0;
948
949 case CMPCI_MIC_PREAMP:
950 dip->mixer_class = CMPCI_INPUT_CLASS;
951 dip->prev = CMPCI_MIC_MUTE;
952 strcpy(dip->label.name, AudioNpreamp);
953 goto on_off;
954 case CMPCI_PCSPEAKER:
955 dip->mixer_class = CMPCI_INPUT_CLASS;
956 strcpy(dip->label.name, AudioNspeaker);
957 dip->un.v.num_channels = 1;
958 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
959 goto vol;
960 case CMPCI_RECORD_SOURCE:
961 dip->mixer_class = CMPCI_RECORD_CLASS;
962 strcpy(dip->label.name, AudioNsource);
963 dip->type = AUDIO_MIXER_SET;
964 dip->un.s.num_mem = 7;
965 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
966 dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
967 strcpy(dip->un.s.member[1].label.name, AudioNcd);
968 dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
969 strcpy(dip->un.s.member[2].label.name, AudioNline);
970 dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
971 strcpy(dip->un.s.member[3].label.name, AudioNaux);
972 dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
973 strcpy(dip->un.s.member[4].label.name, AudioNwave);
974 dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
975 strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
976 dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
977 strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
978 dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
979 return 0;
980 case CMPCI_MIC_RECVOL:
981 dip->mixer_class = CMPCI_RECORD_CLASS;
982 strcpy(dip->label.name, AudioNmicrophone);
983 dip->un.v.num_channels = 1;
984 dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
985 goto vol;
986
987 case CMPCI_PLAYBACK_MODE:
988 dip->mixer_class = CMPCI_PLAYBACK_CLASS;
989 dip->type = AUDIO_MIXER_ENUM;
990 strcpy(dip->label.name, AudioNmode);
991 dip->un.e.num_mem = 2;
992 strcpy(dip->un.e.member[0].label.name, AudioNdac);
993 dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
994 strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
995 dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
996 return 0;
997 case CMPCI_SPDIF_IN_SELECT:
998 dip->mixer_class = CMPCI_SPDIF_CLASS;
999 dip->type = AUDIO_MIXER_ENUM;
1000 dip->next = CMPCI_SPDIF_IN_PHASE;
1001 strcpy(dip->label.name, AudioNinput);
1002 i = 0;
1003 strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
1004 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
1005 if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
1006 strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
1007 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
1008 }
1009 strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
1010 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
1011 dip->un.e.num_mem = i;
1012 return 0;
1013 case CMPCI_SPDIF_IN_PHASE:
1014 dip->mixer_class = CMPCI_SPDIF_CLASS;
1015 dip->prev = CMPCI_SPDIF_IN_SELECT;
1016 strcpy(dip->label.name, CmpciNphase);
1017 dip->type = AUDIO_MIXER_ENUM;
1018 dip->un.e.num_mem = 2;
1019 strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1020 dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
1021 strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1022 dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
1023 return 0;
1024 case CMPCI_SPDIF_LOOP:
1025 dip->mixer_class = CMPCI_SPDIF_CLASS;
1026 dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
1027 strcpy(dip->label.name, AudioNoutput);
1028 dip->type = AUDIO_MIXER_ENUM;
1029 dip->un.e.num_mem = 2;
1030 strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
1031 dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
1032 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1033 dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
1034 return 0;
1035 case CMPCI_SPDIF_OUT_PLAYBACK:
1036 dip->mixer_class = CMPCI_SPDIF_CLASS;
1037 dip->prev = CMPCI_SPDIF_LOOP;
1038 dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
1039 strcpy(dip->label.name, CmpciNplayback);
1040 dip->type = AUDIO_MIXER_ENUM;
1041 dip->un.e.num_mem = 2;
1042 strcpy(dip->un.e.member[0].label.name, AudioNwave);
1043 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
1044 strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
1045 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
1046 return 0;
1047 case CMPCI_SPDIF_OUT_VOLTAGE:
1048 dip->mixer_class = CMPCI_SPDIF_CLASS;
1049 dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
1050 strcpy(dip->label.name, CmpciNvoltage);
1051 dip->type = AUDIO_MIXER_ENUM;
1052 dip->un.e.num_mem = 2;
1053 strcpy(dip->un.e.member[0].label.name, CmpciNlow_v);
1054 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
1055 strcpy(dip->un.e.member[1].label.name, CmpciNhigh_v);
1056 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
1057 return 0;
1058 case CMPCI_MONITOR_DAC:
1059 dip->mixer_class = CMPCI_SPDIF_CLASS;
1060 strcpy(dip->label.name, AudioNmonitor);
1061 dip->type = AUDIO_MIXER_ENUM;
1062 dip->un.e.num_mem = 3;
1063 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1064 dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
1065 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1066 dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
1067 strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
1068 dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
1069 return 0;
1070
1071 case CMPCI_MASTER_VOL:
1072 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1073 strcpy(dip->label.name, AudioNmaster);
1074 dip->un.v.num_channels = 2;
1075 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
1076 goto vol;
1077 case CMPCI_REAR:
1078 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1079 dip->next = CMPCI_INDIVIDUAL;
1080 strcpy(dip->label.name, CmpciNrear);
1081 goto on_off;
1082 case CMPCI_INDIVIDUAL:
1083 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1084 dip->prev = CMPCI_REAR;
1085 dip->next = CMPCI_REVERSE;
1086 strcpy(dip->label.name, CmpciNindividual);
1087 goto on_off;
1088 case CMPCI_REVERSE:
1089 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1090 dip->prev = CMPCI_INDIVIDUAL;
1091 strcpy(dip->label.name, CmpciNreverse);
1092 goto on_off;
1093 case CMPCI_SURROUND:
1094 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1095 strcpy(dip->label.name, CmpciNsurround);
1096 goto on_off;
1097 }
1098
1099 return ENXIO;
1100 }
1101
1102 static int
1103 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1104 struct cmpci_softc *sc;
1105 size_t size;
1106 struct malloc_type *type;
1107 int flags;
1108 caddr_t *r_addr;
1109 {
1110 int error = 0;
1111 struct cmpci_dmanode *n;
1112 int w;
1113
1114 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1115 if (n == NULL) {
1116 error = ENOMEM;
1117 goto quit;
1118 }
1119
1120 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1121 #define CMPCI_DMABUF_ALIGN 0x4
1122 #define CMPCI_DMABUF_BOUNDARY 0x0
1123 n->cd_tag = sc->sc_dmat;
1124 n->cd_size = size;
1125 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1126 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1127 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1128 if (error)
1129 goto mfree;
1130 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1131 &n->cd_addr, w | BUS_DMA_COHERENT);
1132 if (error)
1133 goto dmafree;
1134 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1135 w, &n->cd_map);
1136 if (error)
1137 goto unmap;
1138 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1139 NULL, w);
1140 if (error)
1141 goto destroy;
1142
1143 n->cd_next = sc->sc_dmap;
1144 sc->sc_dmap = n;
1145 *r_addr = KVADDR(n);
1146 return 0;
1147
1148 destroy:
1149 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1150 unmap:
1151 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1152 dmafree:
1153 bus_dmamem_free(n->cd_tag,
1154 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1155 mfree:
1156 free(n, type);
1157 quit:
1158 return error;
1159 }
1160
1161 static int
1162 cmpci_free_dmamem(sc, addr, type)
1163 struct cmpci_softc *sc;
1164 caddr_t addr;
1165 struct malloc_type *type;
1166 {
1167 struct cmpci_dmanode **nnp;
1168
1169 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1170 if ((*nnp)->cd_addr == addr) {
1171 struct cmpci_dmanode *n = *nnp;
1172 bus_dmamap_unload(n->cd_tag, n->cd_map);
1173 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1174 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1175 bus_dmamem_free(n->cd_tag, n->cd_segs,
1176 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1177 free(n, type);
1178 return 0;
1179 }
1180 }
1181 return -1;
1182 }
1183
1184 static struct cmpci_dmanode *
1185 cmpci_find_dmamem(sc, addr)
1186 struct cmpci_softc *sc;
1187 caddr_t addr;
1188 {
1189 struct cmpci_dmanode *p;
1190
1191 for (p=sc->sc_dmap; p; p=p->cd_next)
1192 if ( KVADDR(p) == (void *)addr )
1193 break;
1194 return p;
1195 }
1196
1197
1198 #if 0
1199 static void
1200 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1201 static void
1202 cmpci_print_dmamem(p)
1203 struct cmpci_dmanode *p;
1204 {
1205 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1206 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1207 (void *)DMAADDR(p), (void *)p->cd_size));
1208 }
1209 #endif /* DEBUG */
1210
1211
1212 static void *
1213 cmpci_allocm(handle, direction, size, type, flags)
1214 void *handle;
1215 int direction;
1216 size_t size;
1217 struct malloc_type *type;
1218 int flags;
1219 {
1220 struct cmpci_softc *sc = handle;
1221 caddr_t addr;
1222
1223 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1224 return NULL;
1225 return addr;
1226 }
1227
1228 static void
1229 cmpci_freem(handle, addr, type)
1230 void *handle;
1231 void *addr;
1232 struct malloc_type *type;
1233 {
1234 struct cmpci_softc *sc = handle;
1235
1236 cmpci_free_dmamem(sc, addr, type);
1237 }
1238
1239
1240 #define MAXVAL 256
1241 static int
1242 cmpci_adjust(val, mask)
1243 int val, mask;
1244 {
1245 val += (MAXVAL - mask) >> 1;
1246 if (val >= MAXVAL)
1247 val = MAXVAL-1;
1248 return val & mask;
1249 }
1250
1251 static void
1252 cmpci_set_mixer_gain(sc, port)
1253 struct cmpci_softc *sc;
1254 int port;
1255 {
1256 int src;
1257 int bits, mask;
1258
1259 switch (port) {
1260 case CMPCI_MIC_VOL:
1261 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
1262 CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1263 break;
1264 case CMPCI_MASTER_VOL:
1265 src = CMPCI_SB16_MIXER_MASTER_L;
1266 break;
1267 case CMPCI_LINE_IN_VOL:
1268 src = CMPCI_SB16_MIXER_LINE_L;
1269 break;
1270 case CMPCI_AUX_IN_VOL:
1271 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
1272 CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
1273 sc->sc_gain[port][CMPCI_RIGHT]));
1274 return;
1275 case CMPCI_MIC_RECVOL:
1276 cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
1277 CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
1278 CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1279 return;
1280 case CMPCI_DAC_VOL:
1281 src = CMPCI_SB16_MIXER_VOICE_L;
1282 break;
1283 case CMPCI_FM_VOL:
1284 src = CMPCI_SB16_MIXER_FM_L;
1285 break;
1286 case CMPCI_CD_VOL:
1287 src = CMPCI_SB16_MIXER_CDDA_L;
1288 break;
1289 case CMPCI_PCSPEAKER:
1290 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1291 CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1292 return;
1293 case CMPCI_MIC_PREAMP:
1294 if (sc->sc_gain[port][CMPCI_LR])
1295 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1296 CMPCI_REG_MICGAINZ);
1297 else
1298 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1299 CMPCI_REG_MICGAINZ);
1300 return;
1301
1302 case CMPCI_DAC_MUTE:
1303 if (sc->sc_gain[port][CMPCI_LR])
1304 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1305 CMPCI_REG_WSMUTE);
1306 else
1307 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1308 CMPCI_REG_WSMUTE);
1309 return;
1310 case CMPCI_FM_MUTE:
1311 if (sc->sc_gain[port][CMPCI_LR])
1312 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1313 CMPCI_REG_FMMUTE);
1314 else
1315 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1316 CMPCI_REG_FMMUTE);
1317 return;
1318 case CMPCI_AUX_IN_MUTE:
1319 if (sc->sc_gain[port][CMPCI_LR])
1320 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1321 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1322 else
1323 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1324 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1325 return;
1326 case CMPCI_CD_MUTE:
1327 mask = CMPCI_SB16_SW_CD;
1328 goto sbmute;
1329 case CMPCI_MIC_MUTE:
1330 mask = CMPCI_SB16_SW_MIC;
1331 goto sbmute;
1332 case CMPCI_LINE_IN_MUTE:
1333 mask = CMPCI_SB16_SW_LINE;
1334 sbmute:
1335 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1336 if (sc->sc_gain[port][CMPCI_LR])
1337 bits = bits & ~mask;
1338 else
1339 bits = bits | mask;
1340 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1341 return;
1342
1343 case CMPCI_SPDIF_IN_SELECT:
1344 case CMPCI_MONITOR_DAC:
1345 case CMPCI_PLAYBACK_MODE:
1346 case CMPCI_SPDIF_LOOP:
1347 case CMPCI_SPDIF_OUT_PLAYBACK:
1348 cmpci_set_out_ports(sc);
1349 return;
1350 case CMPCI_SPDIF_OUT_VOLTAGE:
1351 if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1352 if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
1353 == CMPCI_SPDIF_OUT_VOLTAGE_LOW)
1354 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1355 CMPCI_REG_5V);
1356 else
1357 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1358 CMPCI_REG_5V);
1359 }
1360 return;
1361 case CMPCI_SURROUND:
1362 if (CMPCI_ISCAP(sc, SURROUND)) {
1363 if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1364 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1365 CMPCI_REG_SURROUND);
1366 else
1367 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1368 CMPCI_REG_SURROUND);
1369 }
1370 return;
1371 case CMPCI_REAR:
1372 if (CMPCI_ISCAP(sc, REAR)) {
1373 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1374 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1375 CMPCI_REG_N4SPK3D);
1376 else
1377 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1378 CMPCI_REG_N4SPK3D);
1379 }
1380 return;
1381 case CMPCI_INDIVIDUAL:
1382 if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1383 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1384 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1385 CMPCI_REG_INDIVIDUAL);
1386 else
1387 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1388 CMPCI_REG_INDIVIDUAL);
1389 }
1390 return;
1391 case CMPCI_REVERSE:
1392 if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1393 if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1394 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1395 CMPCI_REG_REVERSE_FR);
1396 else
1397 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1398 CMPCI_REG_REVERSE_FR);
1399 }
1400 return;
1401 case CMPCI_SPDIF_IN_PHASE:
1402 if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1403 if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
1404 == CMPCI_SPDIF_IN_PHASE_POSITIVE)
1405 cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1406 CMPCI_REG_SPDIN_PHASE);
1407 else
1408 cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1409 CMPCI_REG_SPDIN_PHASE);
1410 }
1411 return;
1412 default:
1413 return;
1414 }
1415
1416 cmpci_mixerreg_write(sc, src,
1417 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
1418 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1419 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
1420 }
1421
1422 static void
1423 cmpci_set_out_ports(sc)
1424 struct cmpci_softc *sc;
1425 {
1426 u_int8_t v;
1427 int enspdout = 0;
1428
1429 if (!CMPCI_ISCAP(sc, SPDLOOP))
1430 return;
1431
1432 /* SPDIF/out select */
1433 if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
1434 /* playback */
1435 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1436 } else {
1437 /* monitor SPDIF/in */
1438 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1439 }
1440
1441 /* SPDIF in select */
1442 v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
1443 if (v & CMPCI_SPDIFIN_SPDIFIN2)
1444 cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1445 else
1446 cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1447 if (v & CMPCI_SPDIFIN_SPDIFOUT)
1448 cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1449 else
1450 cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1451
1452 /* playback to ... */
1453 if (CMPCI_ISCAP(sc, SPDOUT) &&
1454 sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
1455 == CMPCI_PLAYBACK_MODE_SPDIF &&
1456 (sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
1457 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1458 sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1459 /* playback to SPDIF */
1460 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
1461 enspdout = 1;
1462 if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1463 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1464 CMPCI_REG_SPDIF_48K);
1465 else
1466 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1467 CMPCI_REG_SPDIF_48K);
1468 } else {
1469 /* playback to DAC */
1470 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1471 CMPCI_REG_SPDIF0_ENABLE);
1472 if (CMPCI_ISCAP(sc, SPDOUT_48K))
1473 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1474 CMPCI_REG_SPDIF_48K);
1475 }
1476
1477 /* legacy to SPDIF/out or not */
1478 if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1479 if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
1480 == CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
1481 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1482 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1483 else {
1484 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1485 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1486 enspdout = 1;
1487 }
1488 }
1489
1490 /* enable/disable SPDIF/out */
1491 if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
1492 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1493 CMPCI_REG_XSPDIF_ENABLE);
1494 else
1495 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1496 CMPCI_REG_XSPDIF_ENABLE);
1497
1498 /* SPDIF monitor (digital to alalog output) */
1499 if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1500 v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
1501 if (!(v & CMPCI_MONDAC_ENABLE))
1502 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1503 CMPCI_REG_SPDIN_MONITOR);
1504 if (v & CMPCI_MONDAC_SPDOUT)
1505 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1506 CMPCI_REG_SPDIFOUT_DAC);
1507 else
1508 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1509 CMPCI_REG_SPDIFOUT_DAC);
1510 if (v & CMPCI_MONDAC_ENABLE)
1511 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1512 CMPCI_REG_SPDIN_MONITOR);
1513 }
1514 }
1515
1516 static int
1517 cmpci_set_in_ports(sc)
1518 struct cmpci_softc *sc;
1519 {
1520 int mask;
1521 int bitsl, bitsr;
1522
1523 mask = sc->sc_in_mask;
1524
1525 /*
1526 * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
1527 * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
1528 * of the mixer register.
1529 */
1530 bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1531 CMPCI_RECORD_SOURCE_FM);
1532
1533 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1534 if (mask & CMPCI_RECORD_SOURCE_MIC) {
1535 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1536 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1537 }
1538 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1539 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1540
1541 if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
1542 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1543 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1544 else
1545 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1546 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1547
1548 if (mask & CMPCI_RECORD_SOURCE_WAVE)
1549 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1550 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1551 else
1552 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1553 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1554
1555 if (CMPCI_ISCAP(sc, SPDIN) &&
1556 (sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
1557 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1558 sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
1559 if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1560 /* enable SPDIF/in */
1561 cmpci_reg_set_4(sc,
1562 CMPCI_REG_FUNC_1,
1563 CMPCI_REG_SPDIF1_ENABLE);
1564 } else {
1565 cmpci_reg_clear_4(sc,
1566 CMPCI_REG_FUNC_1,
1567 CMPCI_REG_SPDIF1_ENABLE);
1568 }
1569 }
1570
1571 return 0;
1572 }
1573
1574 static int
1575 cmpci_set_port(handle, cp)
1576 void *handle;
1577 mixer_ctrl_t *cp;
1578 {
1579 struct cmpci_softc *sc = handle;
1580 int lgain, rgain;
1581
1582 switch (cp->dev) {
1583 case CMPCI_MIC_VOL:
1584 case CMPCI_PCSPEAKER:
1585 case CMPCI_MIC_RECVOL:
1586 if (cp->un.value.num_channels != 1)
1587 return EINVAL;
1588 /* FALLTHROUGH */
1589 case CMPCI_DAC_VOL:
1590 case CMPCI_FM_VOL:
1591 case CMPCI_CD_VOL:
1592 case CMPCI_LINE_IN_VOL:
1593 case CMPCI_AUX_IN_VOL:
1594 case CMPCI_MASTER_VOL:
1595 if (cp->type != AUDIO_MIXER_VALUE)
1596 return EINVAL;
1597 switch (cp->un.value.num_channels) {
1598 case 1:
1599 lgain = rgain =
1600 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1601 break;
1602 case 2:
1603 lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1604 rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1605 break;
1606 default:
1607 return EINVAL;
1608 }
1609 sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
1610 sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1611
1612 cmpci_set_mixer_gain(sc, cp->dev);
1613 break;
1614
1615 case CMPCI_RECORD_SOURCE:
1616 if (cp->type != AUDIO_MIXER_SET)
1617 return EINVAL;
1618
1619 if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
1620 CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1621 CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
1622 CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
1623 return EINVAL;
1624
1625 if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1626 cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1627
1628 sc->sc_in_mask = cp->un.mask;
1629 return cmpci_set_in_ports(sc);
1630
1631 /* boolean */
1632 case CMPCI_DAC_MUTE:
1633 case CMPCI_FM_MUTE:
1634 case CMPCI_CD_MUTE:
1635 case CMPCI_LINE_IN_MUTE:
1636 case CMPCI_AUX_IN_MUTE:
1637 case CMPCI_MIC_MUTE:
1638 case CMPCI_MIC_PREAMP:
1639 case CMPCI_PLAYBACK_MODE:
1640 case CMPCI_SPDIF_IN_PHASE:
1641 case CMPCI_SPDIF_LOOP:
1642 case CMPCI_SPDIF_OUT_PLAYBACK:
1643 case CMPCI_SPDIF_OUT_VOLTAGE:
1644 case CMPCI_REAR:
1645 case CMPCI_INDIVIDUAL:
1646 case CMPCI_REVERSE:
1647 case CMPCI_SURROUND:
1648 if (cp->type != AUDIO_MIXER_ENUM)
1649 return EINVAL;
1650 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1651 cmpci_set_mixer_gain(sc, cp->dev);
1652 break;
1653
1654 case CMPCI_SPDIF_IN_SELECT:
1655 switch (cp->un.ord) {
1656 case CMPCI_SPDIF_IN_SPDIN1:
1657 case CMPCI_SPDIF_IN_SPDIN2:
1658 case CMPCI_SPDIF_IN_SPDOUT:
1659 break;
1660 default:
1661 return EINVAL;
1662 }
1663 goto xenum;
1664 case CMPCI_MONITOR_DAC:
1665 switch (cp->un.ord) {
1666 case CMPCI_MONITOR_DAC_OFF:
1667 case CMPCI_MONITOR_DAC_SPDIN:
1668 case CMPCI_MONITOR_DAC_SPDOUT:
1669 break;
1670 default:
1671 return EINVAL;
1672 }
1673 xenum:
1674 if (cp->type != AUDIO_MIXER_ENUM)
1675 return EINVAL;
1676 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1677 cmpci_set_mixer_gain(sc, cp->dev);
1678 break;
1679
1680 default:
1681 return EINVAL;
1682 }
1683
1684 return 0;
1685 }
1686
1687 static int
1688 cmpci_get_port(handle, cp)
1689 void *handle;
1690 mixer_ctrl_t *cp;
1691 {
1692 struct cmpci_softc *sc = handle;
1693
1694 switch (cp->dev) {
1695 case CMPCI_MIC_VOL:
1696 case CMPCI_PCSPEAKER:
1697 case CMPCI_MIC_RECVOL:
1698 if (cp->un.value.num_channels != 1)
1699 return EINVAL;
1700 /*FALLTHROUGH*/
1701 case CMPCI_DAC_VOL:
1702 case CMPCI_FM_VOL:
1703 case CMPCI_CD_VOL:
1704 case CMPCI_LINE_IN_VOL:
1705 case CMPCI_AUX_IN_VOL:
1706 case CMPCI_MASTER_VOL:
1707 switch (cp->un.value.num_channels) {
1708 case 1:
1709 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1710 sc->sc_gain[cp->dev][CMPCI_LEFT];
1711 break;
1712 case 2:
1713 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1714 sc->sc_gain[cp->dev][CMPCI_LEFT];
1715 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1716 sc->sc_gain[cp->dev][CMPCI_RIGHT];
1717 break;
1718 default:
1719 return EINVAL;
1720 }
1721 break;
1722
1723 case CMPCI_RECORD_SOURCE:
1724 cp->un.mask = sc->sc_in_mask;
1725 break;
1726
1727 case CMPCI_DAC_MUTE:
1728 case CMPCI_FM_MUTE:
1729 case CMPCI_CD_MUTE:
1730 case CMPCI_LINE_IN_MUTE:
1731 case CMPCI_AUX_IN_MUTE:
1732 case CMPCI_MIC_MUTE:
1733 case CMPCI_MIC_PREAMP:
1734 case CMPCI_PLAYBACK_MODE:
1735 case CMPCI_SPDIF_IN_SELECT:
1736 case CMPCI_SPDIF_IN_PHASE:
1737 case CMPCI_SPDIF_LOOP:
1738 case CMPCI_SPDIF_OUT_PLAYBACK:
1739 case CMPCI_SPDIF_OUT_VOLTAGE:
1740 case CMPCI_MONITOR_DAC:
1741 case CMPCI_REAR:
1742 case CMPCI_INDIVIDUAL:
1743 case CMPCI_REVERSE:
1744 case CMPCI_SURROUND:
1745 cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1746 break;
1747
1748 default:
1749 return EINVAL;
1750 }
1751
1752 return 0;
1753 }
1754
1755 /* ARGSUSED */
1756 static size_t
1757 cmpci_round_buffersize(handle, direction, bufsize)
1758 void *handle;
1759 int direction;
1760 size_t bufsize;
1761 {
1762 if (bufsize > 0x10000)
1763 bufsize = 0x10000;
1764
1765 return bufsize;
1766 }
1767
1768
1769 static paddr_t
1770 cmpci_mappage(handle, addr, offset, prot)
1771 void *handle;
1772 void *addr;
1773 off_t offset;
1774 int prot;
1775 {
1776 struct cmpci_softc *sc = handle;
1777 struct cmpci_dmanode *p;
1778
1779 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1780 return -1;
1781
1782 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1783 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1784 offset, prot, BUS_DMA_WAITOK);
1785 }
1786
1787
1788 /* ARGSUSED */
1789 static int
1790 cmpci_get_props(handle)
1791 void *handle;
1792 {
1793 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1794 }
1795
1796
1797 static int
1798 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1799 void *handle;
1800 void *start, *end;
1801 int blksize;
1802 void (*intr) __P((void *));
1803 void *arg;
1804 struct audio_params *param;
1805 {
1806 struct cmpci_softc *sc = handle;
1807 struct cmpci_dmanode *p;
1808 int bps;
1809
1810 sc->sc_play.intr = intr;
1811 sc->sc_play.intr_arg = arg;
1812 bps = param->channels*param->precision*param->factor / 8;
1813 if (!bps)
1814 return EINVAL;
1815
1816 /* set DMA frame */
1817 if (!(p = cmpci_find_dmamem(sc, start)))
1818 return EINVAL;
1819 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1820 DMAADDR(p));
1821 delay(10);
1822 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1823 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1824 delay(10);
1825
1826 /* set interrupt count */
1827 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1828 (blksize + bps - 1) / bps - 1);
1829 delay(10);
1830
1831 /* start DMA */
1832 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1833 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1834 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1835
1836 return 0;
1837 }
1838
1839 static int
1840 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1841 void *handle;
1842 void *start, *end;
1843 int blksize;
1844 void (*intr) __P((void *));
1845 void *arg;
1846 struct audio_params *param;
1847 {
1848 struct cmpci_softc *sc = handle;
1849 struct cmpci_dmanode *p;
1850 int bps;
1851
1852 sc->sc_rec.intr = intr;
1853 sc->sc_rec.intr_arg = arg;
1854 bps = param->channels*param->precision*param->factor/8;
1855 if (!bps)
1856 return EINVAL;
1857
1858 /* set DMA frame */
1859 if (!(p=cmpci_find_dmamem(sc, start)))
1860 return EINVAL;
1861 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1862 DMAADDR(p));
1863 delay(10);
1864 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1865 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1866 delay(10);
1867
1868 /* set interrupt count */
1869 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1870 (blksize + bps - 1) / bps - 1);
1871 delay(10);
1872
1873 /* start DMA */
1874 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1875 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1876 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1877
1878 return 0;
1879 }
1880
1881
1882 /* end of file */
1883