cmpci.c revision 1.26.2.1 1 /* $NetBSD: cmpci.c,v 1.26.2.1 2005/01/02 20:03:11 kent Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <tshiozak (at) NetBSD.org> .
9 *
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by ITOH Yasufumi.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 */
35
36 /*
37 * C-Media CMI8x38 Audio Chip Support.
38 *
39 * TODO:
40 * - 4ch / 6ch support.
41 * - Joystick support.
42 *
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.26.2.1 2005/01/02 20:03:11 kent Exp $");
47
48 #if defined(AUDIO_DEBUG) || defined(DEBUG)
49 #define DPRINTF(x) if (cmpcidebug) printf x
50 int cmpcidebug = 0;
51 #else
52 #define DPRINTF(x)
53 #endif
54
55 #include "mpu.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/proc.h>
63
64 #include <dev/pci/pcidevs.h>
65 #include <dev/pci/pcivar.h>
66
67 #include <sys/audioio.h>
68 #include <dev/audio_if.h>
69 #include <dev/midi_if.h>
70
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/pci/cmpcireg.h>
74 #include <dev/pci/cmpcivar.h>
75
76 #include <dev/ic/mpuvar.h>
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 /*
81 * Low-level HW interface
82 */
83 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
84 uint8_t));
85 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
86 uint8_t, uint8_t));
87 static __inline void cmpci_reg_partial_write_1 __P((struct cmpci_softc *,
88 int, int,
89 unsigned, unsigned));
90 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
91 int, int,
92 uint32_t, uint32_t));
93 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
94 int, uint8_t));
95 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
96 int, uint8_t));
97 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
98 int, uint32_t));
99 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
100 int, uint32_t));
101 static __inline void cmpci_reg_set_reg_misc __P((struct cmpci_softc *,
102 uint32_t));
103 static __inline void cmpci_reg_clear_reg_misc __P((struct cmpci_softc *,
104 uint32_t));
105 static int cmpci_rate_to_index __P((int));
106 static __inline int cmpci_index_to_rate __P((int));
107 static __inline int cmpci_index_to_divider __P((int));
108
109 static int cmpci_adjust __P((int, int));
110 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
111 static void cmpci_set_out_ports __P((struct cmpci_softc *));
112 static int cmpci_set_in_ports __P((struct cmpci_softc *));
113
114
115 /*
116 * autoconf interface
117 */
118 static int cmpci_match __P((struct device *, struct cfdata *, void *));
119 static void cmpci_attach __P((struct device *, struct device *, void *));
120
121 CFATTACH_DECL(cmpci, sizeof (struct cmpci_softc),
122 cmpci_match, cmpci_attach, NULL, NULL);
123
124 /* interrupt */
125 static int cmpci_intr __P((void *));
126
127
128 /*
129 * DMA stuffs
130 */
131 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
132 size_t, struct malloc_type *,
133 int, caddr_t *));
134 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t,
135 struct malloc_type *));
136 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
137 caddr_t));
138
139
140 /*
141 * interface to machine independent layer
142 */
143 static int cmpci_open __P((void *, int));
144 static void cmpci_close __P((void *));
145 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
146 static int cmpci_set_params __P((void *, int, int, audio_params_t *,
147 audio_params_t *, stream_filter_list_t *, stream_filter_list_t *));
148 static int cmpci_round_blocksize __P((void *, int));
149 static int cmpci_halt_output __P((void *));
150 static int cmpci_halt_input __P((void *));
151 static int cmpci_getdev __P((void *, struct audio_device *));
152 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
153 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
154 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
155 static void *cmpci_allocm __P((void *, int, size_t, struct malloc_type *, int));
156 static void cmpci_freem __P((void *, void *, struct malloc_type *));
157 static size_t cmpci_round_buffersize __P((void *, int, size_t));
158 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
159 static int cmpci_get_props __P((void *));
160 static int cmpci_trigger_output __P((void *, void *, void *, int,
161 void (*)(void *), void *, const audio_params_t *));
162 static int cmpci_trigger_input __P((void *, void *, void *, int,
163 void (*)(void *), void *, const audio_params_t *));
164
165 static const struct audio_hw_if cmpci_hw_if = {
166 cmpci_open, /* open */
167 cmpci_close, /* close */
168 NULL, /* drain */
169 cmpci_query_encoding, /* query_encoding */
170 cmpci_set_params, /* set_params */
171 cmpci_round_blocksize, /* round_blocksize */
172 NULL, /* commit_settings */
173 NULL, /* init_output */
174 NULL, /* init_input */
175 NULL, /* start_output */
176 NULL, /* start_input */
177 cmpci_halt_output, /* halt_output */
178 cmpci_halt_input, /* halt_input */
179 NULL, /* speaker_ctl */
180 cmpci_getdev, /* getdev */
181 NULL, /* setfd */
182 cmpci_set_port, /* set_port */
183 cmpci_get_port, /* get_port */
184 cmpci_query_devinfo, /* query_devinfo */
185 cmpci_allocm, /* allocm */
186 cmpci_freem, /* freem */
187 cmpci_round_buffersize,/* round_buffersize */
188 cmpci_mappage, /* mappage */
189 cmpci_get_props, /* get_props */
190 cmpci_trigger_output, /* trigger_output */
191 cmpci_trigger_input, /* trigger_input */
192 NULL, /* dev_ioctl */
193 };
194
195 #define CMPCI_NFORMATS 4
196 static const struct audio_format cmpci_formats[CMPCI_NFORMATS] = {
197 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
198 2, AUFMT_STEREO, 0, {5512, 48000}},
199 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
200 1, AUFMT_MONAURAL, 0, {5512, 48000}},
201 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
202 2, AUFMT_STEREO, 0, {5512, 48000}},
203 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
204 1, AUFMT_MONAURAL, 0, {5512, 48000}},
205 };
206
207
208 /*
209 * Low-level HW interface
210 */
211
212 /* mixer register read/write */
213 static __inline uint8_t
214 cmpci_mixerreg_read(sc, no)
215 struct cmpci_softc *sc;
216 uint8_t no;
217 {
218 uint8_t ret;
219
220 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
221 delay(10);
222 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
223 delay(10);
224 return ret;
225 }
226
227 static __inline void
228 cmpci_mixerreg_write(sc, no, val)
229 struct cmpci_softc *sc;
230 uint8_t no, val;
231 {
232 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
233 delay(10);
234 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
235 delay(10);
236 }
237
238
239 /* register partial write */
240 static __inline void
241 cmpci_reg_partial_write_1(sc, no, shift, mask, val)
242 struct cmpci_softc *sc;
243 int no, shift;
244 unsigned mask, val;
245 {
246 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
247 (val<<shift) |
248 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
249 delay(10);
250 }
251
252 static __inline void
253 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
254 struct cmpci_softc *sc;
255 int no, shift;
256 uint32_t mask, val;
257 {
258 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
259 (val<<shift) |
260 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
261 delay(10);
262 }
263
264 /* register set/clear bit */
265 static __inline void
266 cmpci_reg_set_1(sc, no, mask)
267 struct cmpci_softc *sc;
268 int no;
269 uint8_t mask;
270 {
271 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
272 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
273 delay(10);
274 }
275
276 static __inline void
277 cmpci_reg_clear_1(sc, no, mask)
278 struct cmpci_softc *sc;
279 int no;
280 uint8_t mask;
281 {
282 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
283 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
284 delay(10);
285 }
286
287
288 static __inline void
289 cmpci_reg_set_4(sc, no, mask)
290 struct cmpci_softc *sc;
291 int no;
292 uint32_t mask;
293 {
294 /* use cmpci_reg_set_reg_misc() for CMPCI_REG_MISC */
295 KDASSERT(no != CMPCI_REG_MISC);
296
297 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
298 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
299 delay(10);
300 }
301
302 static __inline void
303 cmpci_reg_clear_4(sc, no, mask)
304 struct cmpci_softc *sc;
305 int no;
306 uint32_t mask;
307 {
308 /* use cmpci_reg_clear_reg_misc() for CMPCI_REG_MISC */
309 KDASSERT(no != CMPCI_REG_MISC);
310
311 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
312 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
313 delay(10);
314 }
315
316
317 /*
318 * The CMPCI_REG_MISC register needs special handling, since one of
319 * its bits has different read/write values.
320 */
321 static __inline void
322 cmpci_reg_set_reg_misc(sc, mask)
323 struct cmpci_softc *sc;
324 uint32_t mask;
325 {
326 sc->sc_reg_misc |= mask;
327 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
328 sc->sc_reg_misc);
329 delay(10);
330 }
331
332 static __inline void
333 cmpci_reg_clear_reg_misc(sc, mask)
334 struct cmpci_softc *sc;
335 uint32_t mask;
336 {
337 sc->sc_reg_misc &= ~mask;
338 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
339 sc->sc_reg_misc);
340 delay(10);
341 }
342
343
344 /* rate */
345 static const struct {
346 int rate;
347 int divider;
348 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
349 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
350 _RATE(5512),
351 _RATE(8000),
352 _RATE(11025),
353 _RATE(16000),
354 _RATE(22050),
355 _RATE(32000),
356 _RATE(44100),
357 _RATE(48000)
358 #undef _RATE
359 };
360
361 static int
362 cmpci_rate_to_index(rate)
363 int rate;
364 {
365 int i;
366
367 for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++)
368 if (rate <=
369 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
370 return i;
371 return i; /* 48000 */
372 }
373
374 static __inline int
375 cmpci_index_to_rate(index)
376 int index;
377 {
378 return cmpci_rate_table[index].rate;
379 }
380
381 static __inline int
382 cmpci_index_to_divider(index)
383 int index;
384 {
385 return cmpci_rate_table[index].divider;
386 }
387
388
389 /*
390 * interface to configure the device.
391 */
392
393 static int
394 cmpci_match(parent, match, aux)
395 struct device *parent;
396 struct cfdata *match;
397 void *aux;
398 {
399 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
400
401 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
402 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
403 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
404 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
405 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
406 return 1;
407
408 return 0;
409 }
410
411 static void
412 cmpci_attach(parent, self, aux)
413 struct device *parent, *self;
414 void *aux;
415 {
416 struct cmpci_softc *sc = (struct cmpci_softc *)self;
417 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
418 struct audio_attach_args aa;
419 pci_intr_handle_t ih;
420 char const *strintr;
421 char devinfo[256];
422 int i, v;
423
424 aprint_naive(": Audio controller\n");
425
426 sc->sc_id = pa->pa_id;
427 sc->sc_class = pa->pa_class;
428 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
429 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
430 PCI_REVISION(sc->sc_class));
431 switch (PCI_PRODUCT(sc->sc_id)) {
432 case PCI_PRODUCT_CMEDIA_CMI8338A:
433 /*FALLTHROUGH*/
434 case PCI_PRODUCT_CMEDIA_CMI8338B:
435 sc->sc_capable = CMPCI_CAP_CMI8338;
436 break;
437 case PCI_PRODUCT_CMEDIA_CMI8738:
438 /*FALLTHROUGH*/
439 case PCI_PRODUCT_CMEDIA_CMI8738B:
440 sc->sc_capable = CMPCI_CAP_CMI8738;
441 break;
442 }
443
444 /* map I/O space */
445 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
446 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
447 aprint_error("%s: failed to map I/O space\n",
448 sc->sc_dev.dv_xname);
449 return;
450 }
451
452 /* interrupt */
453 if (pci_intr_map(pa, &ih)) {
454 aprint_error("%s: failed to map interrupt\n",
455 sc->sc_dev.dv_xname);
456 return;
457 }
458 strintr = pci_intr_string(pa->pa_pc, ih);
459 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
460 if (sc->sc_ih == NULL) {
461 aprint_error("%s: failed to establish interrupt",
462 sc->sc_dev.dv_xname);
463 if (strintr != NULL)
464 aprint_normal(" at %s", strintr);
465 aprint_normal("\n");
466 return;
467 }
468 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
469
470 sc->sc_dmat = pa->pa_dmat;
471
472 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
473
474 /* attach OPL device */
475 aa.type = AUDIODEV_TYPE_OPL;
476 aa.hwif = NULL;
477 aa.hdl = NULL;
478 (void)config_found(&sc->sc_dev, &aa, audioprint);
479
480 /* attach MPU-401 device */
481 aa.type = AUDIODEV_TYPE_MPU;
482 aa.hwif = NULL;
483 aa.hdl = NULL;
484 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
485 CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
486 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
487
488 /* get initial value (this is 0 and may be omitted but just in case) */
489 sc->sc_reg_misc = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
490 CMPCI_REG_MISC) & ~CMPCI_REG_SPDIF48K;
491
492 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
493 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
494 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
495 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
496 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
497 for (i = 0; i < CMPCI_NDEVS; i++) {
498 switch(i) {
499 /*
500 * CMI8738 defaults are
501 * master: 0xe0 (0x00 - 0xf8)
502 * FM, DAC: 0xc0 (0x00 - 0xf8)
503 * PC speaker: 0x80 (0x00 - 0xc0)
504 * others: 0
505 */
506 /* volume */
507 case CMPCI_MASTER_VOL:
508 v = 128; /* 224 */
509 break;
510 case CMPCI_FM_VOL:
511 case CMPCI_DAC_VOL:
512 v = 192;
513 break;
514 case CMPCI_PCSPEAKER:
515 v = 128;
516 break;
517
518 /* booleans, set to true */
519 case CMPCI_CD_MUTE:
520 case CMPCI_MIC_MUTE:
521 case CMPCI_LINE_IN_MUTE:
522 case CMPCI_AUX_IN_MUTE:
523 v = 1;
524 break;
525
526 /* volume with inital value 0 */
527 case CMPCI_CD_VOL:
528 case CMPCI_LINE_IN_VOL:
529 case CMPCI_AUX_IN_VOL:
530 case CMPCI_MIC_VOL:
531 case CMPCI_MIC_RECVOL:
532 /* FALLTHROUGH */
533
534 /* others are cleared */
535 case CMPCI_MIC_PREAMP:
536 case CMPCI_RECORD_SOURCE:
537 case CMPCI_PLAYBACK_MODE:
538 case CMPCI_SPDIF_IN_SELECT:
539 case CMPCI_SPDIF_IN_PHASE:
540 case CMPCI_SPDIF_LOOP:
541 case CMPCI_SPDIF_OUT_PLAYBACK:
542 case CMPCI_SPDIF_OUT_VOLTAGE:
543 case CMPCI_MONITOR_DAC:
544 case CMPCI_REAR:
545 case CMPCI_INDIVIDUAL:
546 case CMPCI_REVERSE:
547 case CMPCI_SURROUND:
548 default:
549 v = 0;
550 break;
551 }
552 sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
553 cmpci_set_mixer_gain(sc, i);
554 }
555 }
556
557
558 static int
559 cmpci_intr(handle)
560 void *handle;
561 {
562 struct cmpci_softc *sc = handle;
563 uint32_t intrstat;
564
565 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
566 CMPCI_REG_INTR_STATUS);
567
568 if (!(intrstat & CMPCI_REG_ANY_INTR))
569 return 0;
570
571 delay(10);
572
573 /* disable and reset intr */
574 if (intrstat & CMPCI_REG_CH0_INTR)
575 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
576 CMPCI_REG_CH0_INTR_ENABLE);
577 if (intrstat & CMPCI_REG_CH1_INTR)
578 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
579 CMPCI_REG_CH1_INTR_ENABLE);
580
581 if (intrstat & CMPCI_REG_CH0_INTR) {
582 if (sc->sc_play.intr != NULL)
583 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
584 }
585 if (intrstat & CMPCI_REG_CH1_INTR) {
586 if (sc->sc_rec.intr != NULL)
587 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
588 }
589
590 /* enable intr */
591 if (intrstat & CMPCI_REG_CH0_INTR)
592 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
593 CMPCI_REG_CH0_INTR_ENABLE);
594 if (intrstat & CMPCI_REG_CH1_INTR)
595 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
596 CMPCI_REG_CH1_INTR_ENABLE);
597
598 #if NMPU > 0
599 if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
600 mpu_intr(sc->sc_mpudev);
601 #endif
602
603 return 1;
604 }
605
606
607 /* open/close */
608 static int
609 cmpci_open(handle, flags)
610 void *handle;
611 int flags;
612 {
613 return 0;
614 }
615
616 static void
617 cmpci_close(handle)
618 void *handle;
619 {
620 }
621
622 static int
623 cmpci_query_encoding(handle, fp)
624 void *handle;
625 struct audio_encoding *fp;
626 {
627 switch (fp->index) {
628 case 0:
629 strcpy(fp->name, AudioEulinear);
630 fp->encoding = AUDIO_ENCODING_ULINEAR;
631 fp->precision = 8;
632 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
633 break;
634 case 1:
635 strcpy(fp->name, AudioEmulaw);
636 fp->encoding = AUDIO_ENCODING_ULAW;
637 fp->precision = 8;
638 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
639 break;
640 case 2:
641 strcpy(fp->name, AudioEalaw);
642 fp->encoding = AUDIO_ENCODING_ALAW;
643 fp->precision = 8;
644 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
645 break;
646 case 3:
647 strcpy(fp->name, AudioEslinear);
648 fp->encoding = AUDIO_ENCODING_SLINEAR;
649 fp->precision = 8;
650 fp->flags = 0;
651 break;
652 case 4:
653 strcpy(fp->name, AudioEslinear_le);
654 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
655 fp->precision = 16;
656 fp->flags = 0;
657 break;
658 case 5:
659 strcpy(fp->name, AudioEulinear_le);
660 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
661 fp->precision = 16;
662 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
663 break;
664 case 6:
665 strcpy(fp->name, AudioEslinear_be);
666 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
667 fp->precision = 16;
668 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
669 break;
670 case 7:
671 strcpy(fp->name, AudioEulinear_be);
672 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
673 fp->precision = 16;
674 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
675 break;
676 default:
677 return EINVAL;
678 }
679 return 0;
680 }
681
682
683 static int
684 cmpci_set_params(handle, setmode, usemode, play, rec, pfil, rfil)
685 void *handle;
686 int setmode, usemode;
687 audio_params_t *play, *rec;
688 stream_filter_list_t *pfil, *rfil;
689 {
690 int i;
691 struct cmpci_softc *sc = handle;
692
693 for (i = 0; i < 2; i++) {
694 int md_format;
695 int md_divide;
696 int md_index;
697 int mode;
698 audio_params_t *p;
699 stream_filter_list_t *fil;
700 int ind;
701
702 switch (i) {
703 case 0:
704 mode = AUMODE_PLAY;
705 p = play;
706 fil = pfil;
707 break;
708 case 1:
709 mode = AUMODE_RECORD;
710 p = rec;
711 fil = rfil;
712 break;
713 default:
714 return EINVAL;
715 }
716
717 if (!(setmode & mode))
718 continue;
719
720 md_index = cmpci_rate_to_index(p->sample_rate);
721 md_divide = cmpci_index_to_divider(md_index);
722 p->sample_rate = cmpci_index_to_rate(md_index);
723 DPRINTF(("%s: sample:%u, divider=%d\n",
724 sc->sc_dev.dv_xname, p->sample_rate, md_divide));
725
726 ind = auconv_set_converter(cmpci_formats, CMPCI_NFORMATS,
727 mode, p, FALSE, fil);
728 if (ind < 0)
729 return EINVAL;
730 if (fil->req_size > 0)
731 p = &fil->filters[0].param;
732
733 /* format */
734 md_format = p->channels == 1
735 ? CMPCI_REG_FORMAT_MONO : CMPCI_REG_FORMAT_STEREO;
736 md_format |= p->precision == 16
737 ? CMPCI_REG_FORMAT_16BIT : CMPCI_REG_FORMAT_8BIT;
738 if (mode & AUMODE_PLAY) {
739 cmpci_reg_partial_write_4(sc,
740 CMPCI_REG_CHANNEL_FORMAT,
741 CMPCI_REG_CH0_FORMAT_SHIFT,
742 CMPCI_REG_CH0_FORMAT_MASK, md_format);
743 cmpci_reg_partial_write_4(sc,
744 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
745 CMPCI_REG_DAC_FS_MASK, md_divide);
746 sc->sc_play.md_divide = md_divide;
747 } else {
748 cmpci_reg_partial_write_4(sc,
749 CMPCI_REG_CHANNEL_FORMAT,
750 CMPCI_REG_CH1_FORMAT_SHIFT,
751 CMPCI_REG_CH1_FORMAT_MASK, md_format);
752 cmpci_reg_partial_write_4(sc,
753 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
754 CMPCI_REG_ADC_FS_MASK, md_divide);
755 sc->sc_rec.md_divide = md_divide;
756 }
757 cmpci_set_out_ports(sc);
758 cmpci_set_in_ports(sc);
759 }
760 return 0;
761 }
762
763 /* ARGSUSED */
764 static int
765 cmpci_round_blocksize(handle, block)
766 void *handle;
767 int block;
768 {
769 return (block & -4);
770 }
771
772 static int
773 cmpci_halt_output(handle)
774 void *handle;
775 {
776 struct cmpci_softc *sc = handle;
777 int s;
778
779 s = splaudio();
780 sc->sc_play.intr = NULL;
781 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
782 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
783 /* wait for reset DMA */
784 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
785 delay(10);
786 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
787 splx(s);
788
789 return 0;
790 }
791
792 static int
793 cmpci_halt_input(handle)
794 void *handle;
795 {
796 struct cmpci_softc *sc = handle;
797 int s;
798
799 s = splaudio();
800 sc->sc_rec.intr = NULL;
801 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
802 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
803 /* wait for reset DMA */
804 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
805 delay(10);
806 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
807 splx(s);
808
809 return 0;
810 }
811
812
813 /* get audio device information */
814 static int
815 cmpci_getdev(handle, ad)
816 void *handle;
817 struct audio_device *ad;
818 {
819 struct cmpci_softc *sc = handle;
820
821 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
822 snprintf(ad->version, sizeof(ad->version), "0x%02x",
823 PCI_REVISION(sc->sc_class));
824 switch (PCI_PRODUCT(sc->sc_id)) {
825 case PCI_PRODUCT_CMEDIA_CMI8338A:
826 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
827 break;
828 case PCI_PRODUCT_CMEDIA_CMI8338B:
829 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
830 break;
831 case PCI_PRODUCT_CMEDIA_CMI8738:
832 strncpy(ad->config, "CMI8738", sizeof(ad->config));
833 break;
834 case PCI_PRODUCT_CMEDIA_CMI8738B:
835 strncpy(ad->config, "CMI8738B", sizeof(ad->config));
836 break;
837 default:
838 strncpy(ad->config, "unknown", sizeof(ad->config));
839 }
840
841 return 0;
842 }
843
844
845 /* mixer device information */
846 int
847 cmpci_query_devinfo(handle, dip)
848 void *handle;
849 mixer_devinfo_t *dip;
850 {
851 static const char *const mixer_port_names[] = {
852 AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
853 AudioNmicrophone
854 };
855 static const char *const mixer_classes[] = {
856 AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
857 CmpciCspdif
858 };
859 struct cmpci_softc *sc = handle;
860 int i;
861
862 dip->prev = dip->next = AUDIO_MIXER_LAST;
863
864 switch (dip->index) {
865 case CMPCI_INPUT_CLASS:
866 case CMPCI_OUTPUT_CLASS:
867 case CMPCI_RECORD_CLASS:
868 case CMPCI_PLAYBACK_CLASS:
869 case CMPCI_SPDIF_CLASS:
870 dip->type = AUDIO_MIXER_CLASS;
871 dip->mixer_class = dip->index;
872 strcpy(dip->label.name,
873 mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
874 return 0;
875
876 case CMPCI_AUX_IN_VOL:
877 dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
878 goto vol1;
879 case CMPCI_DAC_VOL:
880 case CMPCI_FM_VOL:
881 case CMPCI_CD_VOL:
882 case CMPCI_LINE_IN_VOL:
883 case CMPCI_MIC_VOL:
884 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
885 vol1: dip->mixer_class = CMPCI_INPUT_CLASS;
886 dip->next = dip->index + 6; /* CMPCI_xxx_MUTE */
887 strcpy(dip->label.name, mixer_port_names[dip->index]);
888 dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
889 vol:
890 dip->type = AUDIO_MIXER_VALUE;
891 strcpy(dip->un.v.units.name, AudioNvolume);
892 return 0;
893
894 case CMPCI_MIC_MUTE:
895 dip->next = CMPCI_MIC_PREAMP;
896 /* FALLTHROUGH */
897 case CMPCI_DAC_MUTE:
898 case CMPCI_FM_MUTE:
899 case CMPCI_CD_MUTE:
900 case CMPCI_LINE_IN_MUTE:
901 case CMPCI_AUX_IN_MUTE:
902 dip->prev = dip->index - 6; /* CMPCI_xxx_VOL */
903 dip->mixer_class = CMPCI_INPUT_CLASS;
904 strcpy(dip->label.name, AudioNmute);
905 goto on_off;
906 on_off:
907 dip->type = AUDIO_MIXER_ENUM;
908 dip->un.e.num_mem = 2;
909 strcpy(dip->un.e.member[0].label.name, AudioNoff);
910 dip->un.e.member[0].ord = 0;
911 strcpy(dip->un.e.member[1].label.name, AudioNon);
912 dip->un.e.member[1].ord = 1;
913 return 0;
914
915 case CMPCI_MIC_PREAMP:
916 dip->mixer_class = CMPCI_INPUT_CLASS;
917 dip->prev = CMPCI_MIC_MUTE;
918 strcpy(dip->label.name, AudioNpreamp);
919 goto on_off;
920 case CMPCI_PCSPEAKER:
921 dip->mixer_class = CMPCI_INPUT_CLASS;
922 strcpy(dip->label.name, AudioNspeaker);
923 dip->un.v.num_channels = 1;
924 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
925 goto vol;
926 case CMPCI_RECORD_SOURCE:
927 dip->mixer_class = CMPCI_RECORD_CLASS;
928 strcpy(dip->label.name, AudioNsource);
929 dip->type = AUDIO_MIXER_SET;
930 dip->un.s.num_mem = 7;
931 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
932 dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
933 strcpy(dip->un.s.member[1].label.name, AudioNcd);
934 dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
935 strcpy(dip->un.s.member[2].label.name, AudioNline);
936 dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
937 strcpy(dip->un.s.member[3].label.name, AudioNaux);
938 dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
939 strcpy(dip->un.s.member[4].label.name, AudioNwave);
940 dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
941 strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
942 dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
943 strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
944 dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
945 return 0;
946 case CMPCI_MIC_RECVOL:
947 dip->mixer_class = CMPCI_RECORD_CLASS;
948 strcpy(dip->label.name, AudioNmicrophone);
949 dip->un.v.num_channels = 1;
950 dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
951 goto vol;
952
953 case CMPCI_PLAYBACK_MODE:
954 dip->mixer_class = CMPCI_PLAYBACK_CLASS;
955 dip->type = AUDIO_MIXER_ENUM;
956 strcpy(dip->label.name, AudioNmode);
957 dip->un.e.num_mem = 2;
958 strcpy(dip->un.e.member[0].label.name, AudioNdac);
959 dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
960 strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
961 dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
962 return 0;
963 case CMPCI_SPDIF_IN_SELECT:
964 dip->mixer_class = CMPCI_SPDIF_CLASS;
965 dip->type = AUDIO_MIXER_ENUM;
966 dip->next = CMPCI_SPDIF_IN_PHASE;
967 strcpy(dip->label.name, AudioNinput);
968 i = 0;
969 strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
970 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
971 if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
972 strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
973 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
974 }
975 strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
976 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
977 dip->un.e.num_mem = i;
978 return 0;
979 case CMPCI_SPDIF_IN_PHASE:
980 dip->mixer_class = CMPCI_SPDIF_CLASS;
981 dip->prev = CMPCI_SPDIF_IN_SELECT;
982 strcpy(dip->label.name, CmpciNphase);
983 dip->type = AUDIO_MIXER_ENUM;
984 dip->un.e.num_mem = 2;
985 strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
986 dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
987 strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
988 dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
989 return 0;
990 case CMPCI_SPDIF_LOOP:
991 dip->mixer_class = CMPCI_SPDIF_CLASS;
992 dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
993 strcpy(dip->label.name, AudioNoutput);
994 dip->type = AUDIO_MIXER_ENUM;
995 dip->un.e.num_mem = 2;
996 strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
997 dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
998 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
999 dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
1000 return 0;
1001 case CMPCI_SPDIF_OUT_PLAYBACK:
1002 dip->mixer_class = CMPCI_SPDIF_CLASS;
1003 dip->prev = CMPCI_SPDIF_LOOP;
1004 dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
1005 strcpy(dip->label.name, CmpciNplayback);
1006 dip->type = AUDIO_MIXER_ENUM;
1007 dip->un.e.num_mem = 2;
1008 strcpy(dip->un.e.member[0].label.name, AudioNwave);
1009 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
1010 strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
1011 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
1012 return 0;
1013 case CMPCI_SPDIF_OUT_VOLTAGE:
1014 dip->mixer_class = CMPCI_SPDIF_CLASS;
1015 dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
1016 strcpy(dip->label.name, CmpciNvoltage);
1017 dip->type = AUDIO_MIXER_ENUM;
1018 dip->un.e.num_mem = 2;
1019 strcpy(dip->un.e.member[0].label.name, CmpciNhigh_v);
1020 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
1021 strcpy(dip->un.e.member[1].label.name, CmpciNlow_v);
1022 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
1023 return 0;
1024 case CMPCI_MONITOR_DAC:
1025 dip->mixer_class = CMPCI_SPDIF_CLASS;
1026 strcpy(dip->label.name, AudioNmonitor);
1027 dip->type = AUDIO_MIXER_ENUM;
1028 dip->un.e.num_mem = 3;
1029 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1030 dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
1031 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1032 dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
1033 strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
1034 dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
1035 return 0;
1036
1037 case CMPCI_MASTER_VOL:
1038 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1039 strcpy(dip->label.name, AudioNmaster);
1040 dip->un.v.num_channels = 2;
1041 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
1042 goto vol;
1043 case CMPCI_REAR:
1044 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1045 dip->next = CMPCI_INDIVIDUAL;
1046 strcpy(dip->label.name, CmpciNrear);
1047 goto on_off;
1048 case CMPCI_INDIVIDUAL:
1049 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1050 dip->prev = CMPCI_REAR;
1051 dip->next = CMPCI_REVERSE;
1052 strcpy(dip->label.name, CmpciNindividual);
1053 goto on_off;
1054 case CMPCI_REVERSE:
1055 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1056 dip->prev = CMPCI_INDIVIDUAL;
1057 strcpy(dip->label.name, CmpciNreverse);
1058 goto on_off;
1059 case CMPCI_SURROUND:
1060 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1061 strcpy(dip->label.name, CmpciNsurround);
1062 goto on_off;
1063 }
1064
1065 return ENXIO;
1066 }
1067
1068 static int
1069 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1070 struct cmpci_softc *sc;
1071 size_t size;
1072 struct malloc_type *type;
1073 int flags;
1074 caddr_t *r_addr;
1075 {
1076 int error = 0;
1077 struct cmpci_dmanode *n;
1078 int w;
1079
1080 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1081 if (n == NULL) {
1082 error = ENOMEM;
1083 goto quit;
1084 }
1085
1086 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1087 #define CMPCI_DMABUF_ALIGN 0x4
1088 #define CMPCI_DMABUF_BOUNDARY 0x0
1089 n->cd_tag = sc->sc_dmat;
1090 n->cd_size = size;
1091 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1092 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1093 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1094 if (error)
1095 goto mfree;
1096 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1097 &n->cd_addr, w | BUS_DMA_COHERENT);
1098 if (error)
1099 goto dmafree;
1100 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1101 w, &n->cd_map);
1102 if (error)
1103 goto unmap;
1104 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1105 NULL, w);
1106 if (error)
1107 goto destroy;
1108
1109 n->cd_next = sc->sc_dmap;
1110 sc->sc_dmap = n;
1111 *r_addr = KVADDR(n);
1112 return 0;
1113
1114 destroy:
1115 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1116 unmap:
1117 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1118 dmafree:
1119 bus_dmamem_free(n->cd_tag,
1120 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1121 mfree:
1122 free(n, type);
1123 quit:
1124 return error;
1125 }
1126
1127 static int
1128 cmpci_free_dmamem(sc, addr, type)
1129 struct cmpci_softc *sc;
1130 caddr_t addr;
1131 struct malloc_type *type;
1132 {
1133 struct cmpci_dmanode **nnp;
1134
1135 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1136 if ((*nnp)->cd_addr == addr) {
1137 struct cmpci_dmanode *n = *nnp;
1138 bus_dmamap_unload(n->cd_tag, n->cd_map);
1139 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1140 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1141 bus_dmamem_free(n->cd_tag, n->cd_segs,
1142 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1143 free(n, type);
1144 return 0;
1145 }
1146 }
1147 return -1;
1148 }
1149
1150 static struct cmpci_dmanode *
1151 cmpci_find_dmamem(sc, addr)
1152 struct cmpci_softc *sc;
1153 caddr_t addr;
1154 {
1155 struct cmpci_dmanode *p;
1156
1157 for (p=sc->sc_dmap; p; p=p->cd_next)
1158 if ( KVADDR(p) == (void *)addr )
1159 break;
1160 return p;
1161 }
1162
1163
1164 #if 0
1165 static void
1166 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1167 static void
1168 cmpci_print_dmamem(p)
1169 struct cmpci_dmanode *p;
1170 {
1171 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1172 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1173 (void *)DMAADDR(p), (void *)p->cd_size));
1174 }
1175 #endif /* DEBUG */
1176
1177
1178 static void *
1179 cmpci_allocm(handle, direction, size, type, flags)
1180 void *handle;
1181 int direction;
1182 size_t size;
1183 struct malloc_type *type;
1184 int flags;
1185 {
1186 struct cmpci_softc *sc = handle;
1187 caddr_t addr;
1188
1189 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1190 return NULL;
1191 return addr;
1192 }
1193
1194 static void
1195 cmpci_freem(handle, addr, type)
1196 void *handle;
1197 void *addr;
1198 struct malloc_type *type;
1199 {
1200 struct cmpci_softc *sc = handle;
1201
1202 cmpci_free_dmamem(sc, addr, type);
1203 }
1204
1205
1206 #define MAXVAL 256
1207 static int
1208 cmpci_adjust(val, mask)
1209 int val, mask;
1210 {
1211 val += (MAXVAL - mask) >> 1;
1212 if (val >= MAXVAL)
1213 val = MAXVAL-1;
1214 return val & mask;
1215 }
1216
1217 static void
1218 cmpci_set_mixer_gain(sc, port)
1219 struct cmpci_softc *sc;
1220 int port;
1221 {
1222 int src;
1223 int bits, mask;
1224
1225 switch (port) {
1226 case CMPCI_MIC_VOL:
1227 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
1228 CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1229 return;
1230 case CMPCI_MASTER_VOL:
1231 src = CMPCI_SB16_MIXER_MASTER_L;
1232 break;
1233 case CMPCI_LINE_IN_VOL:
1234 src = CMPCI_SB16_MIXER_LINE_L;
1235 break;
1236 case CMPCI_AUX_IN_VOL:
1237 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
1238 CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
1239 sc->sc_gain[port][CMPCI_RIGHT]));
1240 return;
1241 case CMPCI_MIC_RECVOL:
1242 cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
1243 CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
1244 CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1245 return;
1246 case CMPCI_DAC_VOL:
1247 src = CMPCI_SB16_MIXER_VOICE_L;
1248 break;
1249 case CMPCI_FM_VOL:
1250 src = CMPCI_SB16_MIXER_FM_L;
1251 break;
1252 case CMPCI_CD_VOL:
1253 src = CMPCI_SB16_MIXER_CDDA_L;
1254 break;
1255 case CMPCI_PCSPEAKER:
1256 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1257 CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1258 return;
1259 case CMPCI_MIC_PREAMP:
1260 if (sc->sc_gain[port][CMPCI_LR])
1261 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1262 CMPCI_REG_MICGAINZ);
1263 else
1264 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1265 CMPCI_REG_MICGAINZ);
1266 return;
1267
1268 case CMPCI_DAC_MUTE:
1269 if (sc->sc_gain[port][CMPCI_LR])
1270 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1271 CMPCI_REG_WSMUTE);
1272 else
1273 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1274 CMPCI_REG_WSMUTE);
1275 return;
1276 case CMPCI_FM_MUTE:
1277 if (sc->sc_gain[port][CMPCI_LR])
1278 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1279 CMPCI_REG_FMMUTE);
1280 else
1281 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1282 CMPCI_REG_FMMUTE);
1283 return;
1284 case CMPCI_AUX_IN_MUTE:
1285 if (sc->sc_gain[port][CMPCI_LR])
1286 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1287 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1288 else
1289 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1290 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1291 return;
1292 case CMPCI_CD_MUTE:
1293 mask = CMPCI_SB16_SW_CD;
1294 goto sbmute;
1295 case CMPCI_MIC_MUTE:
1296 mask = CMPCI_SB16_SW_MIC;
1297 goto sbmute;
1298 case CMPCI_LINE_IN_MUTE:
1299 mask = CMPCI_SB16_SW_LINE;
1300 sbmute:
1301 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1302 if (sc->sc_gain[port][CMPCI_LR])
1303 bits = bits & ~mask;
1304 else
1305 bits = bits | mask;
1306 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1307 return;
1308
1309 case CMPCI_SPDIF_IN_SELECT:
1310 case CMPCI_MONITOR_DAC:
1311 case CMPCI_PLAYBACK_MODE:
1312 case CMPCI_SPDIF_LOOP:
1313 case CMPCI_SPDIF_OUT_PLAYBACK:
1314 cmpci_set_out_ports(sc);
1315 return;
1316 case CMPCI_SPDIF_OUT_VOLTAGE:
1317 if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1318 if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
1319 == CMPCI_SPDIF_OUT_VOLTAGE_HIGH)
1320 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_5V);
1321 else
1322 cmpci_reg_set_reg_misc(sc, CMPCI_REG_5V);
1323 }
1324 return;
1325 case CMPCI_SURROUND:
1326 if (CMPCI_ISCAP(sc, SURROUND)) {
1327 if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1328 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1329 CMPCI_REG_SURROUND);
1330 else
1331 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1332 CMPCI_REG_SURROUND);
1333 }
1334 return;
1335 case CMPCI_REAR:
1336 if (CMPCI_ISCAP(sc, REAR)) {
1337 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1338 cmpci_reg_set_reg_misc(sc, CMPCI_REG_N4SPK3D);
1339 else
1340 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_N4SPK3D);
1341 }
1342 return;
1343 case CMPCI_INDIVIDUAL:
1344 if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1345 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1346 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1347 CMPCI_REG_INDIVIDUAL);
1348 else
1349 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1350 CMPCI_REG_INDIVIDUAL);
1351 }
1352 return;
1353 case CMPCI_REVERSE:
1354 if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1355 if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1356 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1357 CMPCI_REG_REVERSE_FR);
1358 else
1359 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1360 CMPCI_REG_REVERSE_FR);
1361 }
1362 return;
1363 case CMPCI_SPDIF_IN_PHASE:
1364 if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1365 if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
1366 == CMPCI_SPDIF_IN_PHASE_POSITIVE)
1367 cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1368 CMPCI_REG_SPDIN_PHASE);
1369 else
1370 cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1371 CMPCI_REG_SPDIN_PHASE);
1372 }
1373 return;
1374 default:
1375 return;
1376 }
1377
1378 cmpci_mixerreg_write(sc, src,
1379 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
1380 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1381 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
1382 }
1383
1384 static void
1385 cmpci_set_out_ports(sc)
1386 struct cmpci_softc *sc;
1387 {
1388 u_int8_t v;
1389 int enspdout = 0;
1390
1391 if (!CMPCI_ISCAP(sc, SPDLOOP))
1392 return;
1393
1394 /* SPDIF/out select */
1395 if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
1396 /* playback */
1397 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1398 } else {
1399 /* monitor SPDIF/in */
1400 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1401 }
1402
1403 /* SPDIF in select */
1404 v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
1405 if (v & CMPCI_SPDIFIN_SPDIFIN2)
1406 cmpci_reg_set_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
1407 else
1408 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
1409 if (v & CMPCI_SPDIFIN_SPDIFOUT)
1410 cmpci_reg_set_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
1411 else
1412 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
1413
1414 /* playback to ... */
1415 if (CMPCI_ISCAP(sc, SPDOUT) &&
1416 sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
1417 == CMPCI_PLAYBACK_MODE_SPDIF &&
1418 (sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
1419 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1420 sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1421 /* playback to SPDIF */
1422 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
1423 enspdout = 1;
1424 if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1425 cmpci_reg_set_reg_misc(sc,
1426 CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1427 else
1428 cmpci_reg_clear_reg_misc(sc,
1429 CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1430 } else {
1431 /* playback to DAC */
1432 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1433 CMPCI_REG_SPDIF0_ENABLE);
1434 if (CMPCI_ISCAP(sc, SPDOUT_48K))
1435 cmpci_reg_clear_reg_misc(sc,
1436 CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1437 }
1438
1439 /* legacy to SPDIF/out or not */
1440 if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1441 if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
1442 == CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
1443 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1444 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1445 else {
1446 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1447 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1448 enspdout = 1;
1449 }
1450 }
1451
1452 /* enable/disable SPDIF/out */
1453 if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
1454 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1455 CMPCI_REG_XSPDIF_ENABLE);
1456 else
1457 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1458 CMPCI_REG_XSPDIF_ENABLE);
1459
1460 /* SPDIF monitor (digital to analog output) */
1461 if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1462 v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
1463 if (!(v & CMPCI_MONDAC_ENABLE))
1464 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1465 CMPCI_REG_SPDIN_MONITOR);
1466 if (v & CMPCI_MONDAC_SPDOUT)
1467 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1468 CMPCI_REG_SPDIFOUT_DAC);
1469 else
1470 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1471 CMPCI_REG_SPDIFOUT_DAC);
1472 if (v & CMPCI_MONDAC_ENABLE)
1473 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1474 CMPCI_REG_SPDIN_MONITOR);
1475 }
1476 }
1477
1478 static int
1479 cmpci_set_in_ports(sc)
1480 struct cmpci_softc *sc;
1481 {
1482 int mask;
1483 int bitsl, bitsr;
1484
1485 mask = sc->sc_in_mask;
1486
1487 /*
1488 * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
1489 * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
1490 * of the mixer register.
1491 */
1492 bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1493 CMPCI_RECORD_SOURCE_FM);
1494
1495 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1496 if (mask & CMPCI_RECORD_SOURCE_MIC) {
1497 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1498 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1499 }
1500 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1501 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1502
1503 if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
1504 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1505 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1506 else
1507 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1508 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1509
1510 if (mask & CMPCI_RECORD_SOURCE_WAVE)
1511 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1512 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1513 else
1514 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1515 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1516
1517 if (CMPCI_ISCAP(sc, SPDIN) &&
1518 (sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
1519 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1520 sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
1521 if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1522 /* enable SPDIF/in */
1523 cmpci_reg_set_4(sc,
1524 CMPCI_REG_FUNC_1,
1525 CMPCI_REG_SPDIF1_ENABLE);
1526 } else {
1527 cmpci_reg_clear_4(sc,
1528 CMPCI_REG_FUNC_1,
1529 CMPCI_REG_SPDIF1_ENABLE);
1530 }
1531 }
1532
1533 return 0;
1534 }
1535
1536 static int
1537 cmpci_set_port(handle, cp)
1538 void *handle;
1539 mixer_ctrl_t *cp;
1540 {
1541 struct cmpci_softc *sc = handle;
1542 int lgain, rgain;
1543
1544 switch (cp->dev) {
1545 case CMPCI_MIC_VOL:
1546 case CMPCI_PCSPEAKER:
1547 case CMPCI_MIC_RECVOL:
1548 if (cp->un.value.num_channels != 1)
1549 return EINVAL;
1550 /* FALLTHROUGH */
1551 case CMPCI_DAC_VOL:
1552 case CMPCI_FM_VOL:
1553 case CMPCI_CD_VOL:
1554 case CMPCI_LINE_IN_VOL:
1555 case CMPCI_AUX_IN_VOL:
1556 case CMPCI_MASTER_VOL:
1557 if (cp->type != AUDIO_MIXER_VALUE)
1558 return EINVAL;
1559 switch (cp->un.value.num_channels) {
1560 case 1:
1561 lgain = rgain =
1562 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1563 break;
1564 case 2:
1565 lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1566 rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1567 break;
1568 default:
1569 return EINVAL;
1570 }
1571 sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
1572 sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1573
1574 cmpci_set_mixer_gain(sc, cp->dev);
1575 break;
1576
1577 case CMPCI_RECORD_SOURCE:
1578 if (cp->type != AUDIO_MIXER_SET)
1579 return EINVAL;
1580
1581 if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
1582 CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1583 CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
1584 CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
1585 return EINVAL;
1586
1587 if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1588 cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1589
1590 sc->sc_in_mask = cp->un.mask;
1591 return cmpci_set_in_ports(sc);
1592
1593 /* boolean */
1594 case CMPCI_DAC_MUTE:
1595 case CMPCI_FM_MUTE:
1596 case CMPCI_CD_MUTE:
1597 case CMPCI_LINE_IN_MUTE:
1598 case CMPCI_AUX_IN_MUTE:
1599 case CMPCI_MIC_MUTE:
1600 case CMPCI_MIC_PREAMP:
1601 case CMPCI_PLAYBACK_MODE:
1602 case CMPCI_SPDIF_IN_PHASE:
1603 case CMPCI_SPDIF_LOOP:
1604 case CMPCI_SPDIF_OUT_PLAYBACK:
1605 case CMPCI_SPDIF_OUT_VOLTAGE:
1606 case CMPCI_REAR:
1607 case CMPCI_INDIVIDUAL:
1608 case CMPCI_REVERSE:
1609 case CMPCI_SURROUND:
1610 if (cp->type != AUDIO_MIXER_ENUM)
1611 return EINVAL;
1612 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1613 cmpci_set_mixer_gain(sc, cp->dev);
1614 break;
1615
1616 case CMPCI_SPDIF_IN_SELECT:
1617 switch (cp->un.ord) {
1618 case CMPCI_SPDIF_IN_SPDIN1:
1619 case CMPCI_SPDIF_IN_SPDIN2:
1620 case CMPCI_SPDIF_IN_SPDOUT:
1621 break;
1622 default:
1623 return EINVAL;
1624 }
1625 goto xenum;
1626 case CMPCI_MONITOR_DAC:
1627 switch (cp->un.ord) {
1628 case CMPCI_MONITOR_DAC_OFF:
1629 case CMPCI_MONITOR_DAC_SPDIN:
1630 case CMPCI_MONITOR_DAC_SPDOUT:
1631 break;
1632 default:
1633 return EINVAL;
1634 }
1635 xenum:
1636 if (cp->type != AUDIO_MIXER_ENUM)
1637 return EINVAL;
1638 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1639 cmpci_set_mixer_gain(sc, cp->dev);
1640 break;
1641
1642 default:
1643 return EINVAL;
1644 }
1645
1646 return 0;
1647 }
1648
1649 static int
1650 cmpci_get_port(handle, cp)
1651 void *handle;
1652 mixer_ctrl_t *cp;
1653 {
1654 struct cmpci_softc *sc = handle;
1655
1656 switch (cp->dev) {
1657 case CMPCI_MIC_VOL:
1658 case CMPCI_PCSPEAKER:
1659 case CMPCI_MIC_RECVOL:
1660 if (cp->un.value.num_channels != 1)
1661 return EINVAL;
1662 /*FALLTHROUGH*/
1663 case CMPCI_DAC_VOL:
1664 case CMPCI_FM_VOL:
1665 case CMPCI_CD_VOL:
1666 case CMPCI_LINE_IN_VOL:
1667 case CMPCI_AUX_IN_VOL:
1668 case CMPCI_MASTER_VOL:
1669 switch (cp->un.value.num_channels) {
1670 case 1:
1671 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1672 sc->sc_gain[cp->dev][CMPCI_LEFT];
1673 break;
1674 case 2:
1675 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1676 sc->sc_gain[cp->dev][CMPCI_LEFT];
1677 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1678 sc->sc_gain[cp->dev][CMPCI_RIGHT];
1679 break;
1680 default:
1681 return EINVAL;
1682 }
1683 break;
1684
1685 case CMPCI_RECORD_SOURCE:
1686 cp->un.mask = sc->sc_in_mask;
1687 break;
1688
1689 case CMPCI_DAC_MUTE:
1690 case CMPCI_FM_MUTE:
1691 case CMPCI_CD_MUTE:
1692 case CMPCI_LINE_IN_MUTE:
1693 case CMPCI_AUX_IN_MUTE:
1694 case CMPCI_MIC_MUTE:
1695 case CMPCI_MIC_PREAMP:
1696 case CMPCI_PLAYBACK_MODE:
1697 case CMPCI_SPDIF_IN_SELECT:
1698 case CMPCI_SPDIF_IN_PHASE:
1699 case CMPCI_SPDIF_LOOP:
1700 case CMPCI_SPDIF_OUT_PLAYBACK:
1701 case CMPCI_SPDIF_OUT_VOLTAGE:
1702 case CMPCI_MONITOR_DAC:
1703 case CMPCI_REAR:
1704 case CMPCI_INDIVIDUAL:
1705 case CMPCI_REVERSE:
1706 case CMPCI_SURROUND:
1707 cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1708 break;
1709
1710 default:
1711 return EINVAL;
1712 }
1713
1714 return 0;
1715 }
1716
1717 /* ARGSUSED */
1718 static size_t
1719 cmpci_round_buffersize(handle, direction, bufsize)
1720 void *handle;
1721 int direction;
1722 size_t bufsize;
1723 {
1724 if (bufsize > 0x10000)
1725 bufsize = 0x10000;
1726
1727 return bufsize;
1728 }
1729
1730
1731 static paddr_t
1732 cmpci_mappage(handle, addr, offset, prot)
1733 void *handle;
1734 void *addr;
1735 off_t offset;
1736 int prot;
1737 {
1738 struct cmpci_softc *sc = handle;
1739 struct cmpci_dmanode *p;
1740
1741 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1742 return -1;
1743
1744 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1745 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1746 offset, prot, BUS_DMA_WAITOK);
1747 }
1748
1749
1750 /* ARGSUSED */
1751 static int
1752 cmpci_get_props(handle)
1753 void *handle;
1754 {
1755 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1756 }
1757
1758
1759 static int
1760 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1761 void *handle;
1762 void *start, *end;
1763 int blksize;
1764 void (*intr) __P((void *));
1765 void *arg;
1766 const audio_params_t *param;
1767 {
1768 struct cmpci_softc *sc = handle;
1769 struct cmpci_dmanode *p;
1770 int bps;
1771
1772 sc->sc_play.intr = intr;
1773 sc->sc_play.intr_arg = arg;
1774 bps = param->channels * param->precision / 8;
1775 if (!bps)
1776 return EINVAL;
1777
1778 /* set DMA frame */
1779 if (!(p = cmpci_find_dmamem(sc, start)))
1780 return EINVAL;
1781 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1782 DMAADDR(p));
1783 delay(10);
1784 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1785 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1786 delay(10);
1787
1788 /* set interrupt count */
1789 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1790 (blksize + bps - 1) / bps - 1);
1791 delay(10);
1792
1793 /* start DMA */
1794 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1795 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1796 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1797
1798 return 0;
1799 }
1800
1801 static int
1802 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1803 void *handle;
1804 void *start, *end;
1805 int blksize;
1806 void (*intr) __P((void *));
1807 void *arg;
1808 const audio_params_t *param;
1809 {
1810 struct cmpci_softc *sc = handle;
1811 struct cmpci_dmanode *p;
1812 int bps;
1813
1814 sc->sc_rec.intr = intr;
1815 sc->sc_rec.intr_arg = arg;
1816 bps = param->channels * param->precision / 8;
1817 if (!bps)
1818 return EINVAL;
1819
1820 /* set DMA frame */
1821 if (!(p=cmpci_find_dmamem(sc, start)))
1822 return EINVAL;
1823 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1824 DMAADDR(p));
1825 delay(10);
1826 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1827 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1828 delay(10);
1829
1830 /* set interrupt count */
1831 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1832 (blksize + bps - 1) / bps - 1);
1833 delay(10);
1834
1835 /* start DMA */
1836 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1837 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1838 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1839
1840 return 0;
1841 }
1842
1843
1844 /* end of file */
1845