cmpci.c revision 1.23 1 /* $NetBSD: cmpci.c,v 1.23 2003/12/06 09:32:22 itohy Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <tshiozak (at) NetBSD.org> .
9 *
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by ITOH Yasufumi.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 */
35
36 /*
37 * C-Media CMI8x38 Audio Chip Support.
38 *
39 * TODO:
40 * - 4ch / 6ch support.
41 * - Joystick support.
42 *
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.23 2003/12/06 09:32:22 itohy Exp $");
47
48 #if defined(AUDIO_DEBUG) || defined(DEBUG)
49 #define DPRINTF(x) if (cmpcidebug) printf x
50 int cmpcidebug = 0;
51 #else
52 #define DPRINTF(x)
53 #endif
54
55 #include "mpu.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/proc.h>
63
64 #include <dev/pci/pcidevs.h>
65 #include <dev/pci/pcivar.h>
66
67 #include <sys/audioio.h>
68 #include <dev/audio_if.h>
69 #include <dev/midi_if.h>
70
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/pci/cmpcireg.h>
74 #include <dev/pci/cmpcivar.h>
75
76 #include <dev/ic/mpuvar.h>
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 /*
81 * Low-level HW interface
82 */
83 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
84 uint8_t));
85 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
86 uint8_t, uint8_t));
87 static __inline void cmpci_reg_partial_write_1 __P((struct cmpci_softc *,
88 int, int,
89 unsigned, unsigned));
90 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
91 int, int,
92 uint32_t, uint32_t));
93 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
94 int, uint8_t));
95 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
96 int, uint8_t));
97 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
98 int, uint32_t));
99 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
100 int, uint32_t));
101 static __inline void cmpci_reg_set_reg_misc __P((struct cmpci_softc *,
102 uint32_t));
103 static __inline void cmpci_reg_clear_reg_misc __P((struct cmpci_softc *,
104 uint32_t));
105 static int cmpci_rate_to_index __P((int));
106 static __inline int cmpci_index_to_rate __P((int));
107 static __inline int cmpci_index_to_divider __P((int));
108
109 static int cmpci_adjust __P((int, int));
110 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
111 static void cmpci_set_out_ports __P((struct cmpci_softc *));
112 static int cmpci_set_in_ports __P((struct cmpci_softc *));
113
114
115 /*
116 * autoconf interface
117 */
118 static int cmpci_match __P((struct device *, struct cfdata *, void *));
119 static void cmpci_attach __P((struct device *, struct device *, void *));
120
121 CFATTACH_DECL(cmpci, sizeof (struct cmpci_softc),
122 cmpci_match, cmpci_attach, NULL, NULL);
123
124 /* interrupt */
125 static int cmpci_intr __P((void *));
126
127
128 /*
129 * DMA stuffs
130 */
131 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
132 size_t, struct malloc_type *,
133 int, caddr_t *));
134 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t,
135 struct malloc_type *));
136 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
137 caddr_t));
138
139
140 /*
141 * interface to machine independent layer
142 */
143 static int cmpci_open __P((void *, int));
144 static void cmpci_close __P((void *));
145 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
146 static int cmpci_set_params __P((void *, int, int,
147 struct audio_params *,
148 struct audio_params *));
149 static int cmpci_round_blocksize __P((void *, int));
150 static int cmpci_halt_output __P((void *));
151 static int cmpci_halt_input __P((void *));
152 static int cmpci_getdev __P((void *, struct audio_device *));
153 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
154 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
155 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
156 static void *cmpci_allocm __P((void *, int, size_t, struct malloc_type *, int));
157 static void cmpci_freem __P((void *, void *, struct malloc_type *));
158 static size_t cmpci_round_buffersize __P((void *, int, size_t));
159 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
160 static int cmpci_get_props __P((void *));
161 static int cmpci_trigger_output __P((void *, void *, void *, int,
162 void (*)(void *), void *,
163 struct audio_params *));
164 static int cmpci_trigger_input __P((void *, void *, void *, int,
165 void (*)(void *), void *,
166 struct audio_params *));
167
168 static struct audio_hw_if cmpci_hw_if = {
169 cmpci_open, /* open */
170 cmpci_close, /* close */
171 NULL, /* drain */
172 cmpci_query_encoding, /* query_encoding */
173 cmpci_set_params, /* set_params */
174 cmpci_round_blocksize, /* round_blocksize */
175 NULL, /* commit_settings */
176 NULL, /* init_output */
177 NULL, /* init_input */
178 NULL, /* start_output */
179 NULL, /* start_input */
180 cmpci_halt_output, /* halt_output */
181 cmpci_halt_input, /* halt_input */
182 NULL, /* speaker_ctl */
183 cmpci_getdev, /* getdev */
184 NULL, /* setfd */
185 cmpci_set_port, /* set_port */
186 cmpci_get_port, /* get_port */
187 cmpci_query_devinfo, /* query_devinfo */
188 cmpci_allocm, /* allocm */
189 cmpci_freem, /* freem */
190 cmpci_round_buffersize,/* round_buffersize */
191 cmpci_mappage, /* mappage */
192 cmpci_get_props, /* get_props */
193 cmpci_trigger_output, /* trigger_output */
194 cmpci_trigger_input, /* trigger_input */
195 NULL, /* dev_ioctl */
196 };
197
198
199 /*
200 * Low-level HW interface
201 */
202
203 /* mixer register read/write */
204 static __inline uint8_t
205 cmpci_mixerreg_read(sc, no)
206 struct cmpci_softc *sc;
207 uint8_t no;
208 {
209 uint8_t ret;
210
211 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
212 delay(10);
213 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
214 delay(10);
215 return ret;
216 }
217
218 static __inline void
219 cmpci_mixerreg_write(sc, no, val)
220 struct cmpci_softc *sc;
221 uint8_t no, val;
222 {
223 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
224 delay(10);
225 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
226 delay(10);
227 }
228
229
230 /* register partial write */
231 static __inline void
232 cmpci_reg_partial_write_1(sc, no, shift, mask, val)
233 struct cmpci_softc *sc;
234 int no, shift;
235 unsigned mask, val;
236 {
237 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
238 (val<<shift) |
239 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
240 delay(10);
241 }
242
243 static __inline void
244 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
245 struct cmpci_softc *sc;
246 int no, shift;
247 uint32_t mask, val;
248 {
249 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
250 (val<<shift) |
251 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
252 delay(10);
253 }
254
255 /* register set/clear bit */
256 static __inline void
257 cmpci_reg_set_1(sc, no, mask)
258 struct cmpci_softc *sc;
259 int no;
260 uint8_t mask;
261 {
262 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
263 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
264 delay(10);
265 }
266
267 static __inline void
268 cmpci_reg_clear_1(sc, no, mask)
269 struct cmpci_softc *sc;
270 int no;
271 uint8_t mask;
272 {
273 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
274 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
275 delay(10);
276 }
277
278
279 static __inline void
280 cmpci_reg_set_4(sc, no, mask)
281 struct cmpci_softc *sc;
282 int no;
283 uint32_t mask;
284 {
285 /* use cmpci_reg_set_reg_misc() for CMPCI_REG_MISC */
286 KDASSERT(no != CMPCI_REG_MISC);
287
288 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
289 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
290 delay(10);
291 }
292
293 static __inline void
294 cmpci_reg_clear_4(sc, no, mask)
295 struct cmpci_softc *sc;
296 int no;
297 uint32_t mask;
298 {
299 /* use cmpci_reg_clear_reg_misc() for CMPCI_REG_MISC */
300 KDASSERT(no != CMPCI_REG_MISC);
301
302 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
303 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
304 delay(10);
305 }
306
307
308 /*
309 * The CMPCI_REG_MISC register needs special handling, since one of
310 * its bits has different read/write values.
311 */
312 static __inline void
313 cmpci_reg_set_reg_misc(sc, mask)
314 struct cmpci_softc *sc;
315 uint32_t mask;
316 {
317 sc->sc_reg_misc |= mask;
318 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
319 sc->sc_reg_misc);
320 delay(10);
321 }
322
323 static __inline void
324 cmpci_reg_clear_reg_misc(sc, mask)
325 struct cmpci_softc *sc;
326 uint32_t mask;
327 {
328 sc->sc_reg_misc &= ~mask;
329 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
330 sc->sc_reg_misc);
331 delay(10);
332 }
333
334
335 /* rate */
336 static const struct {
337 int rate;
338 int divider;
339 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
340 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
341 _RATE(5512),
342 _RATE(8000),
343 _RATE(11025),
344 _RATE(16000),
345 _RATE(22050),
346 _RATE(32000),
347 _RATE(44100),
348 _RATE(48000)
349 #undef _RATE
350 };
351
352 static int
353 cmpci_rate_to_index(rate)
354 int rate;
355 {
356 int i;
357
358 for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++)
359 if (rate <=
360 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
361 return i;
362 return i; /* 48000 */
363 }
364
365 static __inline int
366 cmpci_index_to_rate(index)
367 int index;
368 {
369 return cmpci_rate_table[index].rate;
370 }
371
372 static __inline int
373 cmpci_index_to_divider(index)
374 int index;
375 {
376 return cmpci_rate_table[index].divider;
377 }
378
379
380 /*
381 * interface to configure the device.
382 */
383
384 static int
385 cmpci_match(parent, match, aux)
386 struct device *parent;
387 struct cfdata *match;
388 void *aux;
389 {
390 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
391
392 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
393 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
394 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
395 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
396 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
397 return 1;
398
399 return 0;
400 }
401
402 static void
403 cmpci_attach(parent, self, aux)
404 struct device *parent, *self;
405 void *aux;
406 {
407 struct cmpci_softc *sc = (struct cmpci_softc *)self;
408 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
409 struct audio_attach_args aa;
410 pci_intr_handle_t ih;
411 char const *strintr;
412 char devinfo[256];
413 int i, v;
414
415 aprint_naive(": Audio controller\n");
416
417 sc->sc_id = pa->pa_id;
418 sc->sc_class = pa->pa_class;
419 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
420 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
421 PCI_REVISION(sc->sc_class));
422 switch (PCI_PRODUCT(sc->sc_id)) {
423 case PCI_PRODUCT_CMEDIA_CMI8338A:
424 /*FALLTHROUGH*/
425 case PCI_PRODUCT_CMEDIA_CMI8338B:
426 sc->sc_capable = CMPCI_CAP_CMI8338;
427 break;
428 case PCI_PRODUCT_CMEDIA_CMI8738:
429 /*FALLTHROUGH*/
430 case PCI_PRODUCT_CMEDIA_CMI8738B:
431 sc->sc_capable = CMPCI_CAP_CMI8738;
432 break;
433 }
434
435 /* map I/O space */
436 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
437 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
438 aprint_error("%s: failed to map I/O space\n",
439 sc->sc_dev.dv_xname);
440 return;
441 }
442
443 /* interrupt */
444 if (pci_intr_map(pa, &ih)) {
445 aprint_error("%s: failed to map interrupt\n",
446 sc->sc_dev.dv_xname);
447 return;
448 }
449 strintr = pci_intr_string(pa->pa_pc, ih);
450 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
451 if (sc->sc_ih == NULL) {
452 aprint_error("%s: failed to establish interrupt",
453 sc->sc_dev.dv_xname);
454 if (strintr != NULL)
455 aprint_normal(" at %s", strintr);
456 aprint_normal("\n");
457 return;
458 }
459 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
460
461 sc->sc_dmat = pa->pa_dmat;
462
463 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
464
465 /* attach OPL device */
466 aa.type = AUDIODEV_TYPE_OPL;
467 aa.hwif = NULL;
468 aa.hdl = NULL;
469 (void)config_found(&sc->sc_dev, &aa, audioprint);
470
471 /* attach MPU-401 device */
472 aa.type = AUDIODEV_TYPE_MPU;
473 aa.hwif = NULL;
474 aa.hdl = NULL;
475 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
476 CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
477 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
478
479 /* get initial value (this is 0 and may be omitted but just in case) */
480 sc->sc_reg_misc = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
481 CMPCI_REG_MISC) & ~CMPCI_REG_SPDIF48K;
482
483 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
484 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
485 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
486 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
487 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
488 for (i = 0; i < CMPCI_NDEVS; i++) {
489 switch(i) {
490 /*
491 * CMI8738 defaults are
492 * master: 0xe0 (0x00 - 0xf8)
493 * FM, DAC: 0xc0 (0x00 - 0xf8)
494 * PC speaker: 0x80 (0x00 - 0xc0)
495 * others: 0
496 */
497 /* volume */
498 case CMPCI_MASTER_VOL:
499 v = 128; /* 224 */
500 break;
501 case CMPCI_FM_VOL:
502 case CMPCI_DAC_VOL:
503 v = 192;
504 break;
505 case CMPCI_PCSPEAKER:
506 v = 128;
507 break;
508
509 /* booleans, set to true */
510 case CMPCI_CD_MUTE:
511 case CMPCI_MIC_MUTE:
512 case CMPCI_LINE_IN_MUTE:
513 case CMPCI_AUX_IN_MUTE:
514 v = 1;
515 break;
516
517 /* volume with inital value 0 */
518 case CMPCI_CD_VOL:
519 case CMPCI_LINE_IN_VOL:
520 case CMPCI_AUX_IN_VOL:
521 case CMPCI_MIC_VOL:
522 case CMPCI_MIC_RECVOL:
523 /* FALLTHROUGH */
524
525 /* others are cleared */
526 case CMPCI_MIC_PREAMP:
527 case CMPCI_RECORD_SOURCE:
528 case CMPCI_PLAYBACK_MODE:
529 case CMPCI_SPDIF_IN_SELECT:
530 case CMPCI_SPDIF_IN_PHASE:
531 case CMPCI_SPDIF_LOOP:
532 case CMPCI_SPDIF_OUT_PLAYBACK:
533 case CMPCI_SPDIF_OUT_VOLTAGE:
534 case CMPCI_MONITOR_DAC:
535 case CMPCI_REAR:
536 case CMPCI_INDIVIDUAL:
537 case CMPCI_REVERSE:
538 case CMPCI_SURROUND:
539 default:
540 v = 0;
541 break;
542 }
543 sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
544 cmpci_set_mixer_gain(sc, i);
545 }
546 }
547
548
549 static int
550 cmpci_intr(handle)
551 void *handle;
552 {
553 struct cmpci_softc *sc = handle;
554 uint32_t intrstat;
555
556 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
557 CMPCI_REG_INTR_STATUS);
558
559 if (!(intrstat & CMPCI_REG_ANY_INTR))
560 return 0;
561
562 delay(10);
563
564 /* disable and reset intr */
565 if (intrstat & CMPCI_REG_CH0_INTR)
566 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
567 CMPCI_REG_CH0_INTR_ENABLE);
568 if (intrstat & CMPCI_REG_CH1_INTR)
569 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
570 CMPCI_REG_CH1_INTR_ENABLE);
571
572 if (intrstat & CMPCI_REG_CH0_INTR) {
573 if (sc->sc_play.intr != NULL)
574 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
575 }
576 if (intrstat & CMPCI_REG_CH1_INTR) {
577 if (sc->sc_rec.intr != NULL)
578 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
579 }
580
581 /* enable intr */
582 if (intrstat & CMPCI_REG_CH0_INTR)
583 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
584 CMPCI_REG_CH0_INTR_ENABLE);
585 if (intrstat & CMPCI_REG_CH1_INTR)
586 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
587 CMPCI_REG_CH1_INTR_ENABLE);
588
589 #if NMPU > 0
590 if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
591 mpu_intr(sc->sc_mpudev);
592 #endif
593
594 return 1;
595 }
596
597
598 /* open/close */
599 static int
600 cmpci_open(handle, flags)
601 void *handle;
602 int flags;
603 {
604 return 0;
605 }
606
607 static void
608 cmpci_close(handle)
609 void *handle;
610 {
611 }
612
613 static int
614 cmpci_query_encoding(handle, fp)
615 void *handle;
616 struct audio_encoding *fp;
617 {
618 switch (fp->index) {
619 case 0:
620 strcpy(fp->name, AudioEulinear);
621 fp->encoding = AUDIO_ENCODING_ULINEAR;
622 fp->precision = 8;
623 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
624 break;
625 case 1:
626 strcpy(fp->name, AudioEmulaw);
627 fp->encoding = AUDIO_ENCODING_ULAW;
628 fp->precision = 8;
629 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
630 break;
631 case 2:
632 strcpy(fp->name, AudioEalaw);
633 fp->encoding = AUDIO_ENCODING_ALAW;
634 fp->precision = 8;
635 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
636 break;
637 case 3:
638 strcpy(fp->name, AudioEslinear);
639 fp->encoding = AUDIO_ENCODING_SLINEAR;
640 fp->precision = 8;
641 fp->flags = 0;
642 break;
643 case 4:
644 strcpy(fp->name, AudioEslinear_le);
645 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
646 fp->precision = 16;
647 fp->flags = 0;
648 break;
649 case 5:
650 strcpy(fp->name, AudioEulinear_le);
651 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
652 fp->precision = 16;
653 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
654 break;
655 case 6:
656 strcpy(fp->name, AudioEslinear_be);
657 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
658 fp->precision = 16;
659 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
660 break;
661 case 7:
662 strcpy(fp->name, AudioEulinear_be);
663 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
664 fp->precision = 16;
665 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
666 break;
667 default:
668 return EINVAL;
669 }
670 return 0;
671 }
672
673
674 static int
675 cmpci_set_params(handle, setmode, usemode, play, rec)
676 void *handle;
677 int setmode, usemode;
678 struct audio_params *play, *rec;
679 {
680 int i;
681 struct cmpci_softc *sc = handle;
682
683 for (i = 0; i < 2; i++) {
684 int md_format;
685 int md_divide;
686 int md_index;
687 int mode;
688 struct audio_params *p;
689
690 switch (i) {
691 case 0:
692 mode = AUMODE_PLAY;
693 p = play;
694 break;
695 case 1:
696 mode = AUMODE_RECORD;
697 p = rec;
698 break;
699 default:
700 return EINVAL;
701 }
702
703 if (!(setmode & mode))
704 continue;
705
706
707 /* format */
708 p->sw_code = NULL;
709 switch ( p->channels ) {
710 case 1:
711 md_format = CMPCI_REG_FORMAT_MONO;
712 break;
713 case 2:
714 md_format = CMPCI_REG_FORMAT_STEREO;
715 break;
716 default:
717 return (EINVAL);
718 }
719 switch (p->encoding) {
720 case AUDIO_ENCODING_ULAW:
721 if (p->precision != 8)
722 return (EINVAL);
723 if (mode & AUMODE_PLAY) {
724 p->factor = 2;
725 p->sw_code = mulaw_to_slinear16_le;
726 md_format |= CMPCI_REG_FORMAT_16BIT;
727 } else {
728 p->sw_code = ulinear8_to_mulaw;
729 md_format |= CMPCI_REG_FORMAT_8BIT;
730 }
731 break;
732 case AUDIO_ENCODING_ALAW:
733 if (p->precision != 8)
734 return (EINVAL);
735 if (mode & AUMODE_PLAY) {
736 p->factor = 2;
737 p->sw_code = alaw_to_slinear16_le;
738 md_format |= CMPCI_REG_FORMAT_16BIT;
739 } else {
740 p->sw_code = ulinear8_to_alaw;
741 md_format |= CMPCI_REG_FORMAT_8BIT;
742 }
743 break;
744 case AUDIO_ENCODING_SLINEAR_LE:
745 switch (p->precision) {
746 case 8:
747 p->sw_code = change_sign8;
748 md_format |= CMPCI_REG_FORMAT_8BIT;
749 break;
750 case 16:
751 md_format |= CMPCI_REG_FORMAT_16BIT;
752 break;
753 default:
754 return (EINVAL);
755 }
756 break;
757 case AUDIO_ENCODING_SLINEAR_BE:
758 switch (p->precision) {
759 case 8:
760 md_format |= CMPCI_REG_FORMAT_8BIT;
761 p->sw_code = change_sign8;
762 break;
763 case 16:
764 md_format |= CMPCI_REG_FORMAT_16BIT;
765 p->sw_code = swap_bytes;
766 break;
767 default:
768 return (EINVAL);
769 }
770 break;
771 case AUDIO_ENCODING_ULINEAR_LE:
772 switch (p->precision) {
773 case 8:
774 md_format |= CMPCI_REG_FORMAT_8BIT;
775 break;
776 case 16:
777 md_format |= CMPCI_REG_FORMAT_16BIT;
778 p->sw_code = change_sign16_le;
779 break;
780 default:
781 return (EINVAL);
782 }
783 break;
784 case AUDIO_ENCODING_ULINEAR_BE:
785 switch (p->precision) {
786 case 8:
787 md_format |= CMPCI_REG_FORMAT_8BIT;
788 break;
789 case 16:
790 md_format |= CMPCI_REG_FORMAT_16BIT;
791 if (mode & AUMODE_PLAY)
792 p->sw_code =
793 swap_bytes_change_sign16_le;
794 else
795 p->sw_code =
796 change_sign16_swap_bytes_le;
797 break;
798 default:
799 return (EINVAL);
800 }
801 break;
802 default:
803 return (EINVAL);
804 }
805 if (mode & AUMODE_PLAY)
806 cmpci_reg_partial_write_4(sc,
807 CMPCI_REG_CHANNEL_FORMAT,
808 CMPCI_REG_CH0_FORMAT_SHIFT,
809 CMPCI_REG_CH0_FORMAT_MASK, md_format);
810 else
811 cmpci_reg_partial_write_4(sc,
812 CMPCI_REG_CHANNEL_FORMAT,
813 CMPCI_REG_CH1_FORMAT_SHIFT,
814 CMPCI_REG_CH1_FORMAT_MASK, md_format);
815 /* sample rate */
816 md_index = cmpci_rate_to_index(p->sample_rate);
817 md_divide = cmpci_index_to_divider(md_index);
818 p->sample_rate = cmpci_index_to_rate(md_index);
819 DPRINTF(("%s: sample:%d, divider=%d\n",
820 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
821 if (mode & AUMODE_PLAY) {
822 cmpci_reg_partial_write_4(sc,
823 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
824 CMPCI_REG_DAC_FS_MASK, md_divide);
825 sc->sc_play.md_divide = md_divide;
826 } else {
827 cmpci_reg_partial_write_4(sc,
828 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
829 CMPCI_REG_ADC_FS_MASK, md_divide);
830 sc->sc_rec.md_divide = md_divide;
831 }
832 cmpci_set_out_ports(sc);
833 cmpci_set_in_ports(sc);
834 }
835 return 0;
836 }
837
838 /* ARGSUSED */
839 static int
840 cmpci_round_blocksize(handle, block)
841 void *handle;
842 int block;
843 {
844 return (block & -4);
845 }
846
847 static int
848 cmpci_halt_output(handle)
849 void *handle;
850 {
851 struct cmpci_softc *sc = handle;
852 int s;
853
854 s = splaudio();
855 sc->sc_play.intr = NULL;
856 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
857 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
858 /* wait for reset DMA */
859 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
860 delay(10);
861 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
862 splx(s);
863
864 return 0;
865 }
866
867 static int
868 cmpci_halt_input(handle)
869 void *handle;
870 {
871 struct cmpci_softc *sc = handle;
872 int s;
873
874 s = splaudio();
875 sc->sc_rec.intr = NULL;
876 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
877 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
878 /* wait for reset DMA */
879 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
880 delay(10);
881 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
882 splx(s);
883
884 return 0;
885 }
886
887
888 /* get audio device information */
889 static int
890 cmpci_getdev(handle, ad)
891 void *handle;
892 struct audio_device *ad;
893 {
894 struct cmpci_softc *sc = handle;
895
896 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
897 snprintf(ad->version, sizeof(ad->version), "0x%02x",
898 PCI_REVISION(sc->sc_class));
899 switch (PCI_PRODUCT(sc->sc_id)) {
900 case PCI_PRODUCT_CMEDIA_CMI8338A:
901 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
902 break;
903 case PCI_PRODUCT_CMEDIA_CMI8338B:
904 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
905 break;
906 case PCI_PRODUCT_CMEDIA_CMI8738:
907 strncpy(ad->config, "CMI8738", sizeof(ad->config));
908 break;
909 case PCI_PRODUCT_CMEDIA_CMI8738B:
910 strncpy(ad->config, "CMI8738B", sizeof(ad->config));
911 break;
912 default:
913 strncpy(ad->config, "unknown", sizeof(ad->config));
914 }
915
916 return 0;
917 }
918
919
920 /* mixer device information */
921 int
922 cmpci_query_devinfo(handle, dip)
923 void *handle;
924 mixer_devinfo_t *dip;
925 {
926 static const char *const mixer_port_names[] = {
927 AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
928 AudioNmicrophone
929 };
930 static const char *const mixer_classes[] = {
931 AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
932 CmpciCspdif
933 };
934 struct cmpci_softc *sc = handle;
935 int i;
936
937 dip->prev = dip->next = AUDIO_MIXER_LAST;
938
939 switch (dip->index) {
940 case CMPCI_INPUT_CLASS:
941 case CMPCI_OUTPUT_CLASS:
942 case CMPCI_RECORD_CLASS:
943 case CMPCI_PLAYBACK_CLASS:
944 case CMPCI_SPDIF_CLASS:
945 dip->type = AUDIO_MIXER_CLASS;
946 dip->mixer_class = dip->index;
947 strcpy(dip->label.name,
948 mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
949 return 0;
950
951 case CMPCI_AUX_IN_VOL:
952 dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
953 goto vol1;
954 case CMPCI_DAC_VOL:
955 case CMPCI_FM_VOL:
956 case CMPCI_CD_VOL:
957 case CMPCI_LINE_IN_VOL:
958 case CMPCI_MIC_VOL:
959 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
960 vol1: dip->mixer_class = CMPCI_INPUT_CLASS;
961 dip->next = dip->index + 6; /* CMPCI_xxx_MUTE */
962 strcpy(dip->label.name, mixer_port_names[dip->index]);
963 dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
964 vol:
965 dip->type = AUDIO_MIXER_VALUE;
966 strcpy(dip->un.v.units.name, AudioNvolume);
967 return 0;
968
969 case CMPCI_MIC_MUTE:
970 dip->next = CMPCI_MIC_PREAMP;
971 /* FALLTHROUGH */
972 case CMPCI_DAC_MUTE:
973 case CMPCI_FM_MUTE:
974 case CMPCI_CD_MUTE:
975 case CMPCI_LINE_IN_MUTE:
976 case CMPCI_AUX_IN_MUTE:
977 dip->prev = dip->index - 6; /* CMPCI_xxx_VOL */
978 dip->mixer_class = CMPCI_INPUT_CLASS;
979 strcpy(dip->label.name, AudioNmute);
980 goto on_off;
981 on_off:
982 dip->type = AUDIO_MIXER_ENUM;
983 dip->un.e.num_mem = 2;
984 strcpy(dip->un.e.member[0].label.name, AudioNoff);
985 dip->un.e.member[0].ord = 0;
986 strcpy(dip->un.e.member[1].label.name, AudioNon);
987 dip->un.e.member[1].ord = 1;
988 return 0;
989
990 case CMPCI_MIC_PREAMP:
991 dip->mixer_class = CMPCI_INPUT_CLASS;
992 dip->prev = CMPCI_MIC_MUTE;
993 strcpy(dip->label.name, AudioNpreamp);
994 goto on_off;
995 case CMPCI_PCSPEAKER:
996 dip->mixer_class = CMPCI_INPUT_CLASS;
997 strcpy(dip->label.name, AudioNspeaker);
998 dip->un.v.num_channels = 1;
999 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
1000 goto vol;
1001 case CMPCI_RECORD_SOURCE:
1002 dip->mixer_class = CMPCI_RECORD_CLASS;
1003 strcpy(dip->label.name, AudioNsource);
1004 dip->type = AUDIO_MIXER_SET;
1005 dip->un.s.num_mem = 7;
1006 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1007 dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
1008 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1009 dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
1010 strcpy(dip->un.s.member[2].label.name, AudioNline);
1011 dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
1012 strcpy(dip->un.s.member[3].label.name, AudioNaux);
1013 dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
1014 strcpy(dip->un.s.member[4].label.name, AudioNwave);
1015 dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
1016 strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
1017 dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
1018 strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
1019 dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
1020 return 0;
1021 case CMPCI_MIC_RECVOL:
1022 dip->mixer_class = CMPCI_RECORD_CLASS;
1023 strcpy(dip->label.name, AudioNmicrophone);
1024 dip->un.v.num_channels = 1;
1025 dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
1026 goto vol;
1027
1028 case CMPCI_PLAYBACK_MODE:
1029 dip->mixer_class = CMPCI_PLAYBACK_CLASS;
1030 dip->type = AUDIO_MIXER_ENUM;
1031 strcpy(dip->label.name, AudioNmode);
1032 dip->un.e.num_mem = 2;
1033 strcpy(dip->un.e.member[0].label.name, AudioNdac);
1034 dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
1035 strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
1036 dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
1037 return 0;
1038 case CMPCI_SPDIF_IN_SELECT:
1039 dip->mixer_class = CMPCI_SPDIF_CLASS;
1040 dip->type = AUDIO_MIXER_ENUM;
1041 dip->next = CMPCI_SPDIF_IN_PHASE;
1042 strcpy(dip->label.name, AudioNinput);
1043 i = 0;
1044 strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
1045 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
1046 if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
1047 strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
1048 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
1049 }
1050 strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
1051 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
1052 dip->un.e.num_mem = i;
1053 return 0;
1054 case CMPCI_SPDIF_IN_PHASE:
1055 dip->mixer_class = CMPCI_SPDIF_CLASS;
1056 dip->prev = CMPCI_SPDIF_IN_SELECT;
1057 strcpy(dip->label.name, CmpciNphase);
1058 dip->type = AUDIO_MIXER_ENUM;
1059 dip->un.e.num_mem = 2;
1060 strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1061 dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
1062 strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1063 dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
1064 return 0;
1065 case CMPCI_SPDIF_LOOP:
1066 dip->mixer_class = CMPCI_SPDIF_CLASS;
1067 dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
1068 strcpy(dip->label.name, AudioNoutput);
1069 dip->type = AUDIO_MIXER_ENUM;
1070 dip->un.e.num_mem = 2;
1071 strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
1072 dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
1073 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1074 dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
1075 return 0;
1076 case CMPCI_SPDIF_OUT_PLAYBACK:
1077 dip->mixer_class = CMPCI_SPDIF_CLASS;
1078 dip->prev = CMPCI_SPDIF_LOOP;
1079 dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
1080 strcpy(dip->label.name, CmpciNplayback);
1081 dip->type = AUDIO_MIXER_ENUM;
1082 dip->un.e.num_mem = 2;
1083 strcpy(dip->un.e.member[0].label.name, AudioNwave);
1084 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
1085 strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
1086 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
1087 return 0;
1088 case CMPCI_SPDIF_OUT_VOLTAGE:
1089 dip->mixer_class = CMPCI_SPDIF_CLASS;
1090 dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
1091 strcpy(dip->label.name, CmpciNvoltage);
1092 dip->type = AUDIO_MIXER_ENUM;
1093 dip->un.e.num_mem = 2;
1094 strcpy(dip->un.e.member[0].label.name, CmpciNhigh_v);
1095 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
1096 strcpy(dip->un.e.member[1].label.name, CmpciNlow_v);
1097 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
1098 return 0;
1099 case CMPCI_MONITOR_DAC:
1100 dip->mixer_class = CMPCI_SPDIF_CLASS;
1101 strcpy(dip->label.name, AudioNmonitor);
1102 dip->type = AUDIO_MIXER_ENUM;
1103 dip->un.e.num_mem = 3;
1104 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1105 dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
1106 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1107 dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
1108 strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
1109 dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
1110 return 0;
1111
1112 case CMPCI_MASTER_VOL:
1113 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1114 strcpy(dip->label.name, AudioNmaster);
1115 dip->un.v.num_channels = 2;
1116 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
1117 goto vol;
1118 case CMPCI_REAR:
1119 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1120 dip->next = CMPCI_INDIVIDUAL;
1121 strcpy(dip->label.name, CmpciNrear);
1122 goto on_off;
1123 case CMPCI_INDIVIDUAL:
1124 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1125 dip->prev = CMPCI_REAR;
1126 dip->next = CMPCI_REVERSE;
1127 strcpy(dip->label.name, CmpciNindividual);
1128 goto on_off;
1129 case CMPCI_REVERSE:
1130 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1131 dip->prev = CMPCI_INDIVIDUAL;
1132 strcpy(dip->label.name, CmpciNreverse);
1133 goto on_off;
1134 case CMPCI_SURROUND:
1135 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1136 strcpy(dip->label.name, CmpciNsurround);
1137 goto on_off;
1138 }
1139
1140 return ENXIO;
1141 }
1142
1143 static int
1144 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1145 struct cmpci_softc *sc;
1146 size_t size;
1147 struct malloc_type *type;
1148 int flags;
1149 caddr_t *r_addr;
1150 {
1151 int error = 0;
1152 struct cmpci_dmanode *n;
1153 int w;
1154
1155 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1156 if (n == NULL) {
1157 error = ENOMEM;
1158 goto quit;
1159 }
1160
1161 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1162 #define CMPCI_DMABUF_ALIGN 0x4
1163 #define CMPCI_DMABUF_BOUNDARY 0x0
1164 n->cd_tag = sc->sc_dmat;
1165 n->cd_size = size;
1166 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1167 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1168 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1169 if (error)
1170 goto mfree;
1171 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1172 &n->cd_addr, w | BUS_DMA_COHERENT);
1173 if (error)
1174 goto dmafree;
1175 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1176 w, &n->cd_map);
1177 if (error)
1178 goto unmap;
1179 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1180 NULL, w);
1181 if (error)
1182 goto destroy;
1183
1184 n->cd_next = sc->sc_dmap;
1185 sc->sc_dmap = n;
1186 *r_addr = KVADDR(n);
1187 return 0;
1188
1189 destroy:
1190 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1191 unmap:
1192 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1193 dmafree:
1194 bus_dmamem_free(n->cd_tag,
1195 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1196 mfree:
1197 free(n, type);
1198 quit:
1199 return error;
1200 }
1201
1202 static int
1203 cmpci_free_dmamem(sc, addr, type)
1204 struct cmpci_softc *sc;
1205 caddr_t addr;
1206 struct malloc_type *type;
1207 {
1208 struct cmpci_dmanode **nnp;
1209
1210 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1211 if ((*nnp)->cd_addr == addr) {
1212 struct cmpci_dmanode *n = *nnp;
1213 bus_dmamap_unload(n->cd_tag, n->cd_map);
1214 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1215 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1216 bus_dmamem_free(n->cd_tag, n->cd_segs,
1217 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1218 free(n, type);
1219 return 0;
1220 }
1221 }
1222 return -1;
1223 }
1224
1225 static struct cmpci_dmanode *
1226 cmpci_find_dmamem(sc, addr)
1227 struct cmpci_softc *sc;
1228 caddr_t addr;
1229 {
1230 struct cmpci_dmanode *p;
1231
1232 for (p=sc->sc_dmap; p; p=p->cd_next)
1233 if ( KVADDR(p) == (void *)addr )
1234 break;
1235 return p;
1236 }
1237
1238
1239 #if 0
1240 static void
1241 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1242 static void
1243 cmpci_print_dmamem(p)
1244 struct cmpci_dmanode *p;
1245 {
1246 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1247 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1248 (void *)DMAADDR(p), (void *)p->cd_size));
1249 }
1250 #endif /* DEBUG */
1251
1252
1253 static void *
1254 cmpci_allocm(handle, direction, size, type, flags)
1255 void *handle;
1256 int direction;
1257 size_t size;
1258 struct malloc_type *type;
1259 int flags;
1260 {
1261 struct cmpci_softc *sc = handle;
1262 caddr_t addr;
1263
1264 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1265 return NULL;
1266 return addr;
1267 }
1268
1269 static void
1270 cmpci_freem(handle, addr, type)
1271 void *handle;
1272 void *addr;
1273 struct malloc_type *type;
1274 {
1275 struct cmpci_softc *sc = handle;
1276
1277 cmpci_free_dmamem(sc, addr, type);
1278 }
1279
1280
1281 #define MAXVAL 256
1282 static int
1283 cmpci_adjust(val, mask)
1284 int val, mask;
1285 {
1286 val += (MAXVAL - mask) >> 1;
1287 if (val >= MAXVAL)
1288 val = MAXVAL-1;
1289 return val & mask;
1290 }
1291
1292 static void
1293 cmpci_set_mixer_gain(sc, port)
1294 struct cmpci_softc *sc;
1295 int port;
1296 {
1297 int src;
1298 int bits, mask;
1299
1300 switch (port) {
1301 case CMPCI_MIC_VOL:
1302 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
1303 CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1304 return;
1305 case CMPCI_MASTER_VOL:
1306 src = CMPCI_SB16_MIXER_MASTER_L;
1307 break;
1308 case CMPCI_LINE_IN_VOL:
1309 src = CMPCI_SB16_MIXER_LINE_L;
1310 break;
1311 case CMPCI_AUX_IN_VOL:
1312 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
1313 CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
1314 sc->sc_gain[port][CMPCI_RIGHT]));
1315 return;
1316 case CMPCI_MIC_RECVOL:
1317 cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
1318 CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
1319 CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1320 return;
1321 case CMPCI_DAC_VOL:
1322 src = CMPCI_SB16_MIXER_VOICE_L;
1323 break;
1324 case CMPCI_FM_VOL:
1325 src = CMPCI_SB16_MIXER_FM_L;
1326 break;
1327 case CMPCI_CD_VOL:
1328 src = CMPCI_SB16_MIXER_CDDA_L;
1329 break;
1330 case CMPCI_PCSPEAKER:
1331 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1332 CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1333 return;
1334 case CMPCI_MIC_PREAMP:
1335 if (sc->sc_gain[port][CMPCI_LR])
1336 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1337 CMPCI_REG_MICGAINZ);
1338 else
1339 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1340 CMPCI_REG_MICGAINZ);
1341 return;
1342
1343 case CMPCI_DAC_MUTE:
1344 if (sc->sc_gain[port][CMPCI_LR])
1345 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1346 CMPCI_REG_WSMUTE);
1347 else
1348 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1349 CMPCI_REG_WSMUTE);
1350 return;
1351 case CMPCI_FM_MUTE:
1352 if (sc->sc_gain[port][CMPCI_LR])
1353 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1354 CMPCI_REG_FMMUTE);
1355 else
1356 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1357 CMPCI_REG_FMMUTE);
1358 return;
1359 case CMPCI_AUX_IN_MUTE:
1360 if (sc->sc_gain[port][CMPCI_LR])
1361 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1362 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1363 else
1364 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1365 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1366 return;
1367 case CMPCI_CD_MUTE:
1368 mask = CMPCI_SB16_SW_CD;
1369 goto sbmute;
1370 case CMPCI_MIC_MUTE:
1371 mask = CMPCI_SB16_SW_MIC;
1372 goto sbmute;
1373 case CMPCI_LINE_IN_MUTE:
1374 mask = CMPCI_SB16_SW_LINE;
1375 sbmute:
1376 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1377 if (sc->sc_gain[port][CMPCI_LR])
1378 bits = bits & ~mask;
1379 else
1380 bits = bits | mask;
1381 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1382 return;
1383
1384 case CMPCI_SPDIF_IN_SELECT:
1385 case CMPCI_MONITOR_DAC:
1386 case CMPCI_PLAYBACK_MODE:
1387 case CMPCI_SPDIF_LOOP:
1388 case CMPCI_SPDIF_OUT_PLAYBACK:
1389 cmpci_set_out_ports(sc);
1390 return;
1391 case CMPCI_SPDIF_OUT_VOLTAGE:
1392 if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1393 if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
1394 == CMPCI_SPDIF_OUT_VOLTAGE_HIGH)
1395 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_5V);
1396 else
1397 cmpci_reg_set_reg_misc(sc, CMPCI_REG_5V);
1398 }
1399 return;
1400 case CMPCI_SURROUND:
1401 if (CMPCI_ISCAP(sc, SURROUND)) {
1402 if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1403 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1404 CMPCI_REG_SURROUND);
1405 else
1406 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1407 CMPCI_REG_SURROUND);
1408 }
1409 return;
1410 case CMPCI_REAR:
1411 if (CMPCI_ISCAP(sc, REAR)) {
1412 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1413 cmpci_reg_set_reg_misc(sc, CMPCI_REG_N4SPK3D);
1414 else
1415 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_N4SPK3D);
1416 }
1417 return;
1418 case CMPCI_INDIVIDUAL:
1419 if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1420 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1421 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1422 CMPCI_REG_INDIVIDUAL);
1423 else
1424 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1425 CMPCI_REG_INDIVIDUAL);
1426 }
1427 return;
1428 case CMPCI_REVERSE:
1429 if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1430 if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1431 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1432 CMPCI_REG_REVERSE_FR);
1433 else
1434 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1435 CMPCI_REG_REVERSE_FR);
1436 }
1437 return;
1438 case CMPCI_SPDIF_IN_PHASE:
1439 if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1440 if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
1441 == CMPCI_SPDIF_IN_PHASE_POSITIVE)
1442 cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1443 CMPCI_REG_SPDIN_PHASE);
1444 else
1445 cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1446 CMPCI_REG_SPDIN_PHASE);
1447 }
1448 return;
1449 default:
1450 return;
1451 }
1452
1453 cmpci_mixerreg_write(sc, src,
1454 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
1455 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1456 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
1457 }
1458
1459 static void
1460 cmpci_set_out_ports(sc)
1461 struct cmpci_softc *sc;
1462 {
1463 u_int8_t v;
1464 int enspdout = 0;
1465
1466 if (!CMPCI_ISCAP(sc, SPDLOOP))
1467 return;
1468
1469 /* SPDIF/out select */
1470 if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
1471 /* playback */
1472 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1473 } else {
1474 /* monitor SPDIF/in */
1475 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1476 }
1477
1478 /* SPDIF in select */
1479 v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
1480 if (v & CMPCI_SPDIFIN_SPDIFIN2)
1481 cmpci_reg_set_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
1482 else
1483 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
1484 if (v & CMPCI_SPDIFIN_SPDIFOUT)
1485 cmpci_reg_set_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
1486 else
1487 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
1488
1489 /* playback to ... */
1490 if (CMPCI_ISCAP(sc, SPDOUT) &&
1491 sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
1492 == CMPCI_PLAYBACK_MODE_SPDIF &&
1493 (sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
1494 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1495 sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1496 /* playback to SPDIF */
1497 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
1498 enspdout = 1;
1499 if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1500 cmpci_reg_set_reg_misc(sc,
1501 CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1502 else
1503 cmpci_reg_clear_reg_misc(sc,
1504 CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1505 } else {
1506 /* playback to DAC */
1507 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1508 CMPCI_REG_SPDIF0_ENABLE);
1509 if (CMPCI_ISCAP(sc, SPDOUT_48K))
1510 cmpci_reg_clear_reg_misc(sc,
1511 CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1512 }
1513
1514 /* legacy to SPDIF/out or not */
1515 if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1516 if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
1517 == CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
1518 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1519 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1520 else {
1521 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1522 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1523 enspdout = 1;
1524 }
1525 }
1526
1527 /* enable/disable SPDIF/out */
1528 if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
1529 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1530 CMPCI_REG_XSPDIF_ENABLE);
1531 else
1532 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1533 CMPCI_REG_XSPDIF_ENABLE);
1534
1535 /* SPDIF monitor (digital to alalog output) */
1536 if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1537 v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
1538 if (!(v & CMPCI_MONDAC_ENABLE))
1539 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1540 CMPCI_REG_SPDIN_MONITOR);
1541 if (v & CMPCI_MONDAC_SPDOUT)
1542 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1543 CMPCI_REG_SPDIFOUT_DAC);
1544 else
1545 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1546 CMPCI_REG_SPDIFOUT_DAC);
1547 if (v & CMPCI_MONDAC_ENABLE)
1548 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1549 CMPCI_REG_SPDIN_MONITOR);
1550 }
1551 }
1552
1553 static int
1554 cmpci_set_in_ports(sc)
1555 struct cmpci_softc *sc;
1556 {
1557 int mask;
1558 int bitsl, bitsr;
1559
1560 mask = sc->sc_in_mask;
1561
1562 /*
1563 * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
1564 * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
1565 * of the mixer register.
1566 */
1567 bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1568 CMPCI_RECORD_SOURCE_FM);
1569
1570 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1571 if (mask & CMPCI_RECORD_SOURCE_MIC) {
1572 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1573 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1574 }
1575 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1576 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1577
1578 if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
1579 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1580 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1581 else
1582 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1583 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1584
1585 if (mask & CMPCI_RECORD_SOURCE_WAVE)
1586 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1587 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1588 else
1589 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1590 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1591
1592 if (CMPCI_ISCAP(sc, SPDIN) &&
1593 (sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
1594 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1595 sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
1596 if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1597 /* enable SPDIF/in */
1598 cmpci_reg_set_4(sc,
1599 CMPCI_REG_FUNC_1,
1600 CMPCI_REG_SPDIF1_ENABLE);
1601 } else {
1602 cmpci_reg_clear_4(sc,
1603 CMPCI_REG_FUNC_1,
1604 CMPCI_REG_SPDIF1_ENABLE);
1605 }
1606 }
1607
1608 return 0;
1609 }
1610
1611 static int
1612 cmpci_set_port(handle, cp)
1613 void *handle;
1614 mixer_ctrl_t *cp;
1615 {
1616 struct cmpci_softc *sc = handle;
1617 int lgain, rgain;
1618
1619 switch (cp->dev) {
1620 case CMPCI_MIC_VOL:
1621 case CMPCI_PCSPEAKER:
1622 case CMPCI_MIC_RECVOL:
1623 if (cp->un.value.num_channels != 1)
1624 return EINVAL;
1625 /* FALLTHROUGH */
1626 case CMPCI_DAC_VOL:
1627 case CMPCI_FM_VOL:
1628 case CMPCI_CD_VOL:
1629 case CMPCI_LINE_IN_VOL:
1630 case CMPCI_AUX_IN_VOL:
1631 case CMPCI_MASTER_VOL:
1632 if (cp->type != AUDIO_MIXER_VALUE)
1633 return EINVAL;
1634 switch (cp->un.value.num_channels) {
1635 case 1:
1636 lgain = rgain =
1637 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1638 break;
1639 case 2:
1640 lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1641 rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1642 break;
1643 default:
1644 return EINVAL;
1645 }
1646 sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
1647 sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1648
1649 cmpci_set_mixer_gain(sc, cp->dev);
1650 break;
1651
1652 case CMPCI_RECORD_SOURCE:
1653 if (cp->type != AUDIO_MIXER_SET)
1654 return EINVAL;
1655
1656 if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
1657 CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1658 CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
1659 CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
1660 return EINVAL;
1661
1662 if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1663 cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1664
1665 sc->sc_in_mask = cp->un.mask;
1666 return cmpci_set_in_ports(sc);
1667
1668 /* boolean */
1669 case CMPCI_DAC_MUTE:
1670 case CMPCI_FM_MUTE:
1671 case CMPCI_CD_MUTE:
1672 case CMPCI_LINE_IN_MUTE:
1673 case CMPCI_AUX_IN_MUTE:
1674 case CMPCI_MIC_MUTE:
1675 case CMPCI_MIC_PREAMP:
1676 case CMPCI_PLAYBACK_MODE:
1677 case CMPCI_SPDIF_IN_PHASE:
1678 case CMPCI_SPDIF_LOOP:
1679 case CMPCI_SPDIF_OUT_PLAYBACK:
1680 case CMPCI_SPDIF_OUT_VOLTAGE:
1681 case CMPCI_REAR:
1682 case CMPCI_INDIVIDUAL:
1683 case CMPCI_REVERSE:
1684 case CMPCI_SURROUND:
1685 if (cp->type != AUDIO_MIXER_ENUM)
1686 return EINVAL;
1687 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1688 cmpci_set_mixer_gain(sc, cp->dev);
1689 break;
1690
1691 case CMPCI_SPDIF_IN_SELECT:
1692 switch (cp->un.ord) {
1693 case CMPCI_SPDIF_IN_SPDIN1:
1694 case CMPCI_SPDIF_IN_SPDIN2:
1695 case CMPCI_SPDIF_IN_SPDOUT:
1696 break;
1697 default:
1698 return EINVAL;
1699 }
1700 goto xenum;
1701 case CMPCI_MONITOR_DAC:
1702 switch (cp->un.ord) {
1703 case CMPCI_MONITOR_DAC_OFF:
1704 case CMPCI_MONITOR_DAC_SPDIN:
1705 case CMPCI_MONITOR_DAC_SPDOUT:
1706 break;
1707 default:
1708 return EINVAL;
1709 }
1710 xenum:
1711 if (cp->type != AUDIO_MIXER_ENUM)
1712 return EINVAL;
1713 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1714 cmpci_set_mixer_gain(sc, cp->dev);
1715 break;
1716
1717 default:
1718 return EINVAL;
1719 }
1720
1721 return 0;
1722 }
1723
1724 static int
1725 cmpci_get_port(handle, cp)
1726 void *handle;
1727 mixer_ctrl_t *cp;
1728 {
1729 struct cmpci_softc *sc = handle;
1730
1731 switch (cp->dev) {
1732 case CMPCI_MIC_VOL:
1733 case CMPCI_PCSPEAKER:
1734 case CMPCI_MIC_RECVOL:
1735 if (cp->un.value.num_channels != 1)
1736 return EINVAL;
1737 /*FALLTHROUGH*/
1738 case CMPCI_DAC_VOL:
1739 case CMPCI_FM_VOL:
1740 case CMPCI_CD_VOL:
1741 case CMPCI_LINE_IN_VOL:
1742 case CMPCI_AUX_IN_VOL:
1743 case CMPCI_MASTER_VOL:
1744 switch (cp->un.value.num_channels) {
1745 case 1:
1746 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1747 sc->sc_gain[cp->dev][CMPCI_LEFT];
1748 break;
1749 case 2:
1750 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1751 sc->sc_gain[cp->dev][CMPCI_LEFT];
1752 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1753 sc->sc_gain[cp->dev][CMPCI_RIGHT];
1754 break;
1755 default:
1756 return EINVAL;
1757 }
1758 break;
1759
1760 case CMPCI_RECORD_SOURCE:
1761 cp->un.mask = sc->sc_in_mask;
1762 break;
1763
1764 case CMPCI_DAC_MUTE:
1765 case CMPCI_FM_MUTE:
1766 case CMPCI_CD_MUTE:
1767 case CMPCI_LINE_IN_MUTE:
1768 case CMPCI_AUX_IN_MUTE:
1769 case CMPCI_MIC_MUTE:
1770 case CMPCI_MIC_PREAMP:
1771 case CMPCI_PLAYBACK_MODE:
1772 case CMPCI_SPDIF_IN_SELECT:
1773 case CMPCI_SPDIF_IN_PHASE:
1774 case CMPCI_SPDIF_LOOP:
1775 case CMPCI_SPDIF_OUT_PLAYBACK:
1776 case CMPCI_SPDIF_OUT_VOLTAGE:
1777 case CMPCI_MONITOR_DAC:
1778 case CMPCI_REAR:
1779 case CMPCI_INDIVIDUAL:
1780 case CMPCI_REVERSE:
1781 case CMPCI_SURROUND:
1782 cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1783 break;
1784
1785 default:
1786 return EINVAL;
1787 }
1788
1789 return 0;
1790 }
1791
1792 /* ARGSUSED */
1793 static size_t
1794 cmpci_round_buffersize(handle, direction, bufsize)
1795 void *handle;
1796 int direction;
1797 size_t bufsize;
1798 {
1799 if (bufsize > 0x10000)
1800 bufsize = 0x10000;
1801
1802 return bufsize;
1803 }
1804
1805
1806 static paddr_t
1807 cmpci_mappage(handle, addr, offset, prot)
1808 void *handle;
1809 void *addr;
1810 off_t offset;
1811 int prot;
1812 {
1813 struct cmpci_softc *sc = handle;
1814 struct cmpci_dmanode *p;
1815
1816 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1817 return -1;
1818
1819 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1820 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1821 offset, prot, BUS_DMA_WAITOK);
1822 }
1823
1824
1825 /* ARGSUSED */
1826 static int
1827 cmpci_get_props(handle)
1828 void *handle;
1829 {
1830 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1831 }
1832
1833
1834 static int
1835 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1836 void *handle;
1837 void *start, *end;
1838 int blksize;
1839 void (*intr) __P((void *));
1840 void *arg;
1841 struct audio_params *param;
1842 {
1843 struct cmpci_softc *sc = handle;
1844 struct cmpci_dmanode *p;
1845 int bps;
1846
1847 sc->sc_play.intr = intr;
1848 sc->sc_play.intr_arg = arg;
1849 bps = param->channels*param->precision*param->factor / 8;
1850 if (!bps)
1851 return EINVAL;
1852
1853 /* set DMA frame */
1854 if (!(p = cmpci_find_dmamem(sc, start)))
1855 return EINVAL;
1856 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1857 DMAADDR(p));
1858 delay(10);
1859 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1860 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1861 delay(10);
1862
1863 /* set interrupt count */
1864 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1865 (blksize + bps - 1) / bps - 1);
1866 delay(10);
1867
1868 /* start DMA */
1869 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1870 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1871 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1872
1873 return 0;
1874 }
1875
1876 static int
1877 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1878 void *handle;
1879 void *start, *end;
1880 int blksize;
1881 void (*intr) __P((void *));
1882 void *arg;
1883 struct audio_params *param;
1884 {
1885 struct cmpci_softc *sc = handle;
1886 struct cmpci_dmanode *p;
1887 int bps;
1888
1889 sc->sc_rec.intr = intr;
1890 sc->sc_rec.intr_arg = arg;
1891 bps = param->channels*param->precision*param->factor/8;
1892 if (!bps)
1893 return EINVAL;
1894
1895 /* set DMA frame */
1896 if (!(p=cmpci_find_dmamem(sc, start)))
1897 return EINVAL;
1898 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1899 DMAADDR(p));
1900 delay(10);
1901 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1902 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1903 delay(10);
1904
1905 /* set interrupt count */
1906 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1907 (blksize + bps - 1) / bps - 1);
1908 delay(10);
1909
1910 /* start DMA */
1911 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1912 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1913 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1914
1915 return 0;
1916 }
1917
1918
1919 /* end of file */
1920