cmpci.c revision 1.4.2.2 1 /* $NetBSD: cmpci.c,v 1.4.2.2 2000/11/20 11:42:15 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <AoiMoe (at) imou.to> .
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * C-Media CMI8x38 Audio Chip Support.
35 *
36 * TODO:
37 * - Legacy MPU, OPL and Joystick support (but, I have no interest...)
38 * - SPDIF support.
39 *
40 * ACKNOWLEDGEMENT:
41 * - Lennart Augustsson : He touched up this code.
42 *
43 */
44
45 #undef CMPCI_SPDIF_SUPPORT /* XXX: not working */
46
47 #if defined(AUDIO_DEBUG) || defined(DEBUG)
48 #define DPRINTF(x) printf x
49 #else
50 #define DPRINTF(x)
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/malloc.h>
57 #include <sys/device.h>
58 #include <sys/proc.h>
59
60 #include <dev/pci/pcidevs.h>
61 #include <dev/pci/pcivar.h>
62
63 #include <sys/audioio.h>
64 #include <dev/audio_if.h>
65 #include <dev/midi_if.h>
66
67 #include <dev/mulaw.h>
68 #include <dev/auconv.h>
69 #include <dev/pci/cmpcireg.h>
70 #include <dev/pci/cmpcivar.h>
71
72 #include <dev/ic/mpuvar.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75
76 /*
77 * Low-level HW interface
78 */
79 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
80 uint8_t));
81 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
82 uint8_t, uint8_t));
83 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
84 int, int,
85 uint32_t, uint32_t));
86 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
87 int, uint32_t));
88 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
89 int, uint32_t));
90 static int cmpci_rate_to_index __P((int));
91 static __inline int cmpci_index_to_rate __P((int));
92 static __inline int cmpci_index_to_divider __P((int));
93
94 static int cmpci_adjust __P((int, int));
95 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
96 static int cmpci_set_in_ports __P((struct cmpci_softc *, int));
97
98
99 /*
100 * autoconf interface
101 */
102 static int cmpci_match __P((struct device *, struct cfdata *, void *));
103 static void cmpci_attach __P((struct device *, struct device *, void *));
104
105 struct cfattach cmpci_ca = {
106 sizeof (struct cmpci_softc), cmpci_match, cmpci_attach
107 };
108
109 /* interrupt */
110 static int cmpci_intr __P((void *));
111
112
113 /*
114 * DMA stuffs
115 */
116 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
117 size_t, int, int, caddr_t *));
118 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t, int));
119 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
120 caddr_t));
121
122
123 /*
124 * interface to machine independent layer
125 */
126 static int cmpci_open __P((void *, int));
127 static void cmpci_close __P((void *));
128 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
129 static int cmpci_set_params __P((void *, int, int,
130 struct audio_params *,
131 struct audio_params *));
132 static int cmpci_round_blocksize __P((void *, int));
133 static int cmpci_halt_output __P((void *));
134 static int cmpci_halt_input __P((void *));
135 static int cmpci_getdev __P((void *, struct audio_device *));
136 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
137 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
138 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
139 static void *cmpci_allocm __P((void *, int, size_t, int, int));
140 static void cmpci_freem __P((void *, void *, int));
141 static size_t cmpci_round_buffersize __P((void *, int, size_t));
142 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
143 static int cmpci_get_props __P((void *));
144 static int cmpci_trigger_output __P((void *, void *, void *, int,
145 void (*)(void *), void *,
146 struct audio_params *));
147 static int cmpci_trigger_input __P((void *, void *, void *, int,
148 void (*)(void *), void *,
149 struct audio_params *));
150
151 static struct audio_hw_if cmpci_hw_if = {
152 cmpci_open, /* open */
153 cmpci_close, /* close */
154 NULL, /* drain */
155 cmpci_query_encoding, /* query_encoding */
156 cmpci_set_params, /* set_params */
157 cmpci_round_blocksize, /* round_blocksize */
158 NULL, /* commit_settings */
159 NULL, /* init_output */
160 NULL, /* init_input */
161 NULL, /* start_output */
162 NULL, /* start_input */
163 cmpci_halt_output, /* halt_output */
164 cmpci_halt_input, /* halt_input */
165 NULL, /* speaker_ctl */
166 cmpci_getdev, /* getdev */
167 NULL, /* setfd */
168 cmpci_set_port, /* set_port */
169 cmpci_get_port, /* get_port */
170 cmpci_query_devinfo, /* query_devinfo */
171 cmpci_allocm, /* allocm */
172 cmpci_freem, /* freem */
173 cmpci_round_buffersize,/* round_buffersize */
174 cmpci_mappage, /* mappage */
175 cmpci_get_props, /* get_props */
176 cmpci_trigger_output, /* trigger_output */
177 cmpci_trigger_input /* trigger_input */
178 };
179
180
181 /*
182 * Low-level HW interface
183 */
184
185 /* mixer register read/write */
186 static __inline uint8_t
187 cmpci_mixerreg_read(sc, no)
188 struct cmpci_softc *sc;
189 uint8_t no;
190 {
191 uint8_t ret;
192
193 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
194 delay(10);
195 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
196 delay(10);
197 return ret;
198 }
199
200 static __inline void
201 cmpci_mixerreg_write(sc, no, val)
202 struct cmpci_softc *sc;
203 uint8_t no, val;
204 {
205 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
206 delay(10);
207 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
208 delay(10);
209 }
210
211
212 /* register partial write */
213 static __inline void
214 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
215 struct cmpci_softc *sc;
216 int no, shift;
217 uint32_t mask, val;
218 {
219 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
220 (val<<shift) |
221 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
222 delay(10);
223 }
224
225 /* register set/clear bit */
226 static __inline void
227 cmpci_reg_set_4(sc, no, mask)
228 struct cmpci_softc *sc;
229 int no;
230 uint32_t mask;
231 {
232 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
233 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
234 delay(10);
235 }
236
237 static __inline void
238 cmpci_reg_clear_4(sc, no, mask)
239 struct cmpci_softc *sc;
240 int no;
241 uint32_t mask;
242 {
243 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
244 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
245 delay(10);
246 }
247
248
249 /* rate */
250 static struct {
251 int rate;
252 int divider;
253 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
254 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
255 _RATE(5512),
256 _RATE(8000),
257 _RATE(11025),
258 _RATE(16000),
259 _RATE(22050),
260 _RATE(32000),
261 _RATE(44100),
262 _RATE(48000)
263 #undef _RATE
264 };
265
266 static int
267 cmpci_rate_to_index(rate)
268 int rate;
269 {
270 int i;
271
272 for (i = 0; i < CMPCI_REG_NUMRATE - 2; i++)
273 if (rate <=
274 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
275 return i;
276 return i; /* 48000 */
277 }
278
279 static __inline int
280 cmpci_index_to_rate(index)
281 int index;
282 {
283 return cmpci_rate_table[index].rate;
284 }
285
286 static __inline int
287 cmpci_index_to_divider(index)
288 int index;
289 {
290 return cmpci_rate_table[index].divider;
291 }
292
293
294 /*
295 * interface to configure the device.
296 */
297
298 static int
299 cmpci_match(parent, match, aux)
300 struct device *parent;
301 struct cfdata *match;
302 void *aux;
303 {
304 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
305
306 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
307 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
308 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
309 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738) )
310 return 1;
311
312 return 0;
313 }
314
315 static void
316 cmpci_attach(parent, self, aux)
317 struct device *parent, *self;
318 void *aux;
319 {
320 struct cmpci_softc *sc = (struct cmpci_softc *)self;
321 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
322 pci_intr_handle_t ih;
323 char const *strintr;
324 int i, v;
325
326 sc->sc_revision = PCI_REVISION(pa->pa_class);
327 sc->sc_model = PCI_PRODUCT(pa->pa_id);
328 switch (sc->sc_model) {
329 case PCI_PRODUCT_CMEDIA_CMI8338A:
330 printf(": CMI8338A PCI Audio Device\n");
331 break;
332 case PCI_PRODUCT_CMEDIA_CMI8338B:
333 printf(": CMI8338B PCI Audio Device\n");
334 break;
335 case PCI_PRODUCT_CMEDIA_CMI8738:
336 printf(": CMI8738 PCI Audio Device\n");
337 break;
338 }
339
340 /* map I/O space */
341 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
342 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
343 printf("%s: failed to map I/O space\n", sc->sc_dev.dv_xname);
344 return;
345 }
346
347 /* interrupt */
348 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
349 pa->pa_intrline, &ih)) {
350 printf("%s: failed to map interrupt\n", sc->sc_dev.dv_xname);
351 return;
352 }
353 strintr = pci_intr_string(pa->pa_pc, ih);
354 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
355 if (sc->sc_ih == NULL) {
356 printf("%s: failed to establish interrupt",
357 sc->sc_dev.dv_xname);
358 if (strintr != NULL)
359 printf(" at %s", strintr);
360 printf("\n");
361 return;
362 }
363 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
364
365 sc->sc_dmat = pa->pa_dmat;
366
367 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
368
369 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
370 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
371 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
372 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
373 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
374 for (i = 0; i < CMPCI_NDEVS; i++) {
375 switch(i) {
376 case CMPCI_MIC_VOL:
377 case CMPCI_LINE_IN_VOL:
378 v = 0;
379 break;
380 case CMPCI_BASS:
381 case CMPCI_TREBLE:
382 v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
383 break;
384 case CMPCI_CD_IN_MUTE:
385 case CMPCI_MIC_IN_MUTE:
386 case CMPCI_LINE_IN_MUTE:
387 case CMPCI_FM_IN_MUTE:
388 case CMPCI_CD_SWAP:
389 case CMPCI_MIC_SWAP:
390 case CMPCI_LINE_SWAP:
391 case CMPCI_FM_SWAP:
392 v = 0;
393 break;
394 case CMPCI_CD_OUT_MUTE:
395 case CMPCI_MIC_OUT_MUTE:
396 case CMPCI_LINE_OUT_MUTE:
397 v = 1;
398 break;
399 default:
400 v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
401 }
402 sc->gain[i][CMPCI_LEFT] = sc->gain[i][CMPCI_RIGHT] = v;
403 cmpci_set_mixer_gain(sc, i);
404 }
405 }
406
407
408 static int
409 cmpci_intr(handle)
410 void *handle;
411 {
412 struct cmpci_softc *sc = handle;
413 uint32_t intrstat;
414
415 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
416 CMPCI_REG_INTR_STATUS);
417 delay(10);
418
419 if (!(intrstat & CMPCI_REG_ANY_INTR))
420 return 0;
421
422 /* disable and reset intr */
423 if (intrstat & CMPCI_REG_CH0_INTR)
424 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
425 CMPCI_REG_CH0_INTR_ENABLE);
426 if (intrstat & CMPCI_REG_CH1_INTR)
427 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
428 CMPCI_REG_CH1_INTR_ENABLE);
429
430 if (intrstat & CMPCI_REG_CH0_INTR) {
431 if (sc->sc_play.intr != NULL)
432 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
433 }
434 if (intrstat & CMPCI_REG_CH1_INTR) {
435 if (sc->sc_rec.intr != NULL)
436 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
437 }
438
439 /* enable intr */
440 if (intrstat & CMPCI_REG_CH0_INTR)
441 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
442 CMPCI_REG_CH0_INTR_ENABLE);
443 if (intrstat & CMPCI_REG_CH1_INTR)
444 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
445 CMPCI_REG_CH1_INTR_ENABLE);
446
447 return 0;
448 }
449
450
451 /* open/close */
452 static int
453 cmpci_open(handle, flags)
454 void *handle;
455 int flags;
456 {
457 #if 0
458 struct cmpci_softc *sc = handle;
459 #endif
460
461 return 0;
462 }
463
464 static void
465 cmpci_close(handle)
466 void *handle;
467 {
468 }
469
470 static int
471 cmpci_query_encoding(handle, fp)
472 void *handle;
473 struct audio_encoding *fp;
474 {
475 #if 0
476 struct cmpci_softc *sc = handle;
477 #endif
478
479 switch (fp->index) {
480 case 0:
481 strcpy(fp->name, AudioEulinear);
482 fp->encoding = AUDIO_ENCODING_ULINEAR;
483 fp->precision = 8;
484 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
485 break;
486 case 1:
487 strcpy(fp->name, AudioEmulaw);
488 fp->encoding = AUDIO_ENCODING_ULAW;
489 fp->precision = 8;
490 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
491 break;
492 case 2:
493 strcpy(fp->name, AudioEalaw);
494 fp->encoding = AUDIO_ENCODING_ALAW;
495 fp->precision = 8;
496 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
497 break;
498 case 3:
499 strcpy(fp->name, AudioEslinear);
500 fp->encoding = AUDIO_ENCODING_SLINEAR;
501 fp->precision = 8;
502 fp->flags = 0;
503 break;
504 case 4:
505 strcpy(fp->name, AudioEslinear_le);
506 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
507 fp->precision = 16;
508 fp->flags = 0;
509 break;
510 case 5:
511 strcpy(fp->name, AudioEulinear_le);
512 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
513 fp->precision = 16;
514 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
515 break;
516 case 6:
517 strcpy(fp->name, AudioEslinear_be);
518 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
519 fp->precision = 16;
520 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
521 break;
522 case 7:
523 strcpy(fp->name, AudioEulinear_be);
524 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
525 fp->precision = 16;
526 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
527 break;
528 default:
529 return EINVAL;
530 }
531 return 0;
532 }
533
534
535 static int
536 cmpci_set_params(handle, setmode, usemode, play, rec)
537 void *handle;
538 int setmode, usemode;
539 struct audio_params *play, *rec;
540 {
541 int i;
542 struct cmpci_softc *sc = handle;
543
544 for (i = 0; i < 2; i++) {
545 int md_format;
546 int md_divide;
547 int md_index;
548 int mode;
549 struct audio_params *p;
550
551 switch (i) {
552 case 0:
553 mode = AUMODE_PLAY;
554 p = play;
555 break;
556 case 1:
557 mode = AUMODE_RECORD;
558 p = rec;
559 break;
560 }
561
562 if (!(setmode & mode))
563 continue;
564
565
566 /* format */
567 p->sw_code = NULL;
568 switch ( p->channels ) {
569 case 1:
570 md_format = CMPCI_REG_FORMAT_MONO;
571 break;
572 case 2:
573 md_format = CMPCI_REG_FORMAT_STEREO;
574 break;
575 default:
576 return (EINVAL);
577 }
578 switch (p->encoding) {
579 case AUDIO_ENCODING_ULAW:
580 if (p->precision != 8)
581 return (EINVAL);
582 if (mode & AUMODE_PLAY) {
583 p->factor = 2;
584 p->sw_code = mulaw_to_slinear16_le;
585 md_format |= CMPCI_REG_FORMAT_16BIT;
586 } else {
587 p->sw_code = ulinear8_to_mulaw;
588 md_format |= CMPCI_REG_FORMAT_8BIT;
589 }
590 break;
591 case AUDIO_ENCODING_ALAW:
592 if (p->precision != 8)
593 return (EINVAL);
594 if (mode & AUMODE_PLAY) {
595 p->factor = 2;
596 p->sw_code = alaw_to_slinear16_le;
597 md_format |= CMPCI_REG_FORMAT_16BIT;
598 } else {
599 p->sw_code = ulinear8_to_alaw;
600 md_format |= CMPCI_REG_FORMAT_8BIT;
601 }
602 break;
603 case AUDIO_ENCODING_SLINEAR_LE:
604 switch (p->precision) {
605 case 8:
606 p->sw_code = change_sign8;
607 md_format |= CMPCI_REG_FORMAT_8BIT;
608 break;
609 case 16:
610 md_format |= CMPCI_REG_FORMAT_16BIT;
611 break;
612 default:
613 return (EINVAL);
614 }
615 break;
616 case AUDIO_ENCODING_SLINEAR_BE:
617 switch (p->precision) {
618 case 8:
619 md_format |= CMPCI_REG_FORMAT_8BIT;
620 p->sw_code = change_sign8;
621 break;
622 case 16:
623 md_format |= CMPCI_REG_FORMAT_16BIT;
624 p->sw_code = swap_bytes;
625 break;
626 default:
627 return (EINVAL);
628 }
629 break;
630 case AUDIO_ENCODING_ULINEAR_LE:
631 switch (p->precision) {
632 case 8:
633 md_format |= CMPCI_REG_FORMAT_8BIT;
634 break;
635 case 16:
636 md_format |= CMPCI_REG_FORMAT_16BIT;
637 p->sw_code = change_sign16_le;
638 break;
639 default:
640 return (EINVAL);
641 }
642 break;
643 case AUDIO_ENCODING_ULINEAR_BE:
644 switch (p->precision) {
645 case 8:
646 md_format |= CMPCI_REG_FORMAT_8BIT;
647 break;
648 case 16:
649 md_format |= CMPCI_REG_FORMAT_16BIT;
650 if (mode & AUMODE_PLAY)
651 p->sw_code =swap_bytes_change_sign16_le;
652 else
653 p->sw_code =change_sign16_swap_bytes_le;
654 break;
655 default:
656 return (EINVAL);
657 }
658 break;
659 default:
660 return (EINVAL);
661 }
662 if (mode & AUMODE_PLAY)
663 cmpci_reg_partial_write_4(sc,
664 CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH0_FORMAT_SHIFT,
665 CMPCI_REG_CH0_FORMAT_MASK, md_format);
666 else
667 cmpci_reg_partial_write_4(sc,
668 CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH1_FORMAT_SHIFT,
669 CMPCI_REG_CH1_FORMAT_MASK, md_format);
670 /* sample rate */
671 md_index = cmpci_rate_to_index(p->sample_rate);
672 md_divide = cmpci_index_to_divider(md_index);
673 p->sample_rate = cmpci_index_to_rate(md_index);
674 #if 0
675 DPRINTF(("%s: sample:%d, divider=%d\n",
676 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
677 #endif
678 if (mode & AUMODE_PLAY) {
679 cmpci_reg_partial_write_4(sc,
680 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
681 CMPCI_REG_DAC_FS_MASK, md_divide);
682 #ifdef CMPCI_SPDIF_SUPPORT
683 switch (md_divide) {
684 case CMPCI_REG_RATE_44100:
685 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
686 CMPCI_REG_SPDIF_48K);
687 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
688 CMPCI_REG_SPDIF_LOOP);
689 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
690 CMPCI_REG_SPDIF0_ENABLE);
691 break;
692 case CMPCI_REG_RATE_48000:
693 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
694 CMPCI_REG_SPDIF_48K);
695 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
696 CMPCI_REG_SPDIF_LOOP);
697 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
698 CMPCI_REG_SPDIF0_ENABLE);
699 break;
700 default:
701 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
702 CMPCI_REG_SPDIF0_ENABLE);
703 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
704 CMPCI_REG_SPDIF_LOOP);
705 }
706 #endif
707 } else {
708 cmpci_reg_partial_write_4(sc,
709 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
710 CMPCI_REG_ADC_FS_MASK, md_divide);
711 #ifdef CMPCI_SPDIF_SUPPORT
712 if (sc->in_mask & CMPCI_SPDIF_IN) {
713 switch (md_divide) {
714 case CMPCI_REG_RATE_44100:
715 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
716 CMPCI_REG_SPDIF1_ENABLE);
717 break;
718 default:
719 return EINVAL;
720 }
721 } else
722 cmpci_reg_clear_4(sc,
723 CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF1_ENABLE);
724 #endif
725 }
726 }
727 return 0;
728 }
729
730 /* ARGSUSED */
731 static int
732 cmpci_round_blocksize(handle, block)
733 void *handle;
734 int block;
735 {
736 return (block & -4);
737 }
738
739 static int
740 cmpci_halt_output(handle)
741 void *handle;
742 {
743 struct cmpci_softc *sc = handle;
744 int s;
745
746 s = splaudio();
747 sc->sc_play.intr = NULL;
748 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
749 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
750 /* wait for reset DMA */
751 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
752 delay(10);
753 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
754 splx(s);
755
756 return 0;
757 }
758
759 static int
760 cmpci_halt_input(handle)
761 void *handle;
762 {
763 struct cmpci_softc *sc = handle;
764 int s;
765
766 s = splaudio();
767 sc->sc_rec.intr = NULL;
768 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
769 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
770 /* wait for reset DMA */
771 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
772 delay(10);
773 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
774 splx(s);
775
776 return 0;
777 }
778
779
780 /* get audio device information */
781 static int
782 cmpci_getdev(handle, ad)
783 void *handle;
784 struct audio_device *ad;
785 {
786 struct cmpci_softc *sc = handle;
787
788 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
789 snprintf(ad->version, sizeof(ad->version), "0x%02x", sc->sc_revision);
790 switch (sc->sc_model) {
791 case PCI_PRODUCT_CMEDIA_CMI8338A:
792 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
793 break;
794 case PCI_PRODUCT_CMEDIA_CMI8338B:
795 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
796 break;
797 case PCI_PRODUCT_CMEDIA_CMI8738:
798 strncpy(ad->config, "CMI8738", sizeof(ad->config));
799 break;
800 default:
801 strncpy(ad->config, "unknown", sizeof(ad->config));
802 }
803
804 return 0;
805 }
806
807
808 /* mixer device information */
809 int
810 cmpci_query_devinfo(handle, dip)
811 void *handle;
812 mixer_devinfo_t *dip;
813 {
814 #if 0
815 struct cmpci_softc *sc = handle;
816 #endif
817
818 switch (dip->index) {
819 case CMPCI_MASTER_VOL:
820 dip->type = AUDIO_MIXER_VALUE;
821 dip->mixer_class = CMPCI_OUTPUT_CLASS;
822 dip->prev = dip->next = AUDIO_MIXER_LAST;
823 strcpy(dip->label.name, AudioNmaster);
824 dip->un.v.num_channels = 2;
825 strcpy(dip->un.v.units.name, AudioNvolume);
826 return 0;
827 case CMPCI_FM_VOL:
828 dip->type = AUDIO_MIXER_VALUE;
829 dip->mixer_class = CMPCI_INPUT_CLASS;
830 dip->prev = AUDIO_MIXER_LAST;
831 dip->next = CMPCI_FM_IN_MUTE;
832 strcpy(dip->label.name, AudioNfmsynth);
833 dip->un.v.num_channels = 2;
834 strcpy(dip->un.v.units.name, AudioNvolume);
835 return 0;
836 case CMPCI_CD_VOL:
837 dip->type = AUDIO_MIXER_VALUE;
838 dip->mixer_class = CMPCI_INPUT_CLASS;
839 dip->prev = AUDIO_MIXER_LAST;
840 dip->next = CMPCI_CD_IN_MUTE;
841 strcpy(dip->label.name, AudioNcd);
842 dip->un.v.num_channels = 2;
843 strcpy(dip->un.v.units.name, AudioNvolume);
844 return 0;
845 case CMPCI_VOICE_VOL:
846 dip->type = AUDIO_MIXER_VALUE;
847 dip->mixer_class = CMPCI_OUTPUT_CLASS;
848 dip->prev = AUDIO_MIXER_LAST;
849 dip->next = AUDIO_MIXER_LAST;
850 strcpy(dip->label.name, AudioNdac);
851 dip->un.v.num_channels = 2;
852 strcpy(dip->un.v.units.name, AudioNvolume);
853 return 0;
854 case CMPCI_OUTPUT_CLASS:
855 dip->type = AUDIO_MIXER_CLASS;
856 dip->mixer_class = CMPCI_INPUT_CLASS;
857 dip->next = dip->prev = AUDIO_MIXER_LAST;
858 strcpy(dip->label.name, AudioCoutputs);
859 return 0;
860 case CMPCI_MIC_VOL:
861 dip->type = AUDIO_MIXER_VALUE;
862 dip->mixer_class = CMPCI_INPUT_CLASS;
863 dip->prev = AUDIO_MIXER_LAST;
864 dip->next = CMPCI_MIC_IN_MUTE;
865 strcpy(dip->label.name, AudioNmicrophone);
866 dip->un.v.num_channels = 1;
867 strcpy(dip->un.v.units.name, AudioNvolume);
868 return 0;
869 case CMPCI_LINE_IN_VOL:
870 dip->type = AUDIO_MIXER_VALUE;
871 dip->mixer_class = CMPCI_INPUT_CLASS;
872 dip->prev = AUDIO_MIXER_LAST;
873 dip->next = CMPCI_LINE_IN_MUTE;
874 strcpy(dip->label.name, AudioNline);
875 dip->un.v.num_channels = 2;
876 strcpy(dip->un.v.units.name, AudioNvolume);
877 return 0;
878 case CMPCI_RECORD_SOURCE:
879 dip->mixer_class = CMPCI_RECORD_CLASS;
880 dip->prev = dip->next = AUDIO_MIXER_LAST;
881 strcpy(dip->label.name, AudioNsource);
882 dip->type = AUDIO_MIXER_SET;
883 #ifdef CMPCI_SPDIF_SUPPORT
884 dip->un.s.num_mem = 5;
885 #else
886 dip->un.s.num_mem = 4;
887 #endif
888 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
889 dip->un.s.member[0].mask = 1 << CMPCI_MIC_VOL;
890 strcpy(dip->un.s.member[1].label.name, AudioNcd);
891 dip->un.s.member[1].mask = 1 << CMPCI_CD_VOL;
892 strcpy(dip->un.s.member[2].label.name, AudioNline);
893 dip->un.s.member[2].mask = 1 << CMPCI_LINE_IN_VOL;
894 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
895 dip->un.s.member[3].mask = 1 << CMPCI_FM_VOL;
896 #ifdef CMPCI_SPDIF_SUPPORT
897 strcpy(dip->un.s.member[4].label.name, CmpciNspdif);
898 dip->un.s.member[4].mask = 1 << CMPCI_SPDIF_IN;
899 #endif
900 return 0;
901 case CMPCI_BASS:
902 dip->prev = dip->next = AUDIO_MIXER_LAST;
903 strcpy(dip->label.name, AudioNbass);
904 dip->type = AUDIO_MIXER_VALUE;
905 dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
906 dip->un.v.num_channels = 2;
907 strcpy(dip->un.v.units.name, AudioNbass);
908 return 0;
909 case CMPCI_TREBLE:
910 dip->prev = dip->next = AUDIO_MIXER_LAST;
911 strcpy(dip->label.name, AudioNtreble);
912 dip->type = AUDIO_MIXER_VALUE;
913 dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
914 dip->un.v.num_channels = 2;
915 strcpy(dip->un.v.units.name, AudioNtreble);
916 return 0;
917 case CMPCI_RECORD_CLASS:
918 dip->type = AUDIO_MIXER_CLASS;
919 dip->mixer_class = CMPCI_RECORD_CLASS;
920 dip->next = dip->prev = AUDIO_MIXER_LAST;
921 strcpy(dip->label.name, AudioCrecord);
922 return 0;
923 case CMPCI_INPUT_CLASS:
924 dip->type = AUDIO_MIXER_CLASS;
925 dip->mixer_class = CMPCI_INPUT_CLASS;
926 dip->next = dip->prev = AUDIO_MIXER_LAST;
927 strcpy(dip->label.name, AudioCinputs);
928 return 0;
929 case CMPCI_PCSPEAKER:
930 dip->type = AUDIO_MIXER_VALUE;
931 dip->mixer_class = CMPCI_INPUT_CLASS;
932 dip->prev = dip->next = AUDIO_MIXER_LAST;
933 strcpy(dip->label.name, "pc_speaker");
934 dip->un.v.num_channels = 1;
935 strcpy(dip->un.v.units.name, AudioNvolume);
936 return 0;
937 case CMPCI_INPUT_GAIN:
938 dip->type = AUDIO_MIXER_VALUE;
939 dip->mixer_class = CMPCI_INPUT_CLASS;
940 dip->prev = dip->next = AUDIO_MIXER_LAST;
941 strcpy(dip->label.name, AudioNinput);
942 dip->un.v.num_channels = 2;
943 strcpy(dip->un.v.units.name, AudioNvolume);
944 return 0;
945 case CMPCI_OUTPUT_GAIN:
946 dip->type = AUDIO_MIXER_VALUE;
947 dip->mixer_class = CMPCI_OUTPUT_CLASS;
948 dip->prev = dip->next = AUDIO_MIXER_LAST;
949 strcpy(dip->label.name, AudioNoutput);
950 dip->un.v.num_channels = 2;
951 strcpy(dip->un.v.units.name, AudioNvolume);
952 return 0;
953 case CMPCI_AGC:
954 dip->type = AUDIO_MIXER_ENUM;
955 dip->mixer_class = CMPCI_INPUT_CLASS;
956 dip->prev = dip->next = AUDIO_MIXER_LAST;
957 strcpy(dip->label.name, "agc");
958 dip->un.e.num_mem = 2;
959 strcpy(dip->un.e.member[0].label.name, AudioNoff);
960 dip->un.e.member[0].ord = 0;
961 strcpy(dip->un.e.member[1].label.name, AudioNon);
962 dip->un.e.member[1].ord = 1;
963 return 0;
964 case CMPCI_EQUALIZATION_CLASS:
965 dip->type = AUDIO_MIXER_CLASS;
966 dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
967 dip->next = dip->prev = AUDIO_MIXER_LAST;
968 strcpy(dip->label.name, AudioCequalization);
969 return 0;
970
971 case CMPCI_CD_IN_MUTE:
972 dip->prev = CMPCI_CD_VOL;
973 dip->next = CMPCI_CD_SWAP;
974 dip->mixer_class = CMPCI_INPUT_CLASS;
975 goto mute;
976 case CMPCI_MIC_IN_MUTE:
977 dip->prev = CMPCI_MIC_VOL;
978 dip->next = CMPCI_MIC_SWAP;
979 dip->mixer_class = CMPCI_INPUT_CLASS;
980 goto mute;
981 case CMPCI_LINE_IN_MUTE:
982 dip->prev = CMPCI_LINE_IN_VOL;
983 dip->next = CMPCI_LINE_SWAP;
984 dip->mixer_class = CMPCI_INPUT_CLASS;
985 goto mute;
986 case CMPCI_FM_IN_MUTE:
987 dip->prev = CMPCI_FM_VOL;
988 dip->next = CMPCI_FM_SWAP;
989 dip->mixer_class = CMPCI_INPUT_CLASS;
990 goto mute;
991 case CMPCI_CD_SWAP:
992 dip->prev = CMPCI_CD_IN_MUTE;
993 dip->next = CMPCI_CD_OUT_MUTE;
994 goto swap;
995 case CMPCI_MIC_SWAP:
996 dip->prev = CMPCI_MIC_IN_MUTE;
997 dip->next = CMPCI_MIC_OUT_MUTE;
998 goto swap;
999 case CMPCI_LINE_SWAP:
1000 dip->prev = CMPCI_LINE_IN_MUTE;
1001 dip->next = CMPCI_LINE_OUT_MUTE;
1002 goto swap;
1003 case CMPCI_FM_SWAP:
1004 dip->prev = CMPCI_FM_IN_MUTE;
1005 dip->next = AUDIO_MIXER_LAST;
1006 swap:
1007 dip->mixer_class = CMPCI_INPUT_CLASS;
1008 strcpy(dip->label.name, AudioNswap);
1009 goto mute1;
1010
1011 case CMPCI_CD_OUT_MUTE:
1012 dip->prev = CMPCI_CD_SWAP;
1013 dip->next = AUDIO_MIXER_LAST;
1014 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1015 goto mute;
1016 case CMPCI_MIC_OUT_MUTE:
1017 dip->prev = CMPCI_MIC_SWAP;
1018 dip->next = AUDIO_MIXER_LAST;
1019 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1020 goto mute;
1021 case CMPCI_LINE_OUT_MUTE:
1022 dip->prev = CMPCI_LINE_SWAP;
1023 dip->next = AUDIO_MIXER_LAST;
1024 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1025 mute:
1026 strcpy(dip->label.name, AudioNmute);
1027 mute1:
1028 dip->type = AUDIO_MIXER_ENUM;
1029 dip->un.e.num_mem = 2;
1030 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1031 dip->un.e.member[0].ord = 0;
1032 strcpy(dip->un.e.member[1].label.name, AudioNon);
1033 dip->un.e.member[1].ord = 1;
1034 return 0;
1035 }
1036
1037 return ENXIO;
1038 }
1039
1040 static int
1041 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1042 struct cmpci_softc *sc;
1043 size_t size;
1044 int type, flags;
1045 caddr_t *r_addr;
1046 {
1047 int error = 0;
1048 struct cmpci_dmanode *n;
1049 int w;
1050
1051 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1052 if (n == NULL) {
1053 error = ENOMEM;
1054 goto quit;
1055 }
1056
1057 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1058 #define CMPCI_DMABUF_ALIGN 0x4
1059 #define CMPCI_DMABUF_BOUNDARY 0x0
1060 n->cd_tag = sc->sc_dmat;
1061 n->cd_size = size;
1062 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1063 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1064 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1065 if (error)
1066 goto mfree;
1067 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1068 &n->cd_addr, w | BUS_DMA_COHERENT);
1069 if (error)
1070 goto dmafree;
1071 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1072 w, &n->cd_map);
1073 if (error)
1074 goto unmap;
1075 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1076 NULL, w);
1077 if (error)
1078 goto destroy;
1079
1080 n->cd_next = sc->sc_dmap;
1081 sc->sc_dmap = n;
1082 *r_addr = KVADDR(n);
1083 return 0;
1084
1085 destroy:
1086 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1087 unmap:
1088 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1089 dmafree:
1090 bus_dmamem_free(n->cd_tag,
1091 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1092 mfree:
1093 free(n, type);
1094 quit:
1095 return error;
1096 }
1097
1098 static int
1099 cmpci_free_dmamem(sc, addr, type)
1100 struct cmpci_softc *sc;
1101 caddr_t addr;
1102 int type;
1103 {
1104 struct cmpci_dmanode **nnp;
1105
1106 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1107 if ((*nnp)->cd_addr == addr) {
1108 struct cmpci_dmanode *n = *nnp;
1109 bus_dmamap_unload(n->cd_tag, n->cd_map);
1110 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1111 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1112 bus_dmamem_free(n->cd_tag, n->cd_segs,
1113 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1114 free(n, type);
1115 return 0;
1116 }
1117 }
1118 return -1;
1119 }
1120
1121 static struct cmpci_dmanode *
1122 cmpci_find_dmamem(sc, addr)
1123 struct cmpci_softc *sc;
1124 caddr_t addr;
1125 {
1126 struct cmpci_dmanode *p;
1127 for (p=sc->sc_dmap; p; p=p->cd_next)
1128 if ( KVADDR(p) == (void *)addr )
1129 break;
1130 return p;
1131 }
1132
1133
1134 #if 0
1135 static void
1136 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1137 static void
1138 cmpci_print_dmamem(p)
1139 struct cmpci_dmanode *p;
1140 {
1141 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1142 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1143 (void *)DMAADDR(p), (void *)p->cd_size));
1144 }
1145 #endif /* DEBUG */
1146
1147
1148 static void *
1149 cmpci_allocm(handle, direction, size, type, flags)
1150 void *handle;
1151 int direction;
1152 size_t size;
1153 int type, flags;
1154 {
1155 struct cmpci_softc *sc = handle;
1156 caddr_t addr;
1157
1158 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1159 return NULL;
1160 return addr;
1161 }
1162
1163 static void
1164 cmpci_freem(handle, addr, type)
1165 void *handle;
1166 void *addr;
1167 int type;
1168 {
1169 struct cmpci_softc *sc = handle;
1170
1171 cmpci_free_dmamem(sc, addr, type);
1172 }
1173
1174
1175 #define MAXVAL 256
1176 static int
1177 cmpci_adjust(val, mask)
1178 int val, mask;
1179 {
1180 val += (MAXVAL - mask) >> 1;
1181 if (val >= MAXVAL)
1182 val = MAXVAL-1;
1183 return val & mask;
1184 }
1185
1186 static void
1187 cmpci_set_mixer_gain(sc, port)
1188 struct cmpci_softc *sc;
1189 int port;
1190 {
1191 int src;
1192
1193 switch (port) {
1194 case CMPCI_MIC_VOL:
1195 src = CMPCI_SB16_MIXER_MIC;
1196 break;
1197 case CMPCI_MASTER_VOL:
1198 src = CMPCI_SB16_MIXER_MASTER_L;
1199 break;
1200 case CMPCI_LINE_IN_VOL:
1201 src = CMPCI_SB16_MIXER_LINE_L;
1202 break;
1203 case CMPCI_VOICE_VOL:
1204 src = CMPCI_SB16_MIXER_VOICE_L;
1205 break;
1206 case CMPCI_FM_VOL:
1207 src = CMPCI_SB16_MIXER_FM_L;
1208 break;
1209 case CMPCI_CD_VOL:
1210 src = CMPCI_SB16_MIXER_CDDA_L;
1211 break;
1212 case CMPCI_INPUT_GAIN:
1213 src = CMPCI_SB16_MIXER_INGAIN_L;
1214 break;
1215 case CMPCI_OUTPUT_GAIN:
1216 src = CMPCI_SB16_MIXER_OUTGAIN_L;
1217 break;
1218 case CMPCI_TREBLE:
1219 src = CMPCI_SB16_MIXER_TREBLE_L;
1220 break;
1221 case CMPCI_BASS:
1222 src = CMPCI_SB16_MIXER_BASS_L;
1223 break;
1224 case CMPCI_PCSPEAKER:
1225 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1226 sc->gain[port][CMPCI_LEFT]);
1227 return;
1228 default:
1229 return;
1230 }
1231 cmpci_mixerreg_write(sc, src, sc->gain[port][CMPCI_LEFT]);
1232 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1233 sc->gain[port][CMPCI_RIGHT]);
1234 }
1235
1236 static int
1237 cmpci_set_in_ports(sc, mask)
1238 struct cmpci_softc *sc;
1239 int mask;
1240 {
1241 int bitsl, bitsr;
1242
1243 if (mask & ~((1<<CMPCI_FM_VOL) | (1<<CMPCI_LINE_IN_VOL) |
1244 (1<<CMPCI_CD_VOL) | (1<<CMPCI_MIC_VOL)
1245 #ifdef CMPCI_SPDIF_SUPPORT
1246 | (1<<CMPCI_SPDIF_IN)
1247 #endif
1248 ))
1249 return EINVAL;
1250 bitsr = 0;
1251 if (mask & (1<<CMPCI_FM_VOL)) bitsr |= CMPCI_SB16_MIXER_FM_SRC_R;
1252 if (mask & (1<<CMPCI_LINE_IN_VOL)) bitsr |= CMPCI_SB16_MIXER_LINE_SRC_R;
1253 if (mask & (1<<CMPCI_CD_VOL)) bitsr |= CMPCI_SB16_MIXER_CD_SRC_R;
1254 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1255 if (mask & (1<<CMPCI_MIC_VOL)) {
1256 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1257 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1258 }
1259 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1260 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1261
1262 sc->in_mask = mask;
1263
1264 return 0;
1265 }
1266
1267 static int
1268 cmpci_set_port(handle, cp)
1269 void *handle;
1270 mixer_ctrl_t *cp;
1271 {
1272 struct cmpci_softc *sc = handle;
1273 int lgain, rgain;
1274 int mask, bits;
1275 int lmask, rmask, lbits, rbits;
1276 int mute, swap;
1277
1278 switch (cp->dev) {
1279 case CMPCI_TREBLE:
1280 case CMPCI_BASS:
1281 case CMPCI_PCSPEAKER:
1282 case CMPCI_INPUT_GAIN:
1283 case CMPCI_OUTPUT_GAIN:
1284 case CMPCI_MIC_VOL:
1285 case CMPCI_LINE_IN_VOL:
1286 case CMPCI_VOICE_VOL:
1287 case CMPCI_FM_VOL:
1288 case CMPCI_CD_VOL:
1289 case CMPCI_MASTER_VOL:
1290 if (cp->type != AUDIO_MIXER_VALUE)
1291 return EINVAL;
1292 switch (cp->dev) {
1293 case CMPCI_MIC_VOL:
1294 if (cp->un.value.num_channels != 1)
1295 return EINVAL;
1296
1297 lgain = rgain =
1298 CMPCI_ADJUST_MIC_GAIN(sc,
1299 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1300 break;
1301 case CMPCI_PCSPEAKER:
1302 if (cp->un.value.num_channels != 1)
1303 return EINVAL;
1304 /* fall into */
1305 case CMPCI_INPUT_GAIN:
1306 case CMPCI_OUTPUT_GAIN:
1307 lgain = rgain = CMPCI_ADJUST_2_GAIN(sc,
1308 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1309 break;
1310 default:
1311 switch (cp->un.value.num_channels) {
1312 case 1:
1313 lgain = rgain = CMPCI_ADJUST_GAIN(sc,
1314 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1315 break;
1316 case 2:
1317 lgain = CMPCI_ADJUST_GAIN(sc,
1318 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1319 rgain = CMPCI_ADJUST_GAIN(sc,
1320 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1321 break;
1322 default:
1323 return EINVAL;
1324 }
1325 break;
1326 }
1327 sc->gain[cp->dev][CMPCI_LEFT] = lgain;
1328 sc->gain[cp->dev][CMPCI_RIGHT] = rgain;
1329
1330 cmpci_set_mixer_gain(sc, cp->dev);
1331 break;
1332
1333 case CMPCI_RECORD_SOURCE:
1334 if (cp->type != AUDIO_MIXER_SET)
1335 return EINVAL;
1336 #ifdef CMPCI_SPDIF_SUPPORT
1337 if (cp->un.mask & (1<<CMPCI_SPDIF_IN))
1338 cp->un.mask = 1<<CMPCI_SPDIF_IN;
1339 #endif
1340 return cmpci_set_in_ports(sc, cp->un.mask);
1341
1342 case CMPCI_AGC:
1343 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_AGC, cp->un.ord & 1);
1344 break;
1345
1346 case CMPCI_CD_OUT_MUTE:
1347 mask = CMPCI_SB16_SW_CD;
1348 goto omute;
1349 case CMPCI_MIC_OUT_MUTE:
1350 mask = CMPCI_SB16_SW_MIC;
1351 goto omute;
1352 case CMPCI_LINE_OUT_MUTE:
1353 mask = CMPCI_SB16_SW_LINE;
1354 omute:
1355 if (cp->type != AUDIO_MIXER_ENUM)
1356 return EINVAL;
1357 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1358 sc->gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1359 if (cp->un.ord)
1360 bits = bits & ~mask;
1361 else
1362 bits = bits | mask;
1363 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1364 break;
1365
1366 case CMPCI_MIC_IN_MUTE:
1367 case CMPCI_MIC_SWAP:
1368 lmask = rmask = CMPCI_SB16_SW_MIC;
1369 goto imute;
1370 case CMPCI_CD_IN_MUTE:
1371 case CMPCI_CD_SWAP:
1372 lmask = CMPCI_SB16_SW_CD_L;
1373 rmask = CMPCI_SB16_SW_CD_R;
1374 goto imute;
1375 case CMPCI_LINE_IN_MUTE:
1376 case CMPCI_LINE_SWAP:
1377 lmask = CMPCI_SB16_SW_LINE_L;
1378 rmask = CMPCI_SB16_SW_LINE_R;
1379 goto imute;
1380 case CMPCI_FM_IN_MUTE:
1381 case CMPCI_FM_SWAP:
1382 lmask = CMPCI_SB16_SW_FM_L;
1383 rmask = CMPCI_SB16_SW_FM_R;
1384 imute:
1385 if (cp->type != AUDIO_MIXER_ENUM)
1386 return EINVAL;
1387 mask = lmask | rmask;
1388 lbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_L)
1389 & ~mask;
1390 rbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_R)
1391 & ~mask;
1392 sc->gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1393 if (CMPCI_IS_IN_MUTE(cp->dev)) {
1394 mute = cp->dev;
1395 swap = mute - CMPCI_CD_IN_MUTE + CMPCI_CD_SWAP;
1396 } else {
1397 swap = cp->dev;
1398 mute = swap + CMPCI_CD_IN_MUTE - CMPCI_CD_SWAP;
1399 }
1400 if (sc->gain[swap][CMPCI_LR]) {
1401 mask = lmask;
1402 lmask = rmask;
1403 rmask = mask;
1404 }
1405 if (!sc->gain[mute][CMPCI_LR]) {
1406 lbits = lbits | lmask;
1407 rbits = rbits | rmask;
1408 }
1409 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, lbits);
1410 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, rbits);
1411 break;
1412
1413 default:
1414 return EINVAL;
1415 }
1416
1417 return 0;
1418 }
1419
1420 static int
1421 cmpci_get_port(handle, cp)
1422 void *handle;
1423 mixer_ctrl_t *cp;
1424 {
1425 struct cmpci_softc *sc = handle;
1426
1427 switch (cp->dev) {
1428 case CMPCI_MIC_VOL:
1429 case CMPCI_LINE_IN_VOL:
1430 if (cp->un.value.num_channels != 1)
1431 return EINVAL;
1432 /* fall into */
1433 case CMPCI_TREBLE:
1434 case CMPCI_BASS:
1435 case CMPCI_PCSPEAKER:
1436 case CMPCI_INPUT_GAIN:
1437 case CMPCI_OUTPUT_GAIN:
1438 case CMPCI_VOICE_VOL:
1439 case CMPCI_FM_VOL:
1440 case CMPCI_CD_VOL:
1441 case CMPCI_MASTER_VOL:
1442 switch (cp->un.value.num_channels) {
1443 case 1:
1444 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1445 sc->gain[cp->dev][CMPCI_LEFT];
1446 break;
1447 case 2:
1448 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1449 sc->gain[cp->dev][CMPCI_LEFT];
1450 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1451 sc->gain[cp->dev][CMPCI_RIGHT];
1452 break;
1453 default:
1454 return EINVAL;
1455 }
1456 break;
1457
1458 case CMPCI_RECORD_SOURCE:
1459 cp->un.mask = sc->in_mask;
1460 break;
1461
1462 case CMPCI_AGC:
1463 cp->un.ord = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_AGC);
1464 break;
1465
1466 case CMPCI_CD_IN_MUTE:
1467 case CMPCI_MIC_IN_MUTE:
1468 case CMPCI_LINE_IN_MUTE:
1469 case CMPCI_FM_IN_MUTE:
1470 case CMPCI_CD_SWAP:
1471 case CMPCI_MIC_SWAP:
1472 case CMPCI_LINE_SWAP:
1473 case CMPCI_FM_SWAP:
1474 case CMPCI_CD_OUT_MUTE:
1475 case CMPCI_MIC_OUT_MUTE:
1476 case CMPCI_LINE_OUT_MUTE:
1477 cp->un.ord = sc->gain[cp->dev][CMPCI_LR];
1478 break;
1479
1480 default:
1481 return EINVAL;
1482 }
1483
1484 return 0;
1485 }
1486
1487 /* ARGSUSED */
1488 static size_t
1489 cmpci_round_buffersize(handle, direction, bufsize)
1490 void *handle;
1491 int direction;
1492 size_t bufsize;
1493 {
1494 if (bufsize > 0x10000)
1495 bufsize = 0x10000;
1496
1497 return bufsize;
1498 }
1499
1500
1501 static paddr_t
1502 cmpci_mappage(handle, addr, offset, prot)
1503 void *handle;
1504 void *addr;
1505 off_t offset;
1506 int prot;
1507 {
1508 struct cmpci_softc *sc = handle;
1509 struct cmpci_dmanode *p;
1510
1511 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1512 return -1;
1513
1514 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1515 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1516 offset, prot, BUS_DMA_WAITOK);
1517 }
1518
1519
1520 /* ARGSUSED */
1521 static int
1522 cmpci_get_props(handle)
1523 void *handle;
1524 {
1525 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1526 }
1527
1528
1529 static int
1530 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1531 void *handle;
1532 void *start, *end;
1533 int blksize;
1534 void (*intr) __P((void *));
1535 void *arg;
1536 struct audio_params *param;
1537 {
1538 struct cmpci_softc *sc = handle;
1539 struct cmpci_dmanode *p;
1540 int bps;
1541
1542 sc->sc_play.intr = intr;
1543 sc->sc_play.intr_arg = arg;
1544 bps = param->channels*param->precision*param->factor / 8;
1545 if (!bps)
1546 return EINVAL;
1547
1548 /* set DMA frame */
1549 if (!(p = cmpci_find_dmamem(sc, start)))
1550 return EINVAL;
1551 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1552 DMAADDR(p));
1553 delay(10);
1554 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1555 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1556 delay(10);
1557
1558 /* set interrupt count */
1559 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1560 (blksize + bps - 1) / bps - 1);
1561 delay(10);
1562
1563 /* start DMA */
1564 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1565 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1566 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1567
1568 return 0;
1569 }
1570
1571 static int
1572 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1573 void *handle;
1574 void *start, *end;
1575 int blksize;
1576 void (*intr) __P((void *));
1577 void *arg;
1578 struct audio_params *param;
1579 {
1580 struct cmpci_softc *sc = handle;
1581 struct cmpci_dmanode *p;
1582 int bps;
1583
1584 sc->sc_rec.intr = intr;
1585 sc->sc_rec.intr_arg = arg;
1586 bps = param->channels*param->precision*param->factor/8;
1587 if (!bps)
1588 return EINVAL;
1589
1590 /* set DMA frame */
1591 if (!(p=cmpci_find_dmamem(sc, start)))
1592 return EINVAL;
1593 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1594 DMAADDR(p));
1595 delay(10);
1596 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1597 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1598 delay(10);
1599
1600 /* set interrupt count */
1601 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1602 (blksize + bps - 1) / bps - 1);
1603 delay(10);
1604
1605 /* start DMA */
1606 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1607 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1608 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1609
1610 return 0;
1611 }
1612
1613
1614 /* end of file */
1615