cmpci.c revision 1.26.2.2 1 /* $NetBSD: cmpci.c,v 1.26.2.2 2005/01/09 08:42:45 kent Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <tshiozak (at) NetBSD.org> .
9 *
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by ITOH Yasufumi.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 */
35
36 /*
37 * C-Media CMI8x38 Audio Chip Support.
38 *
39 * TODO:
40 * - 4ch / 6ch support.
41 * - Joystick support.
42 *
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.26.2.2 2005/01/09 08:42:45 kent Exp $");
47
48 #if defined(AUDIO_DEBUG) || defined(DEBUG)
49 #define DPRINTF(x) if (cmpcidebug) printf x
50 int cmpcidebug = 0;
51 #else
52 #define DPRINTF(x)
53 #endif
54
55 #include "mpu.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/proc.h>
63
64 #include <dev/pci/pcidevs.h>
65 #include <dev/pci/pcivar.h>
66
67 #include <sys/audioio.h>
68 #include <dev/audio_if.h>
69 #include <dev/midi_if.h>
70
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/pci/cmpcireg.h>
74 #include <dev/pci/cmpcivar.h>
75
76 #include <dev/ic/mpuvar.h>
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 /*
81 * Low-level HW interface
82 */
83 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
84 uint8_t));
85 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
86 uint8_t, uint8_t));
87 static __inline void cmpci_reg_partial_write_1 __P((struct cmpci_softc *,
88 int, int,
89 unsigned, unsigned));
90 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
91 int, int,
92 uint32_t, uint32_t));
93 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
94 int, uint8_t));
95 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
96 int, uint8_t));
97 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
98 int, uint32_t));
99 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
100 int, uint32_t));
101 static __inline void cmpci_reg_set_reg_misc __P((struct cmpci_softc *,
102 uint32_t));
103 static __inline void cmpci_reg_clear_reg_misc __P((struct cmpci_softc *,
104 uint32_t));
105 static int cmpci_rate_to_index __P((int));
106 static __inline int cmpci_index_to_rate __P((int));
107 static __inline int cmpci_index_to_divider __P((int));
108
109 static int cmpci_adjust __P((int, int));
110 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
111 static void cmpci_set_out_ports __P((struct cmpci_softc *));
112 static int cmpci_set_in_ports __P((struct cmpci_softc *));
113
114
115 /*
116 * autoconf interface
117 */
118 static int cmpci_match __P((struct device *, struct cfdata *, void *));
119 static void cmpci_attach __P((struct device *, struct device *, void *));
120
121 CFATTACH_DECL(cmpci, sizeof (struct cmpci_softc),
122 cmpci_match, cmpci_attach, NULL, NULL);
123
124 /* interrupt */
125 static int cmpci_intr __P((void *));
126
127
128 /*
129 * DMA stuffs
130 */
131 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
132 size_t, struct malloc_type *,
133 int, caddr_t *));
134 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t,
135 struct malloc_type *));
136 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
137 caddr_t));
138
139
140 /*
141 * interface to machine independent layer
142 */
143 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
144 static int cmpci_set_params __P((void *, int, int, audio_params_t *,
145 audio_params_t *, stream_filter_list_t *, stream_filter_list_t *));
146 static int cmpci_round_blocksize __P((void *, int, int, const audio_params_t *));
147 static int cmpci_halt_output __P((void *));
148 static int cmpci_halt_input __P((void *));
149 static int cmpci_getdev __P((void *, struct audio_device *));
150 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
151 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
152 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
153 static void *cmpci_allocm __P((void *, int, size_t, struct malloc_type *, int));
154 static void cmpci_freem __P((void *, void *, struct malloc_type *));
155 static size_t cmpci_round_buffersize __P((void *, int, size_t));
156 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
157 static int cmpci_get_props __P((void *));
158 static int cmpci_trigger_output __P((void *, void *, void *, int,
159 void (*)(void *), void *, const audio_params_t *));
160 static int cmpci_trigger_input __P((void *, void *, void *, int,
161 void (*)(void *), void *, const audio_params_t *));
162
163 static const struct audio_hw_if cmpci_hw_if = {
164 NULL, /* open */
165 NULL, /* close */
166 NULL, /* drain */
167 cmpci_query_encoding, /* query_encoding */
168 cmpci_set_params, /* set_params */
169 cmpci_round_blocksize, /* round_blocksize */
170 NULL, /* commit_settings */
171 NULL, /* init_output */
172 NULL, /* init_input */
173 NULL, /* start_output */
174 NULL, /* start_input */
175 cmpci_halt_output, /* halt_output */
176 cmpci_halt_input, /* halt_input */
177 NULL, /* speaker_ctl */
178 cmpci_getdev, /* getdev */
179 NULL, /* setfd */
180 cmpci_set_port, /* set_port */
181 cmpci_get_port, /* get_port */
182 cmpci_query_devinfo, /* query_devinfo */
183 cmpci_allocm, /* allocm */
184 cmpci_freem, /* freem */
185 cmpci_round_buffersize,/* round_buffersize */
186 cmpci_mappage, /* mappage */
187 cmpci_get_props, /* get_props */
188 cmpci_trigger_output, /* trigger_output */
189 cmpci_trigger_input, /* trigger_input */
190 NULL, /* dev_ioctl */
191 };
192
193 #define CMPCI_NFORMATS 4
194 static const struct audio_format cmpci_formats[CMPCI_NFORMATS] = {
195 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
196 2, AUFMT_STEREO, 0, {5512, 48000}},
197 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
198 1, AUFMT_MONAURAL, 0, {5512, 48000}},
199 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
200 2, AUFMT_STEREO, 0, {5512, 48000}},
201 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
202 1, AUFMT_MONAURAL, 0, {5512, 48000}},
203 };
204
205
206 /*
207 * Low-level HW interface
208 */
209
210 /* mixer register read/write */
211 static __inline uint8_t
212 cmpci_mixerreg_read(sc, no)
213 struct cmpci_softc *sc;
214 uint8_t no;
215 {
216 uint8_t ret;
217
218 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
219 delay(10);
220 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
221 delay(10);
222 return ret;
223 }
224
225 static __inline void
226 cmpci_mixerreg_write(sc, no, val)
227 struct cmpci_softc *sc;
228 uint8_t no, val;
229 {
230 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
231 delay(10);
232 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
233 delay(10);
234 }
235
236
237 /* register partial write */
238 static __inline void
239 cmpci_reg_partial_write_1(sc, no, shift, mask, val)
240 struct cmpci_softc *sc;
241 int no, shift;
242 unsigned mask, val;
243 {
244 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
245 (val<<shift) |
246 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
247 delay(10);
248 }
249
250 static __inline void
251 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
252 struct cmpci_softc *sc;
253 int no, shift;
254 uint32_t mask, val;
255 {
256 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
257 (val<<shift) |
258 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
259 delay(10);
260 }
261
262 /* register set/clear bit */
263 static __inline void
264 cmpci_reg_set_1(sc, no, mask)
265 struct cmpci_softc *sc;
266 int no;
267 uint8_t mask;
268 {
269 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
270 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
271 delay(10);
272 }
273
274 static __inline void
275 cmpci_reg_clear_1(sc, no, mask)
276 struct cmpci_softc *sc;
277 int no;
278 uint8_t mask;
279 {
280 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
281 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
282 delay(10);
283 }
284
285
286 static __inline void
287 cmpci_reg_set_4(sc, no, mask)
288 struct cmpci_softc *sc;
289 int no;
290 uint32_t mask;
291 {
292 /* use cmpci_reg_set_reg_misc() for CMPCI_REG_MISC */
293 KDASSERT(no != CMPCI_REG_MISC);
294
295 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
296 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
297 delay(10);
298 }
299
300 static __inline void
301 cmpci_reg_clear_4(sc, no, mask)
302 struct cmpci_softc *sc;
303 int no;
304 uint32_t mask;
305 {
306 /* use cmpci_reg_clear_reg_misc() for CMPCI_REG_MISC */
307 KDASSERT(no != CMPCI_REG_MISC);
308
309 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
310 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
311 delay(10);
312 }
313
314
315 /*
316 * The CMPCI_REG_MISC register needs special handling, since one of
317 * its bits has different read/write values.
318 */
319 static __inline void
320 cmpci_reg_set_reg_misc(sc, mask)
321 struct cmpci_softc *sc;
322 uint32_t mask;
323 {
324 sc->sc_reg_misc |= mask;
325 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
326 sc->sc_reg_misc);
327 delay(10);
328 }
329
330 static __inline void
331 cmpci_reg_clear_reg_misc(sc, mask)
332 struct cmpci_softc *sc;
333 uint32_t mask;
334 {
335 sc->sc_reg_misc &= ~mask;
336 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
337 sc->sc_reg_misc);
338 delay(10);
339 }
340
341
342 /* rate */
343 static const struct {
344 int rate;
345 int divider;
346 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
347 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
348 _RATE(5512),
349 _RATE(8000),
350 _RATE(11025),
351 _RATE(16000),
352 _RATE(22050),
353 _RATE(32000),
354 _RATE(44100),
355 _RATE(48000)
356 #undef _RATE
357 };
358
359 static int
360 cmpci_rate_to_index(rate)
361 int rate;
362 {
363 int i;
364
365 for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++)
366 if (rate <=
367 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
368 return i;
369 return i; /* 48000 */
370 }
371
372 static __inline int
373 cmpci_index_to_rate(index)
374 int index;
375 {
376 return cmpci_rate_table[index].rate;
377 }
378
379 static __inline int
380 cmpci_index_to_divider(index)
381 int index;
382 {
383 return cmpci_rate_table[index].divider;
384 }
385
386
387 /*
388 * interface to configure the device.
389 */
390
391 static int
392 cmpci_match(parent, match, aux)
393 struct device *parent;
394 struct cfdata *match;
395 void *aux;
396 {
397 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
398
399 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
400 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
401 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
402 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
403 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
404 return 1;
405
406 return 0;
407 }
408
409 static void
410 cmpci_attach(parent, self, aux)
411 struct device *parent, *self;
412 void *aux;
413 {
414 struct cmpci_softc *sc = (struct cmpci_softc *)self;
415 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
416 struct audio_attach_args aa;
417 pci_intr_handle_t ih;
418 char const *strintr;
419 char devinfo[256];
420 int i, v;
421
422 aprint_naive(": Audio controller\n");
423
424 sc->sc_id = pa->pa_id;
425 sc->sc_class = pa->pa_class;
426 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
427 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
428 PCI_REVISION(sc->sc_class));
429 switch (PCI_PRODUCT(sc->sc_id)) {
430 case PCI_PRODUCT_CMEDIA_CMI8338A:
431 /*FALLTHROUGH*/
432 case PCI_PRODUCT_CMEDIA_CMI8338B:
433 sc->sc_capable = CMPCI_CAP_CMI8338;
434 break;
435 case PCI_PRODUCT_CMEDIA_CMI8738:
436 /*FALLTHROUGH*/
437 case PCI_PRODUCT_CMEDIA_CMI8738B:
438 sc->sc_capable = CMPCI_CAP_CMI8738;
439 break;
440 }
441
442 /* map I/O space */
443 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
444 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
445 aprint_error("%s: failed to map I/O space\n",
446 sc->sc_dev.dv_xname);
447 return;
448 }
449
450 /* interrupt */
451 if (pci_intr_map(pa, &ih)) {
452 aprint_error("%s: failed to map interrupt\n",
453 sc->sc_dev.dv_xname);
454 return;
455 }
456 strintr = pci_intr_string(pa->pa_pc, ih);
457 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
458 if (sc->sc_ih == NULL) {
459 aprint_error("%s: failed to establish interrupt",
460 sc->sc_dev.dv_xname);
461 if (strintr != NULL)
462 aprint_normal(" at %s", strintr);
463 aprint_normal("\n");
464 return;
465 }
466 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
467
468 sc->sc_dmat = pa->pa_dmat;
469
470 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
471
472 /* attach OPL device */
473 aa.type = AUDIODEV_TYPE_OPL;
474 aa.hwif = NULL;
475 aa.hdl = NULL;
476 (void)config_found(&sc->sc_dev, &aa, audioprint);
477
478 /* attach MPU-401 device */
479 aa.type = AUDIODEV_TYPE_MPU;
480 aa.hwif = NULL;
481 aa.hdl = NULL;
482 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
483 CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
484 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
485
486 /* get initial value (this is 0 and may be omitted but just in case) */
487 sc->sc_reg_misc = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
488 CMPCI_REG_MISC) & ~CMPCI_REG_SPDIF48K;
489
490 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
491 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
492 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
493 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
494 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
495 for (i = 0; i < CMPCI_NDEVS; i++) {
496 switch(i) {
497 /*
498 * CMI8738 defaults are
499 * master: 0xe0 (0x00 - 0xf8)
500 * FM, DAC: 0xc0 (0x00 - 0xf8)
501 * PC speaker: 0x80 (0x00 - 0xc0)
502 * others: 0
503 */
504 /* volume */
505 case CMPCI_MASTER_VOL:
506 v = 128; /* 224 */
507 break;
508 case CMPCI_FM_VOL:
509 case CMPCI_DAC_VOL:
510 v = 192;
511 break;
512 case CMPCI_PCSPEAKER:
513 v = 128;
514 break;
515
516 /* booleans, set to true */
517 case CMPCI_CD_MUTE:
518 case CMPCI_MIC_MUTE:
519 case CMPCI_LINE_IN_MUTE:
520 case CMPCI_AUX_IN_MUTE:
521 v = 1;
522 break;
523
524 /* volume with inital value 0 */
525 case CMPCI_CD_VOL:
526 case CMPCI_LINE_IN_VOL:
527 case CMPCI_AUX_IN_VOL:
528 case CMPCI_MIC_VOL:
529 case CMPCI_MIC_RECVOL:
530 /* FALLTHROUGH */
531
532 /* others are cleared */
533 case CMPCI_MIC_PREAMP:
534 case CMPCI_RECORD_SOURCE:
535 case CMPCI_PLAYBACK_MODE:
536 case CMPCI_SPDIF_IN_SELECT:
537 case CMPCI_SPDIF_IN_PHASE:
538 case CMPCI_SPDIF_LOOP:
539 case CMPCI_SPDIF_OUT_PLAYBACK:
540 case CMPCI_SPDIF_OUT_VOLTAGE:
541 case CMPCI_MONITOR_DAC:
542 case CMPCI_REAR:
543 case CMPCI_INDIVIDUAL:
544 case CMPCI_REVERSE:
545 case CMPCI_SURROUND:
546 default:
547 v = 0;
548 break;
549 }
550 sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
551 cmpci_set_mixer_gain(sc, i);
552 }
553 }
554
555
556 static int
557 cmpci_intr(handle)
558 void *handle;
559 {
560 struct cmpci_softc *sc = handle;
561 uint32_t intrstat;
562
563 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
564 CMPCI_REG_INTR_STATUS);
565
566 if (!(intrstat & CMPCI_REG_ANY_INTR))
567 return 0;
568
569 delay(10);
570
571 /* disable and reset intr */
572 if (intrstat & CMPCI_REG_CH0_INTR)
573 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
574 CMPCI_REG_CH0_INTR_ENABLE);
575 if (intrstat & CMPCI_REG_CH1_INTR)
576 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
577 CMPCI_REG_CH1_INTR_ENABLE);
578
579 if (intrstat & CMPCI_REG_CH0_INTR) {
580 if (sc->sc_play.intr != NULL)
581 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
582 }
583 if (intrstat & CMPCI_REG_CH1_INTR) {
584 if (sc->sc_rec.intr != NULL)
585 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
586 }
587
588 /* enable intr */
589 if (intrstat & CMPCI_REG_CH0_INTR)
590 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
591 CMPCI_REG_CH0_INTR_ENABLE);
592 if (intrstat & CMPCI_REG_CH1_INTR)
593 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
594 CMPCI_REG_CH1_INTR_ENABLE);
595
596 #if NMPU > 0
597 if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
598 mpu_intr(sc->sc_mpudev);
599 #endif
600
601 return 1;
602 }
603
604 static int
605 cmpci_query_encoding(handle, fp)
606 void *handle;
607 struct audio_encoding *fp;
608 {
609 switch (fp->index) {
610 case 0:
611 strcpy(fp->name, AudioEulinear);
612 fp->encoding = AUDIO_ENCODING_ULINEAR;
613 fp->precision = 8;
614 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
615 break;
616 case 1:
617 strcpy(fp->name, AudioEmulaw);
618 fp->encoding = AUDIO_ENCODING_ULAW;
619 fp->precision = 8;
620 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
621 break;
622 case 2:
623 strcpy(fp->name, AudioEalaw);
624 fp->encoding = AUDIO_ENCODING_ALAW;
625 fp->precision = 8;
626 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
627 break;
628 case 3:
629 strcpy(fp->name, AudioEslinear);
630 fp->encoding = AUDIO_ENCODING_SLINEAR;
631 fp->precision = 8;
632 fp->flags = 0;
633 break;
634 case 4:
635 strcpy(fp->name, AudioEslinear_le);
636 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
637 fp->precision = 16;
638 fp->flags = 0;
639 break;
640 case 5:
641 strcpy(fp->name, AudioEulinear_le);
642 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
643 fp->precision = 16;
644 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
645 break;
646 case 6:
647 strcpy(fp->name, AudioEslinear_be);
648 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
649 fp->precision = 16;
650 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
651 break;
652 case 7:
653 strcpy(fp->name, AudioEulinear_be);
654 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
655 fp->precision = 16;
656 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
657 break;
658 default:
659 return EINVAL;
660 }
661 return 0;
662 }
663
664
665 static int
666 cmpci_set_params(handle, setmode, usemode, play, rec, pfil, rfil)
667 void *handle;
668 int setmode, usemode;
669 audio_params_t *play, *rec;
670 stream_filter_list_t *pfil, *rfil;
671 {
672 int i;
673 struct cmpci_softc *sc = handle;
674
675 for (i = 0; i < 2; i++) {
676 int md_format;
677 int md_divide;
678 int md_index;
679 int mode;
680 audio_params_t *p;
681 stream_filter_list_t *fil;
682 int ind;
683
684 switch (i) {
685 case 0:
686 mode = AUMODE_PLAY;
687 p = play;
688 fil = pfil;
689 break;
690 case 1:
691 mode = AUMODE_RECORD;
692 p = rec;
693 fil = rfil;
694 break;
695 default:
696 return EINVAL;
697 }
698
699 if (!(setmode & mode))
700 continue;
701
702 md_index = cmpci_rate_to_index(p->sample_rate);
703 md_divide = cmpci_index_to_divider(md_index);
704 p->sample_rate = cmpci_index_to_rate(md_index);
705 DPRINTF(("%s: sample:%u, divider=%d\n",
706 sc->sc_dev.dv_xname, p->sample_rate, md_divide));
707
708 ind = auconv_set_converter(cmpci_formats, CMPCI_NFORMATS,
709 mode, p, FALSE, fil);
710 if (ind < 0)
711 return EINVAL;
712 if (fil->req_size > 0)
713 p = &fil->filters[0].param;
714
715 /* format */
716 md_format = p->channels == 1
717 ? CMPCI_REG_FORMAT_MONO : CMPCI_REG_FORMAT_STEREO;
718 md_format |= p->precision == 16
719 ? CMPCI_REG_FORMAT_16BIT : CMPCI_REG_FORMAT_8BIT;
720 if (mode & AUMODE_PLAY) {
721 cmpci_reg_partial_write_4(sc,
722 CMPCI_REG_CHANNEL_FORMAT,
723 CMPCI_REG_CH0_FORMAT_SHIFT,
724 CMPCI_REG_CH0_FORMAT_MASK, md_format);
725 cmpci_reg_partial_write_4(sc,
726 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
727 CMPCI_REG_DAC_FS_MASK, md_divide);
728 sc->sc_play.md_divide = md_divide;
729 } else {
730 cmpci_reg_partial_write_4(sc,
731 CMPCI_REG_CHANNEL_FORMAT,
732 CMPCI_REG_CH1_FORMAT_SHIFT,
733 CMPCI_REG_CH1_FORMAT_MASK, md_format);
734 cmpci_reg_partial_write_4(sc,
735 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
736 CMPCI_REG_ADC_FS_MASK, md_divide);
737 sc->sc_rec.md_divide = md_divide;
738 }
739 cmpci_set_out_ports(sc);
740 cmpci_set_in_ports(sc);
741 }
742 return 0;
743 }
744
745 /* ARGSUSED */
746 static int
747 cmpci_round_blocksize(handle, block, mode, param)
748 void *handle;
749 int block;
750 int mode;
751 const audio_params_t *param;
752 {
753 return (block & -4);
754 }
755
756 static int
757 cmpci_halt_output(handle)
758 void *handle;
759 {
760 struct cmpci_softc *sc = handle;
761 int s;
762
763 s = splaudio();
764 sc->sc_play.intr = NULL;
765 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
766 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
767 /* wait for reset DMA */
768 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
769 delay(10);
770 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
771 splx(s);
772
773 return 0;
774 }
775
776 static int
777 cmpci_halt_input(handle)
778 void *handle;
779 {
780 struct cmpci_softc *sc = handle;
781 int s;
782
783 s = splaudio();
784 sc->sc_rec.intr = NULL;
785 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
786 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
787 /* wait for reset DMA */
788 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
789 delay(10);
790 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
791 splx(s);
792
793 return 0;
794 }
795
796
797 /* get audio device information */
798 static int
799 cmpci_getdev(handle, ad)
800 void *handle;
801 struct audio_device *ad;
802 {
803 struct cmpci_softc *sc = handle;
804
805 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
806 snprintf(ad->version, sizeof(ad->version), "0x%02x",
807 PCI_REVISION(sc->sc_class));
808 switch (PCI_PRODUCT(sc->sc_id)) {
809 case PCI_PRODUCT_CMEDIA_CMI8338A:
810 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
811 break;
812 case PCI_PRODUCT_CMEDIA_CMI8338B:
813 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
814 break;
815 case PCI_PRODUCT_CMEDIA_CMI8738:
816 strncpy(ad->config, "CMI8738", sizeof(ad->config));
817 break;
818 case PCI_PRODUCT_CMEDIA_CMI8738B:
819 strncpy(ad->config, "CMI8738B", sizeof(ad->config));
820 break;
821 default:
822 strncpy(ad->config, "unknown", sizeof(ad->config));
823 }
824
825 return 0;
826 }
827
828
829 /* mixer device information */
830 int
831 cmpci_query_devinfo(handle, dip)
832 void *handle;
833 mixer_devinfo_t *dip;
834 {
835 static const char *const mixer_port_names[] = {
836 AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
837 AudioNmicrophone
838 };
839 static const char *const mixer_classes[] = {
840 AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
841 CmpciCspdif
842 };
843 struct cmpci_softc *sc = handle;
844 int i;
845
846 dip->prev = dip->next = AUDIO_MIXER_LAST;
847
848 switch (dip->index) {
849 case CMPCI_INPUT_CLASS:
850 case CMPCI_OUTPUT_CLASS:
851 case CMPCI_RECORD_CLASS:
852 case CMPCI_PLAYBACK_CLASS:
853 case CMPCI_SPDIF_CLASS:
854 dip->type = AUDIO_MIXER_CLASS;
855 dip->mixer_class = dip->index;
856 strcpy(dip->label.name,
857 mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
858 return 0;
859
860 case CMPCI_AUX_IN_VOL:
861 dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
862 goto vol1;
863 case CMPCI_DAC_VOL:
864 case CMPCI_FM_VOL:
865 case CMPCI_CD_VOL:
866 case CMPCI_LINE_IN_VOL:
867 case CMPCI_MIC_VOL:
868 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
869 vol1: dip->mixer_class = CMPCI_INPUT_CLASS;
870 dip->next = dip->index + 6; /* CMPCI_xxx_MUTE */
871 strcpy(dip->label.name, mixer_port_names[dip->index]);
872 dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
873 vol:
874 dip->type = AUDIO_MIXER_VALUE;
875 strcpy(dip->un.v.units.name, AudioNvolume);
876 return 0;
877
878 case CMPCI_MIC_MUTE:
879 dip->next = CMPCI_MIC_PREAMP;
880 /* FALLTHROUGH */
881 case CMPCI_DAC_MUTE:
882 case CMPCI_FM_MUTE:
883 case CMPCI_CD_MUTE:
884 case CMPCI_LINE_IN_MUTE:
885 case CMPCI_AUX_IN_MUTE:
886 dip->prev = dip->index - 6; /* CMPCI_xxx_VOL */
887 dip->mixer_class = CMPCI_INPUT_CLASS;
888 strcpy(dip->label.name, AudioNmute);
889 goto on_off;
890 on_off:
891 dip->type = AUDIO_MIXER_ENUM;
892 dip->un.e.num_mem = 2;
893 strcpy(dip->un.e.member[0].label.name, AudioNoff);
894 dip->un.e.member[0].ord = 0;
895 strcpy(dip->un.e.member[1].label.name, AudioNon);
896 dip->un.e.member[1].ord = 1;
897 return 0;
898
899 case CMPCI_MIC_PREAMP:
900 dip->mixer_class = CMPCI_INPUT_CLASS;
901 dip->prev = CMPCI_MIC_MUTE;
902 strcpy(dip->label.name, AudioNpreamp);
903 goto on_off;
904 case CMPCI_PCSPEAKER:
905 dip->mixer_class = CMPCI_INPUT_CLASS;
906 strcpy(dip->label.name, AudioNspeaker);
907 dip->un.v.num_channels = 1;
908 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
909 goto vol;
910 case CMPCI_RECORD_SOURCE:
911 dip->mixer_class = CMPCI_RECORD_CLASS;
912 strcpy(dip->label.name, AudioNsource);
913 dip->type = AUDIO_MIXER_SET;
914 dip->un.s.num_mem = 7;
915 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
916 dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
917 strcpy(dip->un.s.member[1].label.name, AudioNcd);
918 dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
919 strcpy(dip->un.s.member[2].label.name, AudioNline);
920 dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
921 strcpy(dip->un.s.member[3].label.name, AudioNaux);
922 dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
923 strcpy(dip->un.s.member[4].label.name, AudioNwave);
924 dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
925 strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
926 dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
927 strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
928 dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
929 return 0;
930 case CMPCI_MIC_RECVOL:
931 dip->mixer_class = CMPCI_RECORD_CLASS;
932 strcpy(dip->label.name, AudioNmicrophone);
933 dip->un.v.num_channels = 1;
934 dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
935 goto vol;
936
937 case CMPCI_PLAYBACK_MODE:
938 dip->mixer_class = CMPCI_PLAYBACK_CLASS;
939 dip->type = AUDIO_MIXER_ENUM;
940 strcpy(dip->label.name, AudioNmode);
941 dip->un.e.num_mem = 2;
942 strcpy(dip->un.e.member[0].label.name, AudioNdac);
943 dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
944 strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
945 dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
946 return 0;
947 case CMPCI_SPDIF_IN_SELECT:
948 dip->mixer_class = CMPCI_SPDIF_CLASS;
949 dip->type = AUDIO_MIXER_ENUM;
950 dip->next = CMPCI_SPDIF_IN_PHASE;
951 strcpy(dip->label.name, AudioNinput);
952 i = 0;
953 strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
954 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
955 if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
956 strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
957 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
958 }
959 strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
960 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
961 dip->un.e.num_mem = i;
962 return 0;
963 case CMPCI_SPDIF_IN_PHASE:
964 dip->mixer_class = CMPCI_SPDIF_CLASS;
965 dip->prev = CMPCI_SPDIF_IN_SELECT;
966 strcpy(dip->label.name, CmpciNphase);
967 dip->type = AUDIO_MIXER_ENUM;
968 dip->un.e.num_mem = 2;
969 strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
970 dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
971 strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
972 dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
973 return 0;
974 case CMPCI_SPDIF_LOOP:
975 dip->mixer_class = CMPCI_SPDIF_CLASS;
976 dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
977 strcpy(dip->label.name, AudioNoutput);
978 dip->type = AUDIO_MIXER_ENUM;
979 dip->un.e.num_mem = 2;
980 strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
981 dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
982 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
983 dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
984 return 0;
985 case CMPCI_SPDIF_OUT_PLAYBACK:
986 dip->mixer_class = CMPCI_SPDIF_CLASS;
987 dip->prev = CMPCI_SPDIF_LOOP;
988 dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
989 strcpy(dip->label.name, CmpciNplayback);
990 dip->type = AUDIO_MIXER_ENUM;
991 dip->un.e.num_mem = 2;
992 strcpy(dip->un.e.member[0].label.name, AudioNwave);
993 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
994 strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
995 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
996 return 0;
997 case CMPCI_SPDIF_OUT_VOLTAGE:
998 dip->mixer_class = CMPCI_SPDIF_CLASS;
999 dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
1000 strcpy(dip->label.name, CmpciNvoltage);
1001 dip->type = AUDIO_MIXER_ENUM;
1002 dip->un.e.num_mem = 2;
1003 strcpy(dip->un.e.member[0].label.name, CmpciNhigh_v);
1004 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
1005 strcpy(dip->un.e.member[1].label.name, CmpciNlow_v);
1006 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
1007 return 0;
1008 case CMPCI_MONITOR_DAC:
1009 dip->mixer_class = CMPCI_SPDIF_CLASS;
1010 strcpy(dip->label.name, AudioNmonitor);
1011 dip->type = AUDIO_MIXER_ENUM;
1012 dip->un.e.num_mem = 3;
1013 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1014 dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
1015 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1016 dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
1017 strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
1018 dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
1019 return 0;
1020
1021 case CMPCI_MASTER_VOL:
1022 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1023 strcpy(dip->label.name, AudioNmaster);
1024 dip->un.v.num_channels = 2;
1025 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
1026 goto vol;
1027 case CMPCI_REAR:
1028 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1029 dip->next = CMPCI_INDIVIDUAL;
1030 strcpy(dip->label.name, CmpciNrear);
1031 goto on_off;
1032 case CMPCI_INDIVIDUAL:
1033 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1034 dip->prev = CMPCI_REAR;
1035 dip->next = CMPCI_REVERSE;
1036 strcpy(dip->label.name, CmpciNindividual);
1037 goto on_off;
1038 case CMPCI_REVERSE:
1039 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1040 dip->prev = CMPCI_INDIVIDUAL;
1041 strcpy(dip->label.name, CmpciNreverse);
1042 goto on_off;
1043 case CMPCI_SURROUND:
1044 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1045 strcpy(dip->label.name, CmpciNsurround);
1046 goto on_off;
1047 }
1048
1049 return ENXIO;
1050 }
1051
1052 static int
1053 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1054 struct cmpci_softc *sc;
1055 size_t size;
1056 struct malloc_type *type;
1057 int flags;
1058 caddr_t *r_addr;
1059 {
1060 int error = 0;
1061 struct cmpci_dmanode *n;
1062 int w;
1063
1064 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1065 if (n == NULL) {
1066 error = ENOMEM;
1067 goto quit;
1068 }
1069
1070 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1071 #define CMPCI_DMABUF_ALIGN 0x4
1072 #define CMPCI_DMABUF_BOUNDARY 0x0
1073 n->cd_tag = sc->sc_dmat;
1074 n->cd_size = size;
1075 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1076 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1077 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1078 if (error)
1079 goto mfree;
1080 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1081 &n->cd_addr, w | BUS_DMA_COHERENT);
1082 if (error)
1083 goto dmafree;
1084 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1085 w, &n->cd_map);
1086 if (error)
1087 goto unmap;
1088 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1089 NULL, w);
1090 if (error)
1091 goto destroy;
1092
1093 n->cd_next = sc->sc_dmap;
1094 sc->sc_dmap = n;
1095 *r_addr = KVADDR(n);
1096 return 0;
1097
1098 destroy:
1099 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1100 unmap:
1101 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1102 dmafree:
1103 bus_dmamem_free(n->cd_tag,
1104 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1105 mfree:
1106 free(n, type);
1107 quit:
1108 return error;
1109 }
1110
1111 static int
1112 cmpci_free_dmamem(sc, addr, type)
1113 struct cmpci_softc *sc;
1114 caddr_t addr;
1115 struct malloc_type *type;
1116 {
1117 struct cmpci_dmanode **nnp;
1118
1119 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1120 if ((*nnp)->cd_addr == addr) {
1121 struct cmpci_dmanode *n = *nnp;
1122 bus_dmamap_unload(n->cd_tag, n->cd_map);
1123 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1124 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1125 bus_dmamem_free(n->cd_tag, n->cd_segs,
1126 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1127 free(n, type);
1128 return 0;
1129 }
1130 }
1131 return -1;
1132 }
1133
1134 static struct cmpci_dmanode *
1135 cmpci_find_dmamem(sc, addr)
1136 struct cmpci_softc *sc;
1137 caddr_t addr;
1138 {
1139 struct cmpci_dmanode *p;
1140
1141 for (p=sc->sc_dmap; p; p=p->cd_next)
1142 if ( KVADDR(p) == (void *)addr )
1143 break;
1144 return p;
1145 }
1146
1147
1148 #if 0
1149 static void
1150 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1151 static void
1152 cmpci_print_dmamem(p)
1153 struct cmpci_dmanode *p;
1154 {
1155 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1156 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1157 (void *)DMAADDR(p), (void *)p->cd_size));
1158 }
1159 #endif /* DEBUG */
1160
1161
1162 static void *
1163 cmpci_allocm(handle, direction, size, type, flags)
1164 void *handle;
1165 int direction;
1166 size_t size;
1167 struct malloc_type *type;
1168 int flags;
1169 {
1170 struct cmpci_softc *sc = handle;
1171 caddr_t addr;
1172
1173 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1174 return NULL;
1175 return addr;
1176 }
1177
1178 static void
1179 cmpci_freem(handle, addr, type)
1180 void *handle;
1181 void *addr;
1182 struct malloc_type *type;
1183 {
1184 struct cmpci_softc *sc = handle;
1185
1186 cmpci_free_dmamem(sc, addr, type);
1187 }
1188
1189
1190 #define MAXVAL 256
1191 static int
1192 cmpci_adjust(val, mask)
1193 int val, mask;
1194 {
1195 val += (MAXVAL - mask) >> 1;
1196 if (val >= MAXVAL)
1197 val = MAXVAL-1;
1198 return val & mask;
1199 }
1200
1201 static void
1202 cmpci_set_mixer_gain(sc, port)
1203 struct cmpci_softc *sc;
1204 int port;
1205 {
1206 int src;
1207 int bits, mask;
1208
1209 switch (port) {
1210 case CMPCI_MIC_VOL:
1211 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
1212 CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1213 return;
1214 case CMPCI_MASTER_VOL:
1215 src = CMPCI_SB16_MIXER_MASTER_L;
1216 break;
1217 case CMPCI_LINE_IN_VOL:
1218 src = CMPCI_SB16_MIXER_LINE_L;
1219 break;
1220 case CMPCI_AUX_IN_VOL:
1221 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
1222 CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
1223 sc->sc_gain[port][CMPCI_RIGHT]));
1224 return;
1225 case CMPCI_MIC_RECVOL:
1226 cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
1227 CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
1228 CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1229 return;
1230 case CMPCI_DAC_VOL:
1231 src = CMPCI_SB16_MIXER_VOICE_L;
1232 break;
1233 case CMPCI_FM_VOL:
1234 src = CMPCI_SB16_MIXER_FM_L;
1235 break;
1236 case CMPCI_CD_VOL:
1237 src = CMPCI_SB16_MIXER_CDDA_L;
1238 break;
1239 case CMPCI_PCSPEAKER:
1240 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1241 CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1242 return;
1243 case CMPCI_MIC_PREAMP:
1244 if (sc->sc_gain[port][CMPCI_LR])
1245 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1246 CMPCI_REG_MICGAINZ);
1247 else
1248 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1249 CMPCI_REG_MICGAINZ);
1250 return;
1251
1252 case CMPCI_DAC_MUTE:
1253 if (sc->sc_gain[port][CMPCI_LR])
1254 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1255 CMPCI_REG_WSMUTE);
1256 else
1257 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1258 CMPCI_REG_WSMUTE);
1259 return;
1260 case CMPCI_FM_MUTE:
1261 if (sc->sc_gain[port][CMPCI_LR])
1262 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1263 CMPCI_REG_FMMUTE);
1264 else
1265 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1266 CMPCI_REG_FMMUTE);
1267 return;
1268 case CMPCI_AUX_IN_MUTE:
1269 if (sc->sc_gain[port][CMPCI_LR])
1270 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1271 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1272 else
1273 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1274 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1275 return;
1276 case CMPCI_CD_MUTE:
1277 mask = CMPCI_SB16_SW_CD;
1278 goto sbmute;
1279 case CMPCI_MIC_MUTE:
1280 mask = CMPCI_SB16_SW_MIC;
1281 goto sbmute;
1282 case CMPCI_LINE_IN_MUTE:
1283 mask = CMPCI_SB16_SW_LINE;
1284 sbmute:
1285 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1286 if (sc->sc_gain[port][CMPCI_LR])
1287 bits = bits & ~mask;
1288 else
1289 bits = bits | mask;
1290 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1291 return;
1292
1293 case CMPCI_SPDIF_IN_SELECT:
1294 case CMPCI_MONITOR_DAC:
1295 case CMPCI_PLAYBACK_MODE:
1296 case CMPCI_SPDIF_LOOP:
1297 case CMPCI_SPDIF_OUT_PLAYBACK:
1298 cmpci_set_out_ports(sc);
1299 return;
1300 case CMPCI_SPDIF_OUT_VOLTAGE:
1301 if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1302 if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
1303 == CMPCI_SPDIF_OUT_VOLTAGE_HIGH)
1304 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_5V);
1305 else
1306 cmpci_reg_set_reg_misc(sc, CMPCI_REG_5V);
1307 }
1308 return;
1309 case CMPCI_SURROUND:
1310 if (CMPCI_ISCAP(sc, SURROUND)) {
1311 if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1312 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1313 CMPCI_REG_SURROUND);
1314 else
1315 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1316 CMPCI_REG_SURROUND);
1317 }
1318 return;
1319 case CMPCI_REAR:
1320 if (CMPCI_ISCAP(sc, REAR)) {
1321 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1322 cmpci_reg_set_reg_misc(sc, CMPCI_REG_N4SPK3D);
1323 else
1324 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_N4SPK3D);
1325 }
1326 return;
1327 case CMPCI_INDIVIDUAL:
1328 if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1329 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1330 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1331 CMPCI_REG_INDIVIDUAL);
1332 else
1333 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1334 CMPCI_REG_INDIVIDUAL);
1335 }
1336 return;
1337 case CMPCI_REVERSE:
1338 if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1339 if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1340 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1341 CMPCI_REG_REVERSE_FR);
1342 else
1343 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1344 CMPCI_REG_REVERSE_FR);
1345 }
1346 return;
1347 case CMPCI_SPDIF_IN_PHASE:
1348 if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1349 if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
1350 == CMPCI_SPDIF_IN_PHASE_POSITIVE)
1351 cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1352 CMPCI_REG_SPDIN_PHASE);
1353 else
1354 cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1355 CMPCI_REG_SPDIN_PHASE);
1356 }
1357 return;
1358 default:
1359 return;
1360 }
1361
1362 cmpci_mixerreg_write(sc, src,
1363 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
1364 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1365 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
1366 }
1367
1368 static void
1369 cmpci_set_out_ports(sc)
1370 struct cmpci_softc *sc;
1371 {
1372 u_int8_t v;
1373 int enspdout = 0;
1374
1375 if (!CMPCI_ISCAP(sc, SPDLOOP))
1376 return;
1377
1378 /* SPDIF/out select */
1379 if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
1380 /* playback */
1381 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1382 } else {
1383 /* monitor SPDIF/in */
1384 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1385 }
1386
1387 /* SPDIF in select */
1388 v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
1389 if (v & CMPCI_SPDIFIN_SPDIFIN2)
1390 cmpci_reg_set_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
1391 else
1392 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
1393 if (v & CMPCI_SPDIFIN_SPDIFOUT)
1394 cmpci_reg_set_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
1395 else
1396 cmpci_reg_clear_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
1397
1398 /* playback to ... */
1399 if (CMPCI_ISCAP(sc, SPDOUT) &&
1400 sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
1401 == CMPCI_PLAYBACK_MODE_SPDIF &&
1402 (sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
1403 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1404 sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1405 /* playback to SPDIF */
1406 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
1407 enspdout = 1;
1408 if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1409 cmpci_reg_set_reg_misc(sc,
1410 CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1411 else
1412 cmpci_reg_clear_reg_misc(sc,
1413 CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1414 } else {
1415 /* playback to DAC */
1416 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1417 CMPCI_REG_SPDIF0_ENABLE);
1418 if (CMPCI_ISCAP(sc, SPDOUT_48K))
1419 cmpci_reg_clear_reg_misc(sc,
1420 CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1421 }
1422
1423 /* legacy to SPDIF/out or not */
1424 if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1425 if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
1426 == CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
1427 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1428 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1429 else {
1430 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1431 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1432 enspdout = 1;
1433 }
1434 }
1435
1436 /* enable/disable SPDIF/out */
1437 if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
1438 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1439 CMPCI_REG_XSPDIF_ENABLE);
1440 else
1441 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1442 CMPCI_REG_XSPDIF_ENABLE);
1443
1444 /* SPDIF monitor (digital to analog output) */
1445 if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1446 v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
1447 if (!(v & CMPCI_MONDAC_ENABLE))
1448 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1449 CMPCI_REG_SPDIN_MONITOR);
1450 if (v & CMPCI_MONDAC_SPDOUT)
1451 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1452 CMPCI_REG_SPDIFOUT_DAC);
1453 else
1454 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1455 CMPCI_REG_SPDIFOUT_DAC);
1456 if (v & CMPCI_MONDAC_ENABLE)
1457 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1458 CMPCI_REG_SPDIN_MONITOR);
1459 }
1460 }
1461
1462 static int
1463 cmpci_set_in_ports(sc)
1464 struct cmpci_softc *sc;
1465 {
1466 int mask;
1467 int bitsl, bitsr;
1468
1469 mask = sc->sc_in_mask;
1470
1471 /*
1472 * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
1473 * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
1474 * of the mixer register.
1475 */
1476 bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1477 CMPCI_RECORD_SOURCE_FM);
1478
1479 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1480 if (mask & CMPCI_RECORD_SOURCE_MIC) {
1481 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1482 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1483 }
1484 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1485 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1486
1487 if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
1488 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1489 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1490 else
1491 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1492 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1493
1494 if (mask & CMPCI_RECORD_SOURCE_WAVE)
1495 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1496 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1497 else
1498 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1499 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1500
1501 if (CMPCI_ISCAP(sc, SPDIN) &&
1502 (sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
1503 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1504 sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
1505 if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1506 /* enable SPDIF/in */
1507 cmpci_reg_set_4(sc,
1508 CMPCI_REG_FUNC_1,
1509 CMPCI_REG_SPDIF1_ENABLE);
1510 } else {
1511 cmpci_reg_clear_4(sc,
1512 CMPCI_REG_FUNC_1,
1513 CMPCI_REG_SPDIF1_ENABLE);
1514 }
1515 }
1516
1517 return 0;
1518 }
1519
1520 static int
1521 cmpci_set_port(handle, cp)
1522 void *handle;
1523 mixer_ctrl_t *cp;
1524 {
1525 struct cmpci_softc *sc = handle;
1526 int lgain, rgain;
1527
1528 switch (cp->dev) {
1529 case CMPCI_MIC_VOL:
1530 case CMPCI_PCSPEAKER:
1531 case CMPCI_MIC_RECVOL:
1532 if (cp->un.value.num_channels != 1)
1533 return EINVAL;
1534 /* FALLTHROUGH */
1535 case CMPCI_DAC_VOL:
1536 case CMPCI_FM_VOL:
1537 case CMPCI_CD_VOL:
1538 case CMPCI_LINE_IN_VOL:
1539 case CMPCI_AUX_IN_VOL:
1540 case CMPCI_MASTER_VOL:
1541 if (cp->type != AUDIO_MIXER_VALUE)
1542 return EINVAL;
1543 switch (cp->un.value.num_channels) {
1544 case 1:
1545 lgain = rgain =
1546 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1547 break;
1548 case 2:
1549 lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1550 rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1551 break;
1552 default:
1553 return EINVAL;
1554 }
1555 sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
1556 sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1557
1558 cmpci_set_mixer_gain(sc, cp->dev);
1559 break;
1560
1561 case CMPCI_RECORD_SOURCE:
1562 if (cp->type != AUDIO_MIXER_SET)
1563 return EINVAL;
1564
1565 if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
1566 CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1567 CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
1568 CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
1569 return EINVAL;
1570
1571 if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1572 cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1573
1574 sc->sc_in_mask = cp->un.mask;
1575 return cmpci_set_in_ports(sc);
1576
1577 /* boolean */
1578 case CMPCI_DAC_MUTE:
1579 case CMPCI_FM_MUTE:
1580 case CMPCI_CD_MUTE:
1581 case CMPCI_LINE_IN_MUTE:
1582 case CMPCI_AUX_IN_MUTE:
1583 case CMPCI_MIC_MUTE:
1584 case CMPCI_MIC_PREAMP:
1585 case CMPCI_PLAYBACK_MODE:
1586 case CMPCI_SPDIF_IN_PHASE:
1587 case CMPCI_SPDIF_LOOP:
1588 case CMPCI_SPDIF_OUT_PLAYBACK:
1589 case CMPCI_SPDIF_OUT_VOLTAGE:
1590 case CMPCI_REAR:
1591 case CMPCI_INDIVIDUAL:
1592 case CMPCI_REVERSE:
1593 case CMPCI_SURROUND:
1594 if (cp->type != AUDIO_MIXER_ENUM)
1595 return EINVAL;
1596 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1597 cmpci_set_mixer_gain(sc, cp->dev);
1598 break;
1599
1600 case CMPCI_SPDIF_IN_SELECT:
1601 switch (cp->un.ord) {
1602 case CMPCI_SPDIF_IN_SPDIN1:
1603 case CMPCI_SPDIF_IN_SPDIN2:
1604 case CMPCI_SPDIF_IN_SPDOUT:
1605 break;
1606 default:
1607 return EINVAL;
1608 }
1609 goto xenum;
1610 case CMPCI_MONITOR_DAC:
1611 switch (cp->un.ord) {
1612 case CMPCI_MONITOR_DAC_OFF:
1613 case CMPCI_MONITOR_DAC_SPDIN:
1614 case CMPCI_MONITOR_DAC_SPDOUT:
1615 break;
1616 default:
1617 return EINVAL;
1618 }
1619 xenum:
1620 if (cp->type != AUDIO_MIXER_ENUM)
1621 return EINVAL;
1622 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1623 cmpci_set_mixer_gain(sc, cp->dev);
1624 break;
1625
1626 default:
1627 return EINVAL;
1628 }
1629
1630 return 0;
1631 }
1632
1633 static int
1634 cmpci_get_port(handle, cp)
1635 void *handle;
1636 mixer_ctrl_t *cp;
1637 {
1638 struct cmpci_softc *sc = handle;
1639
1640 switch (cp->dev) {
1641 case CMPCI_MIC_VOL:
1642 case CMPCI_PCSPEAKER:
1643 case CMPCI_MIC_RECVOL:
1644 if (cp->un.value.num_channels != 1)
1645 return EINVAL;
1646 /*FALLTHROUGH*/
1647 case CMPCI_DAC_VOL:
1648 case CMPCI_FM_VOL:
1649 case CMPCI_CD_VOL:
1650 case CMPCI_LINE_IN_VOL:
1651 case CMPCI_AUX_IN_VOL:
1652 case CMPCI_MASTER_VOL:
1653 switch (cp->un.value.num_channels) {
1654 case 1:
1655 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1656 sc->sc_gain[cp->dev][CMPCI_LEFT];
1657 break;
1658 case 2:
1659 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1660 sc->sc_gain[cp->dev][CMPCI_LEFT];
1661 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1662 sc->sc_gain[cp->dev][CMPCI_RIGHT];
1663 break;
1664 default:
1665 return EINVAL;
1666 }
1667 break;
1668
1669 case CMPCI_RECORD_SOURCE:
1670 cp->un.mask = sc->sc_in_mask;
1671 break;
1672
1673 case CMPCI_DAC_MUTE:
1674 case CMPCI_FM_MUTE:
1675 case CMPCI_CD_MUTE:
1676 case CMPCI_LINE_IN_MUTE:
1677 case CMPCI_AUX_IN_MUTE:
1678 case CMPCI_MIC_MUTE:
1679 case CMPCI_MIC_PREAMP:
1680 case CMPCI_PLAYBACK_MODE:
1681 case CMPCI_SPDIF_IN_SELECT:
1682 case CMPCI_SPDIF_IN_PHASE:
1683 case CMPCI_SPDIF_LOOP:
1684 case CMPCI_SPDIF_OUT_PLAYBACK:
1685 case CMPCI_SPDIF_OUT_VOLTAGE:
1686 case CMPCI_MONITOR_DAC:
1687 case CMPCI_REAR:
1688 case CMPCI_INDIVIDUAL:
1689 case CMPCI_REVERSE:
1690 case CMPCI_SURROUND:
1691 cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1692 break;
1693
1694 default:
1695 return EINVAL;
1696 }
1697
1698 return 0;
1699 }
1700
1701 /* ARGSUSED */
1702 static size_t
1703 cmpci_round_buffersize(handle, direction, bufsize)
1704 void *handle;
1705 int direction;
1706 size_t bufsize;
1707 {
1708 if (bufsize > 0x10000)
1709 bufsize = 0x10000;
1710
1711 return bufsize;
1712 }
1713
1714
1715 static paddr_t
1716 cmpci_mappage(handle, addr, offset, prot)
1717 void *handle;
1718 void *addr;
1719 off_t offset;
1720 int prot;
1721 {
1722 struct cmpci_softc *sc = handle;
1723 struct cmpci_dmanode *p;
1724
1725 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1726 return -1;
1727
1728 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1729 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1730 offset, prot, BUS_DMA_WAITOK);
1731 }
1732
1733
1734 /* ARGSUSED */
1735 static int
1736 cmpci_get_props(handle)
1737 void *handle;
1738 {
1739 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1740 }
1741
1742
1743 static int
1744 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1745 void *handle;
1746 void *start, *end;
1747 int blksize;
1748 void (*intr) __P((void *));
1749 void *arg;
1750 const audio_params_t *param;
1751 {
1752 struct cmpci_softc *sc = handle;
1753 struct cmpci_dmanode *p;
1754 int bps;
1755
1756 sc->sc_play.intr = intr;
1757 sc->sc_play.intr_arg = arg;
1758 bps = param->channels * param->precision / 8;
1759 if (!bps)
1760 return EINVAL;
1761
1762 /* set DMA frame */
1763 if (!(p = cmpci_find_dmamem(sc, start)))
1764 return EINVAL;
1765 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1766 DMAADDR(p));
1767 delay(10);
1768 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1769 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1770 delay(10);
1771
1772 /* set interrupt count */
1773 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1774 (blksize + bps - 1) / bps - 1);
1775 delay(10);
1776
1777 /* start DMA */
1778 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1779 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1780 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1781
1782 return 0;
1783 }
1784
1785 static int
1786 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1787 void *handle;
1788 void *start, *end;
1789 int blksize;
1790 void (*intr) __P((void *));
1791 void *arg;
1792 const audio_params_t *param;
1793 {
1794 struct cmpci_softc *sc = handle;
1795 struct cmpci_dmanode *p;
1796 int bps;
1797
1798 sc->sc_rec.intr = intr;
1799 sc->sc_rec.intr_arg = arg;
1800 bps = param->channels * param->precision / 8;
1801 if (!bps)
1802 return EINVAL;
1803
1804 /* set DMA frame */
1805 if (!(p=cmpci_find_dmamem(sc, start)))
1806 return EINVAL;
1807 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1808 DMAADDR(p));
1809 delay(10);
1810 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1811 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1812 delay(10);
1813
1814 /* set interrupt count */
1815 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1816 (blksize + bps - 1) / bps - 1);
1817 delay(10);
1818
1819 /* start DMA */
1820 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1821 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1822 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1823
1824 return 0;
1825 }
1826
1827
1828 /* end of file */
1829